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Abstract. We present an interpretation of protocol narrations by means
of translation into the spi-calculus. Our translation allows participants
to play multiple roles in parallel, leading to a more general interpretation
that considers a wider range of attacks than previous work. We test the
validity of our translation by introducing correspondence assertions [Woo
and Lam, S&P 1993] to both the protocol narrations and the spi-calculus,
and verifying a number of examples by using SpiCA2 [Dahl, Kobayashi,
Sun, and Hüttel, ATVA 2011], a sound and automatic type-based verifier
of correspondence assertions.

1 Introduction

Security protocols are often written in the so-called narration notation (e.g. [4,
9]). For instance, a “repaired” version of the Wide Mouthed Frog protocol [2,
Section 3.2.4] can be written like:

1. A → S : A
2. S → A : NS

3. A → S : A, {A,A, B,KAB , NS}KAS

4. S → B : ()
5. B → S : NB

6. S → B : {S,A, B, KAB , NB}KBS

7. A → B : A, {M}KAB

(In this paper, we write () for the “dummy” message. It was written ∗ in [2].) If
literally read, the narration above says

1. Principal A sends message A to principal S.
2. Principal S sends message NS to principal A.
3. Principal A sends message A, {A,A, B,KAB , NS}KAS

to principal S.
4. . . .

and so forth. However, this reading is rather superficial and describes only a
small part of the actual behavior of each principal. For example:
? Draft as of June 29, 2013



– In step 1, the “server” S should take the name A as a parameter to the rest
of its actions.

– In step 2, S should freshly generate the “nonce” NS .
– In step 3, S should decrypt the ciphertext {A,A,B,KAB , NS}KAS

and “check”
the last element NS (as well as the three elements A, A, and B).

To bridge this gap, translations into variants of (a subset of) the spi-calculus [2],
based on the knowledge of each principal at each point of the protocol, have been
proposed [3, 11]. The basic ideas of the translations are as follows:

– When a principal X receives a message M that X does not yet know (i.e.,
M is not in the knowledge of X at the point of the protocol), X learns M
(i.e., M is added to the knowledge of X for the rest of the protocol).

– When a principal X receives a message M that X already knows, X checks
whether M is equal to what X knows (if not, X stops).

– When a principal X sends a message M that X does not know, X freshly
generates M and adds M to its knowledge.1

– When a principal X receives a ciphertext {M}K+ of which X knows the
decryption key K− (same as K+ in the case of symmetric encryption), X
decrypts the ciphertext and behaves as if it received the plaintext M .

For example, if the initial knowledge of A, B, and S is {A,B, S,KAS ,M},
{A,B, S,KAS ,KBS}, and {A,B, S, KBS}, respectively, and if KAS and KBS

are secret (or “the initial knowledge of the attacker” is {A, B, S,M}), the nar-
ration above can be translated into the spi-calculus process

νKAS . νKBS . (A | B | S)

where
A = net!A | (i)

net?NS . (ii)
νKAB . net!(A, {A,A, B, KAB , NS}KAS ) | (iii)
net!(A, {M}KAB ) | (iv)
0

B = net?(). (i)
νNB . net!NB | (ii)
net?c1. (iii)
decrypt c1 is {S1, A1, B1,KAB , NB1}KBS in (iv)
check (S1, A1, B1, NB1) is (S, A,B,NB) in (v)
net?(A2, c2). (vi)
check A2 is A in (vii)
decrypt c2 is {M}KAB in (viii)
0

1 In [3], freshly generated messages are explicitly declared “for the sake of clar-
ity”(p. 487).



S = net?A3. (i)
check A3 is A in (ii)
νNS . net!NS | (iii)
net?(A4, c3). (iv)
check A4 is A in (v)
decrypt c3 is {A5, A6, B1, KAB , NS1}KAS

in (vi)
check (A5, A6, B1, NS1) is (A,A,B,NS) in (vii)
net!() | (viii)
net?NB . (ix)
net!{S, A, B, KAB , NB}KBS

| (x)
0

(in this paper, we use ! and ? for output and input, respectively; for the sake
of brevity, we also use pattern matching notations on tuples). The key points of
the translation are as follows:

– In line (ii) of A and line (ix) of S, the received nonces NS and NB are
respectively added to the knowledge of the receivers.

– In line (iv) and (viii) of B and line (vi) of S, the received ciphertexts c1, c2,
and c3 are decrypted with the known keys KBS , KAB , and KAS , respectively.

– In line (v) and (vii) of B and line (ii), (v), and (vii) of S, the integrity of all
the known messages are checked when received (or decrypted).

– In line (iii) of A, line (ii) of B, and line (iii) of S, the key KAB and the
nonces NB and NS , respectively, are freshly generated.

However, this interpretation still suffers from the following limitations:

– The principals B and S assumes a particular A and refuses to talk with other
principals. This is especially problematic for the “server” S, which usually
should process requests from multiple clients.

– Each principal plays only a single, fixed role (for once). Even if we replicate
the translated processes A, B, and S, they still cannot play any other role.

To see a consequence of these limitations, consider the following (broken) variant
of the protocol:

1. A → S : A
2. S → A : NS

3. A → S : A, {B, KAB , NS}KAS

4. S → B : ()
5. B → S : NB

6. S → B : {A,KAB , NB}KBS

7. A → B : A, {M}KAB

Note that the ciphertexts in step 3 and 6 are “simplified” from {A,A, B, KAB , NS}KAS

and {S, A, B, KAB , NB}KBS
to {B, KAB , NS}KAS

and {A,KAB , NB}KBS
, re-

spectively. As a result, the protocol becomes insecure when run in parallel with
the following session of the same protocol in the other direction (i.e., the roles



Protocols π ::= α1; . . . ; αn

Actions α ::= X → Y : M | X begins M | X ends M
Messages M ::= v | (M, N) | inl(M) | inr(M) | M+ | M− | {M}N

Variables v ::= XY1...Yn

Atoms X ::= A, B, S, x, y, K, N, . . .

Fig. 1. Syntax of protocol narrations with correspondence assertions

of A and B are swapped).

1′. B → S : B
2′. S → B : N ′

S

3′. B → S : B, {A,KBA, N ′
S}KBS

4′. S → A : ()
5′. A → S : NA

6′. S → A : {B, KBA, NA}KAS

7′. B → A : B, {M ′}KBA

Specifically, the attacker can substitute the nonce N ′
S in step 2′ with NB in 5, and

the ciphertext {A,KAB , NB}KBS
in step 6 with {A,KBA, NB}KBS

in 3′, tricking
B into using KBA instead of KAB in step 7. This flaw could be fixed by introduc-
ing “type tags” into the cihpertexts {B,KAB , NS}KAS and {A,KAB , NB}KBS

of the protocol—like {inl(B, KAB , NS)}KAS
and {inr(A,KAB , NB)}KBS

—but
the problem here is that the previous translation cannot reflect this attack be-
cause of the one-to-one assignment of roles to principals.

In this paper, we propose an improved translation of protocol narrations into
(a subset of) the spi-calculus, where every principal can play every role, getting
rid of such limitations as above. We furthermore extend our translation to allow
insider attacks (i.e., some of the principals may be malicious). We test the validity
of our translations by type-checking the translated processes with SpiCA2 [5],
a sound and automatic type-based verifier of correspondence assertions [7, 8, 12]
in spi-calculus.

The rest of this paper is structured as follows. Section 2 gives the syntax
of our protocol narrations and spi-calculus, both extended with correspondence
assertions. Section 3 defines the translation, Section 4 gives an example, and
Section 5 shows experimental results. Section 6 extends the translation with
malicious participants and Section 7 concludes with discussions.

2 Syntax

The syntax of our protocol narrations—extended with correspondence assertions
to be used by SpiCA2 after translation—is given in Figure 1. A protocol π is a
sequence α1; . . . ;αn of actions. An action α is either a transmission X → Y : M
of message M from principal X to Y , or one of the correspondence assertions
X begins M and X ends M . A message M is either a variable v, a pair (M, N)



Processes P ::= 0 | νv.P | M!N | M?v.P | P | Q | ∗ P
| check M is N in P | decrypt M is {v}N in P
| case M is inl(v).P [] inr(w).Q | split M is (v, w) in P
| match M is (N, v) in P | begin M.P | end M

Fig. 2. Syntax of spi-calculus with correspondence assertions

of messages, a tagged message inl(M) or inr(M), one of the key pairs M+

and M−, or a ciphertext {M}N . We assume that a ciphertext encrypted with
v, v+, and v− can respectively be decrypted only with v, v−, and v+ (as in
the standard Dolev-Yao model [6]). We often make v+ public while keeping v−

private, and sometimes use encryption with v− for signing (and decryption with
v+ for verification). A variable v has the form XY1...Yn for some n ≥ 0, where
X, Y1, . . . , Yn are a kind of “subvariables” called atoms. This will be useful for
translating a parametrized variable (e.g., KAS was parametrized over A in the
protocols above) into a dynamic look-up.

The syntax of spi-calculus with correspondence assertions (input for SpiCA2 [5])
is given in Figure 2. Process 0 does nothing. νv.P generates a fresh name,
binds v to it, and executes P . M!N sends message N to channel M , while
M?v.P receives a message from channel M , binds v to it, and executes P . P | Q
runs P and Q in parallel, and ∗P spawns an infinite number of parallel P .
check M is N in P compares M and N , and executes P if they are equal (or
stops if not). decrypt M is {v}N in P decrypts the ciphertext M with N , binds
v to the decrypted plaintext and executes P (or stops if the decryption fails).
case and split processes destructs tagged and paired messages, respectively.
match M is (N, v) in P compares N and the first element of the pair M , and if
they are equal, binds v to the second element, and executes P (or stops if not).
Although match can be implemented by using split and check, it is given a
special typing rule in SpiCA2. Finally, begin M and end M are correspondence
assertions. (The operational semantics of processes is straightforward [5] and
omitted in this paper.)

3 The Translation

In this section, we present our translation of narrations in a “top-down” order
according to the syntax in Figure 1.

3.1 Translation of protocols

Given the initial knowledge I of participants, which is a partial mapping to
messages from names A,B, S, . . . of participants in the narration, a protocol



π = α1; . . . ;αn is translated to the spi-calculus process T (π) as follows:

T (π) = *νp. *part!p |
νdb. νdbplus. νdbminus.

(*part?p1. part?p2. νKp1p2 . *db!((p1, p2),Kp1p2) |
*part?p. νKp. (*dbplus!(p,K+

p ) | *dbminus!(p,K−
p ) | *net!K+

p ) |∏
X∈dom(I)TX(π))

The first line *νp. *part!p generates an infinite number of names of par-
ticipants and keeps sending them to the channel part. As emphasized in the
introduction, our translation assigns multiple roles to each participant; thus, af-
ter the translation, the number of participants p1, p2, . . . (which is infinite!) does
not match the number of roles A,B, S, . . . .

The second line νdb. νdbplus. νdbminus creates three secret channels db,
dbplus, and dbminus for an ideal “key database,” represented by the third
and fourth lines. The third line then keeps receiving two names of participants
(*part?p1. part?p2), freshly generates a symmetric key (νKp1p2), and keeps
sending it to db with the two participant names (*db!((p1, p2),Kp1p2)). This
process is somewhat different from a realistic key database in that it generates
an infinite number of Kp1p2 (instead of just one) even for the same p1 and p2.
This discrepancy is okay as far as sound (but incomplete) verification of safety
properties (such as no failure of correspondence assertions) is concerned, since
more behavior is allowed, not less.

Similarly, the fourth line keeps receiving a participant name (*part?p), gen-
erates a fresh name (νKp), and keeps sending the asymmetric key pair to dbplus
and dbminus with the participant name (*dbplus!(p,K+

p ) | *dbminus!(p,K−
p ))

as well as sending the public key to an open network (*net!K+
p ). Again, it is

fine for our purpose that the process generates an infinite number of key pairs
for each principal.

The last line spawns the translations TA(π), TB(π), TS(π), . . . (defined below)
of each role A,B, S, . . . (drawn from the domain of the initial knowledge I) in
parallel.

3.2 Translation of roles

A role X in protocol π = α1; . . . ; αn is translated as

TX(α1; . . . ; αn) = *part?p1. . . . part?pm.
TX(ρ1, α1)(λρ2.
TX(ρ2, α2)(λρ3.

. . .
TX(ρn−1, αn−1)(λρn.
TX(ρn, αn)(λρn+1.
0)) . . .))

where {Y1, . . . , Ym} = {Y | Y ∈ I(X)}
and ρ1 = {Y1 7→ p1, . . . , Ym 7→ pm}



where TX(ρi, αi) is the translation of action αi for role X with knowledge ρi,
which is a partial mapping from messages in the narration to messages in the
translated process. The translated process first receives the names p1, . . . , pm of
principals of role Y1, . . . , Ym (drawn from the initial knowledge I(X) of principals
of role X), where the knowledge ρ1 maps Y1, . . . , Ym to p1, . . . , pm in the rest of
the translation. Since the knowledge may increase by each action, the translation
TX(ρi, αi) of action αi in fact takes a continuation λρi+1. . . . and applies it to
the increased knowledge. (We adopt continuation passing style to simplify the
definitions.)

3.3 Translation of actions

Action Y → Z : M , Y begins M , and Y ends M of role X are translated
by case analysis on whether Y or Z matches X. On one hand, if Y = X, the
translated process SX(ρ,M)(λσ.(. . . σ∗(M) . . . c[σ])) looks up the key database
and freshly generate names to compose the message σ∗(M) to send, begin, or end
(see Section 3.5). On the other hand, if Z = X, the process net?x. RX(ρ, x, M)c
checks the received message if it is known, or else adds it to the knowledge (see
Section 3.7). In the other cases, the process does nothing, so the continuation c
is just applied to the knowledge ρ without change. (We use square brackets [ ]
for continuation application.)

TX(ρ,X → Y : M)c = SX(ρ, M)(λσ. (net!σ∗(M) | c[σ])) if Y 6= X
TX(ρ, Y → X : M)c = net?x. RX(ρ, x, M)c if Y 6= X and x fresh
TX(ρ, Y → Z : M)c = c[ρ] if Y 6= X and Z 6= X
TX(ρ,X begins M)c = SX(ρ, M)(λσ. begin σ∗(M). c[σ])
TX(ρ, Y begins M)c = c[ρ] if Y 6= X
TX(ρ,X ends M)c = SX(ρ, M)(λσ. (end σ∗(M) | c[σ]))
TX(ρ, Y ends M)c = c[ρ] if Y 6= X

3.4 Message composition

The application ρ∗(M) of knowledge ρ to message M is defined just along the
structure of M .

ρ∗(M) = ρ(M) if M ∈ dom(ρ)

ρ∗((M1, M2)) = (ρ∗(M1), ρ∗(M2)) otherwise
ρ∗(inl(M)) = inl(ρ∗(M))
ρ∗(inr(M)) = inr(ρ∗(M))
ρ∗(M+) = (ρ∗(M))+

ρ∗(M−) = (ρ∗(M))−

ρ∗({M}N ) = {ρ∗(M)}ρ∗(N)



3.5 Fresh name generation

The fresh name generation, required for output (and begin) of an unknown
message, is defined below. In the first line, it tries to compose the message
only by looking up the key database (see Section 3.6). If this look-up fails, the
translation works along the structure of the composed message, as in line 2 to
7. In the last line, a fresh name w is generated for the unknown variable v, and
the knowledge ρ is extended with the new mapping v 7→ w.

SX(ρ,M)c = lookupX(ρ,M)c if lookupX(ρ,M) is defined

SX(ρ, (M1,M2))c = SX(ρ,M1)(λσ. SX(σ,M2)c) otherwise
SX(ρ, inl(M))c = SX(ρ,M)c
SX(ρ, inr(M))c = SX(ρ,M)c
SX(ρ,M+)c = SX(ρ,M)c
SX(ρ,M−)c = SX(ρ,M)c
SX(ρ, {M}N )c = SX(ρ,N)(λσ. SX(σ,M)c)
SX(ρ, v)c = νw. c[ρ, v 7→ w] w fresh

3.6 Key database look-up

When a parameterized variable XY1...Yn in the initial knowledge I(X) of princi-
pals of role X is needed, the translated process looks it up in the key database
as follows. Again, the translation works along the structure of the message M to
be composed, as in line 2 to 7 below. In the first line, if M is already composable
(i.e., in the knowledge ρ), no look-up is necessary. Otherwise, the key k received
from the database is extracted by using match, as in the last 6 lines.

lookupX(ρ,M)c = c[ρ] if M ∈ dom(ρ)

lookupX(ρ, (M1,M2))c = lookupX(ρ,M1)(λσ. lookupX(σ,M2)c) otherwise
lookupX(ρ, inl(M))c = lookupX(ρ,M)c
lookupX(ρ, inr(M))c = lookupX(ρ,M)c
lookupX(ρ,M+)c = lookupX(ρ,M)c
lookupX(ρ,M−)c = lookupX(ρ,M)c
lookupX(ρ, {M}N )c = lookupX(ρ,N)(λσ. lookupX(σ,M)c)
lookupX(ρ,KY Z)c = db?x. match x is ((ρ(Y ), ρ(Z)), k) in c[ρ,KY Z 7→ k]

if KY Z ∈ I(X) and x, k fresh
lookupX(ρ,K+

Z )c = dbplus?x. match x is (ρ(Z), k) in c[ρ, K+
Z 7→ k]

if K+
Z ∈ I(X) and x, k fresh

lookupX(ρ,K−
Z )c = dbminus?x. match x is (ρ(Z), k) in c[ρ,K−

Z 7→ k]
if K−

Z ∈ I(X) and x, k fresh

3.7 Equality checking and knowledge extension

When a message M is received, and if M can also be composed from the knowl-
edge after key database look-ups, their equality with each other is checked (the



first clause below). Otherwise, pairs and tagged messages—as well as ciphertexts
with known keys—are destructed or decrypted, and the contents are checked (the
second to fifth clauses, where N̂ is defined as N̂+ = N−, N̂− = N+, and N̂ = N
otherwise). Once the message cannot be checked or destructed any further, it is
added to the knowledge of the receiver (the last clause).

RX(ρ, x, M)c = lookupX(ρ, M)(λσ.
check σ∗(M) is x in c[σ])

if lookupX(ρ,M) is defined

RX(ρ, x, (M1,M2))c = split x is (y1, y2) in otherwise
RX(ρ, y1,M1)(λσ.
RX(σ, y2, M2)c) y1, y2 fresh

RX(ρ, x, inl(M))c = case x is
inl(y1). RX(ρ, y1,M)c []
inr(y2). 0 y1, y2 fresh

RX(ρ, x, inr(M))c = case x is
inl(y1). 0 []
inr(y2). RX(ρ, y2,M)c y1, y2 fresh

RX(ρ, x, {M}N )c = lookupX(ρ, N̂)(λσ.
decrypt x is {y}σ∗( bN) in

RX(σ, y,M)c)
if lookupX(ρ, N̂) is defined and y fresh

RX(ρ, x, M)c = c[ρ,M 7→ x] otherwise

It is straightforward to add more checks into the translation above, for in-
stance, when a decryption key K− is received after a ciphertext {M}K+ or the
corresponding encryption key K+. We omitted such “extra” checks in favor of
simplicity of the definition, as they were not necessary for our examples.

4 Example

For the sake of presentation, we use n-ary tuples for n = 0, 3, . . . (in addition to
pairs) and pattern matching on them. Let us assume the initial knowledge:

I(A) = {A,B, S, KAS}
I(B) = {B, S,KBS}
I(S) = {S,KAS ,KBS}

Note that B does not a priori know A. Note also that S does not know A or B,
even though it knows KAS and KBS ! This is fine because KAS and KBS will
be looked up from the key database by using the names of A and B received at
runtime.



Then, the following (broken) version of the Wide Mouthed Frog protocol

1. A → S : A
2. S → A : NS

3. A begins (A,B, KAB)
4. A → S : {B,KAB , NS}KAS

5. S → B : ()
6. B → S : NB

7. S → B : {A,KAB , NB}KBS

8. B ends (A,B, KAB)

a

is translated into

*νp. *part!p |
νdb.

(*part?p1. part?p2. νKp1p2 . *db!((p1, p2),Kp1p2) |
A | B | S)

(for brevity, the database for asymmetric keys is omitted here), where

A = *part?A. part?B. part?S. (*)

net!A |
net?NS .
νKAB . begin (A,B,KAB).
db?x1. match x1 is ((A,S), KAS) in (***)

net!{B, KAB , NS}KAS |
0

B = *part?B. part?S. (*)

net?().
νNB . net!NB |
net?c1.
db?x2. match x2 is ((B, S),KBS) in (***)

decrypt c1 is {A,KAB , N ′
B}KBS

in (**)

check N ′
B is NB in

end (A,B, KAB) |
0

S = *part?S. (*)

net?A. (**)

νNS . net!NS |
net?c2.
db?x3. match x3 is ((A,S), KAS) in (***)

decrypt c2 is {B, KAB , N ′
S}KAS

in (**)

check N ′
S is NS in

net!() |
net?NB .
db?x4. match x4 is ((B, S),KBS) in (***)

net!{A,KAB , NB}KBS
|

0



The following are highlights of this translation:

(*) On one hand, the process A is parametrized by the names A, B, and S;
similarly, process B is parameterized by names B and S, and process S by
name S.

(**) On the other hand, process B learns name A during the run of the protocol;
similarly, S learns A and B at runtime.

(***) Accordingly, the symmetric key KAS (resp. KBS) shared between A and
S (resp. B and S) is looked up from the database at runtime.

5 Experiments

We tested the validity of our translation by verifying its results with SpiCA2 [5],
a sound and automatic type-based verifier of correspondence assertions. From the
WWW site of SpiCA2 (http://www.kb.is.s.u-tokyo.ac.jp/~koba/spica2/),
we took 5 protocols using symmetric encryption and 12 using asymmetric.

The results are given in the Table 1 (at the end of the paper, for the sake
of page breaks). The columns “expected” and “actual” show the expected and
actual results, respectively. “Safe” means that type checking succeeded (i.e., the
correspondence assertions would never fail), while “unsafe” means that it failed.

All the actual results match expected ones except for the two “not simply-
typed.” They are due to the fact that our translation uses the same public key
K+ for both encryption and signature verification (and the same secret key K−

for both decryption and signing), which does not fit (the “simple” part of) the
present type system of SpiCA2. It should be straightforward to adapt the latter
to the former (or vice versa).

6 Extension with malicious participants

It is well known that some protocols such as (asymmetric-key version of) Needham-
Schroeder [10] are vulnerable to an insider attack, i.e., unsafe when one of the
principals is malicious. However, our translation above does not allow such at-
tacks because the channels db, dbplus, and dbminus for the key database are
private, i.e., the attacker cannot share any keys with the (good) principals, mean-
ing that it cannot participate in the protocol at all.

To get rid of this limitation, we extend the translation with “bad” partici-
pants as follows. First, we separate the name set of bad participants from that
of good ones, writing N bad for the former and N good for the latter. In the actual
translation to SpiCA2, this separation is implemented just by adding an inl (for
bad) or inr (for good) tag to each name.



The translation of a protocol π then becomes (the changes are underlined):

T (π) = *νp ∈ N good . *part!p | *νp ∈ N bad . *part!p |
νdb. νdbplus. νdbminus.

(*part?p1. part?p2. νKp1p2 . (*db!((p1, p2),Kp1p2) |
if p1 ∈ N bad ∨ p2 ∈ N bad then *net!Kp1p2) |

*part?p. νKp. (*dbplus!(p,K+
p ) | *dbminus!(p, K−

p ) | *net!K+
p |

if p ∈ N bad then *net!K−
p ) |∏

X∈dom(I)TX(π))

The first line generates two kinds of participant names rather than just one. The
fourth and sixth lines publish “private” keys if they belong to bad participants
so that the attacker can use them.

Then, the translation of a protocol π = α1; . . . ; αn for principals of role X is

TX(α1; . . . ;αn) = *part?p1. . . . part?pm.
TX(b1, ρ1, α1)(λ(b2, ρ2).
TX(b2, ρ2, α2)(λ(b3, ρ3).

. . .
TX(bn−1, ρn−1, αn−1)(λbn, ρn.

TX(bn, ρn, αn)(λ(bn+1, ρn+1).
0)) . . .))

where b1 = ({p1, . . . , pm} ⊆ N good)
and {Y1, . . . , Ym} = {Y | Y ∈ I(X)}
and ρ1 = {Y1 7→ p1, . . . , Ym 7→ pm}

where the translation of each action αi passes around a Boolean value bi that
represents whether all participants involved in the current session is good. This
is necessary because, if any of the participants is bad, we will never execute
any end assertion in this session since there is no hope that the bad participant
executes the corresponding begin assertion. The rest of the changes are thus
(the other definitions remain unchanged):

TX(b, ρ, X → Y : M)c = SX(ρ,M)(λσ. (net!σ∗(M) | c[(b, σ)])) if Y 6= X
TX(b, ρ, Y → X : M)c = net?x. RX(b, ρ, x,M)c if Y 6= X and x fresh
TX(b, ρ, Y → Z : M)c = c[(b, ρ)] if Y 6= X and Z 6= X
TX(b, ρ, X begins M)c = SX(ρ,M)(λσ. begin σ∗(M). c[(b, σ)])
TX(b, ρ, Y begins M)c = c[(b, ρ)] if Y 6= X
TX(b, ρ, X ends M)c = if b = false then c[(b, ρ)] else

SX(ρ,M)(λσ. (end σ∗(M) | c[(b, σ)]))
TX(b, ρ, Y ends M)c = c[(b, ρ)] if Y 6= X



RX(b, ρ, x, M)c = lookupX(ρ,M)(λσ.
check σ∗(M) is x in c[(b, σ)])

if lookupX(ρ,M) is defined

RX(b, ρ, x, (M1,M2))c = split x is (y1, y2) in otherwise
RX(b, ρ, y1,M1)(λ(b′, σ).
RX(b′, σ, y2,M2)c) y1, y2 fresh

RX(b, ρ, x, inl(M))c = case x is
inl(y1). RX(b, ρ, y1,M)c []
inr(y2). 0 y1, y2 fresh

RX(b, ρ, x, inr(M))c = case x is
inl(y1). 0 []
inr(y2). RX(b, ρ, y2,M)c y1, y2 fresh

RX(b, ρ, x, {M}N )c = lookupX(ρ, N̂)(λσ.
decrypt x is {y}σ∗( bN) in

RX(b, σ, y,M)c)
if lookupX(ρ, N̂) is defined and y fresh

RX(b, ρ, x, A)c = c[((x ∈ N good) ∧ b, (ρ,A 7→ x))] if A ∈ dom(I)
RX(b, ρ, x, M)c = c[(b, (ρ,M 7→ x))] otherwise

It requires some trick to make SpiCA2 accept this translation: as mentioned
above, the distinction of “bad” participant names N bad and “good” ones N good

can be implemented by tagging, but then it often becomes the case that the
type of an element of a tuple depends on the tag of another element of the same
tuple; for instance, in the ciphertext {S, A, B, KAB , NB}KBS

of message 6 of the
first protocol in Section 1, KAB may be private or public, depending on whether
A is good or bad, i.e., tagged by inl or inr. Such dependency is beyond the
power of standard dependent type system as in SpiCA2. To address this problem,
we move all inl and inr tags to the outside of tuples as far as possible (e.g.,
rewriting {inl(A),KAB}KBS

to {inl(A,KAB)}KBS
) and “normalize” (strange)

dependent sums like Σx : N bad +N good . if x ∈ N bad then public else private
to simple sums like (N bad × public) + (N good × private), roughly speaking.

With this trick, the results in Table 1 remain unchanged even under the pres-
ence of malicious participants. This is somewhat surprising because the extended
translation allows more attacks. We conjecture that this is only a coincidence of
the particular examples of protocols and the type system of SpiCA2, but further
investigation is due.

7 Conclusions

We developed an interpretation of protocol narrations as a translation into the
spi-calculus, and tested its validity by means of correspondence assertions and
their verification.

From the translation, it is obvious that the full power of spi-calculus is not
used. One may therefore argue that the target language of the translation can be



simplified. While this is true, we believe that our translation into the spi-calculus
(with correspondence assertions) is already simple enough. Moreover, the full
power of spi-calculus would be useful for the attacker and the environment of a
protocol.

Another natural question is whether our translation is “correct.” Since there
is no standard formal semantics of protocol narrations,2 and since our translation
is a definition of the meaning of protocol narrations, trying to prove its correct-
ness seems pointless. However, a more direct semantics of protocol narrations is
indeed desirable.

Security properties other than correspondence assertions (authenticity)—
such as secrecy [1]—should also be considered in future work.
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Table 1. Results of experiments with SpiCA2

Protocol Expected Actual

A simple handshake
using a symmetric key

safe safe

Woo and Lam’s authentication protocol
using a symmetric key

safe safe

Otway and Ree’s key exchange protocol
using a symmetric key

safe safe

Flawed wide mouth frog protocol unsafe unsafe

Fixed variant of wide mouth frog protocol safe safe

POSH (public out, secret home) protocol
using an asymmetric key

safe safe

SOPH (secret out, public home) protocol
using an asymmetric key

safe safe

SOSH (secret out, secret home) protocol
using an asymmetric key

safe safe

A three-party protocol that cannot be typed in
Gordon and Jeffrey’s type system

safe not simply-typed

Cremers and Mauw’s generalized
Needham-Schroeder-Lowe protocol

safe safe

ISO Public Key Two-Pass
Unilateral Authentication Protocol

safe safe

Needham-Schroeder protocol
(flawed, hence untypable)

unsafe unsafe

Needham-Schroeder-Lowe protocol
(Lowe’s fix, 3-message version)

safe safe

Needham-Schroeder-Lowe protocol
(Lowe’s fix, 7-message version)

safe not simply-typed

NSL protocol (optimized version) safe safe

NSL protocol (with secret) safe safe

NSL protocol (with secret and optimization) safe safe


