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Abstract

We develop a general method of proving properties of programs under arbi-
trary contexts—including (but not limited to) observational equivalence, space
improvement, and a form of memory safety of the programs—in untyped call-by-
value λ-calculus with first-class, dynamically allocated, higher-order references
and deallocation. The method generalizes Sumii et al.’s environmental bisim-
ulation technique, and gives a sound and complete characterization of each
proved property, in the sense that the “bisimilarity” (the largest set satisfy-
ing the bisimulation-like conditions) equals the set of terms with the property
to be proved. We give examples of contextual properties concerning typical
data structures such as linked lists, binary search trees, and directed acyclic
graphs with reference counts, all with deletion operations that release mem-
ory. This shows the scalability of the environmental approach from contextual
equivalence to other binary relations (such as space improvement) and unary
predicates (such as memory safety), as well as to languages with non-monotone
store.

1. Introduction

1.1. Background
Memory management is tricky, be it manual or automatic. Manual memory

management is notoriously difficult, leading to memory leaks and segmenta-
tion faults (or, even worse, security holes). Automatic memory management
is usually more convenient. Still, real programs often suffer from performance

✩Manuscript, July 15, 2008 (last revised on September 21, 2010). Extended abstract ap-
peared as A Theory of Non-Monotone Memory (Or: Contexts for free) in Proceedings of 18th
European Symposium on Programming, York, United Kingdom, March 22-29, 2009 (Lecture
Notes in Computer Science, Springer-Verlag, Germany, vol. 5502), pp. 237-251.

Email address: sumii@ecei.tohoku.ac.jp (Eijiro Sumii)



problems—in terms of both memory and time—due to automatic memory man-
agement, and require manual tuning. In addition, implementing memory man-
agement routines—such as memory allocators and garbage collectors—is even
harder than writing programs that use them.

To address these problems, various theories for safe memory management
have been developed, including linear types (Wadler, 1990), regions (Tofte and
Talpin, 1994), and the capability calculus (Crary et al., 1999), just to name a
few. These approaches typically conduct a sound and efficient static analysis—
often based on types—on programs, and guarantee their memory safety. How-
ever, since static analyses are necessarily incomplete in the sense that some safe
programs are rejected, the programs usually have to be written in a style that
is accepted by the analysis.

1.2. Our contributions
In this paper, we develop a different approach, originating from Sumii et al.’s

environmental bisimulations (Sumii and Pierce, 2007a,b; Koutavas and Wand,
2006; Sangiorgi et al., 2007). Unlike most static analyses, our method is not
fully automated, but is (sound and) complete in the sense that all (and only)
safe programs can potentially be proved safe. Moreover, it guarantees a form of
memory safety of the programs under any context, even if the context—or, in
fact, the whole language—is untyped.

For instance, consider the triple dag of functions in Figure 1, which imple-
ments an abstract data type—a directed acyclic graph object, with addition
and deletion operations and garbage collection by reference counting—using
deallocation. (Details of this implementation are not important now and will
be explained in Section 9. The formal syntax and semantics of our language will
be given in Section 3.) To prove the memory safety of such an implementation,
it makes no sense to evaluate the tuple of functions by itself, because they are
just functions and do no harm (or good) unless applied. Rather, we must con-
sider all possible uses of it, i.e., put it under arbitrary contexts. Our method
gives such a proof.

Because our method is based on a relational technique (namely, bisimula-
tions), we can also prove binary properties such as observational equivalence, in
addition to unary properties such as memory safety. Furthermore, we can prove
stronger binary properties than observational equivalence, like “the memory us-
age (i.e., number of locations) is the same on the left hand side and the right” or
“the left hand side uses less memory than the right” (cf. Gustavsson and Sands
(1999)). Again, our proof assures that such properties of programs are preserved
by arbitrary contexts in the language, like contextual equivalence (Morris, 1968).

1.3. Our approach
1.3.1. Environmental bisimulations

Suppose that we want to prove the equivalence of two programs e and e′.
(Throughout this paper, we often follow the notational convention that meta-
variables with ′ are used for objects on the right hand side of binary relations,
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dag = new z := null;
〈addn, deln, gc〉

addn = λ〈x, p〉.
x + 0;
map(λy. y + 0)p;
incrx(!z)p;
new n := 〈x, true, 0, p, !z〉;
z :=n

incrx = fix f(n). λp.
ifnull n then 〈〉 else
if #1(!n) int= x then diverge else
if member(#1(!n))p then

#5
3(!n)←#3(!n) + 1;

f(n)(remove1 (#1(!n))p)
else

f(#5(!n))p

deln = λx. delnx(!z)
delnx = fix g(n).

ifnull n then 〈〉 else
if #1(!n) int= x then

#5
2(!n)← false

else
g(#5(!n))

gc = λx. z := decr(!z)[ ]
decr = fix h(n). λp.

ifnull n then null else
if member(#1(!n))p then

#5
3(!n)←#3(!n)− 1;

h(n)(remove1 (#1(!n))p)
else if #2(!n) ∨#3(!n) > 0 then

#5
5(!n)←h(#5(!n))p;

n
else

h(#5(!n))(append(#4(!n))p)
before free(n)

Figure 1: Directed acyclic graph with garbage collection by reference counting
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and ones without for the left hand side and for unary relations.) The basic idea
of our approach is to consider the set X of every possible “configuration” of
the programs. A configuration takes one of the two forms: (R, s . e, s′ . e′) and
(R, s, s′). The former means that the compared programs e and e′ are running
under stores s and s′, respectively. The latter means that the programs have
stopped with stores s and s′. In both forms, R is a binary relation on values
and represents the knowledge of a context, called an environment. Informally,
(v, v′) ∈ R means that the context has learned v from the program on the left
hand side and v′ on the right.

For instance, suppose that we have a configuration (R, s . e, s′ . e′) in X.
(Typically, R is empty at first.) If s . e reduces to t . d in one step according
to the operational semantics of the language, then it must be that s′ . e′ also
reduces to some t′ . d′ in some number of steps, and the new configuration (R, t .
d, t′ . d′) belongs to X again. Knowledge R does not change yet, because the
context cannot learn anything from these internal transitions.

Now, suppose (R, s . e, s′ . e′) ∈ X and e has stopped running, i.e., e is a
value v. Then s′ . e′ must also converge to some t′ .w′, and the context learns
the resulting values v and w′. Thus, R is extended with the value pair (v, w′),
and (R∪ {(v, w′)}, s, t′) must belong to X.

Once the compared programs have stopped, the context can make use of
elements from its knowledge to make more observations. For example, suppose
(R, s, s′) ∈ X and (`, `′) ∈ R. This means that location ` (resp. `′) is known to
the context on the left (resp. right) hand side. If s = t]{` 7→ v} and s′ = t′ ]
{`′ 7→ v′} (where ]{ 7→ } denotes store extension), then the context can read
the contents v (resp. v′) of ` (resp. `′) on the left (resp. right) hand side, and
add them to its knowledge, requiring (R∪ {(v, v′)}, s, s′) ∈ X.

Or, the contents can be updated with any values composed from the knowl-
edge of the context. That is, for any (w, w′) ∈ R?, we require (R, t]{` 7→w}, t′ ]
{`′ 7→w′}) ∈ X. Here, R? is the context closure of R and denotes the set of
(pairs of) terms that can be composed from values in R. Formally, it is defined
as

R? = {([v1, . . . , vn/x1, . . . , xn]e, [v′1, . . . , v
′
n/x1, . . . , xn]e) |

(v1, v
′
1), . . . , (vn, v′n) ∈ R, fv(e) ⊆ {x1, . . . , xn}, loc(e) = ∅}

where fv(e) is the set of free variables in e and loc(e) is the set of locations
that appear in e. The context e above is required to be location-free so that
it cannot “guess” locations that are not (yet) known to the context. Note that
known locations can still be accessed, because they can be substituted into free
variables of e.

The context can also deallocate known locations, or allocate fresh ones. For
the former case, we require (R, t, t′) ∈ X for any (R, t]{` 7→ v}, t′ ]{`′ 7→ v′}) ∈
X with (`, `′) ∈ R. For the latter case, (R∪{(`, `′)}, t]{` 7→ v}, t′ ]{`′ 7→ v′}) ∈
X is required for any (R, t, t′) ∈ X with fresh `, `′ and (v, v′) ∈ R?.

Of course, there are also conditions for observations on values other than
locations. For instance, if (R, s, s′) ∈ X and (λx. e, λx. e′) ∈ R, then (R, s .
(λx. e)v, s′ . (λx. e′)v′) ∈ X is required for any (v, v′) ∈ R?, because the context
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can apply any functions it knows ((λx. e, λx. e′) ∈ R) to any arguments it can
compose ((v, v′) ∈ R?).

1.3.2. Congruence of environmental bisimilarity
As we shall prove, the largest set X satisfying the above conditions—which

exists because all of them are monotone on X—is “contextual” in the following
sense (where R?

val denotes the restriction of R? to values):

• If a configuration (R, s . e, s′ . e′) is in X, then its context-closed version
(R?

val , s .E[e], s′ .E[e′]) is also in X, for any location-free evaluation con-
text E.

• If a configuration (R, s, s′) is in X, then its context-closed version (R?
val , s .

e, s′ . e′) is also in X, for any (e, e′) ∈ R?.

The restriction to location-free evaluation contexts in the first item is not a
limitation of our approach, as already shown in previous work (Sumii and Pierce,
2007b; Koutavas and Wand, 2006): if one wants to prove the equivalence of e
and e′ under non-evaluation contexts, it suffices to prove the equivalence of
λx. e and λx. e′ (for fresh x) under evaluation contexts only; if a context needs
access to some locations `1, . . . , `n, it suffices to require (`1, `1), . . . , (`n, `n) ∈ R.
Programs with free variables are not a problem, either: instead of open e and
e′, it suffices to consider λx1. . . . λxn. e and λx1. . . . λxn. e′ for {x1, . . . xn} ⊇
fv(e) ∪ fv(e′).

1.3.3. Generalization to contextual relations
The above approach is not limited to the proof of contextual equivalence,

but can be generalized to other binary relations as well. For example, if we
add a condition “|dom(s)| ≤ |dom(s′)| for any (R, s . e, s′ . e′) ∈ X,” then one
can conclude that e uses fewer locations than e′ under arbitrary (evaluation)
contexts. In general, any predicate P on configurations can be added to the
conditions of X while keeping it contextual, as long as P itself is contextual
(i.e., preserved by contexts). It does not have to be a congruence relation
(or even a pre-congruence relation), hence the term “contextual” rather than
“congruent” (or pre-congruent).

1.3.4. Contextual predicates and local memory safety
In fact, there is no reason why the proved contextual relations have to be

binary. Rather, they can be of arbitrary arity. In particular, the arity can be 1,
meaning unary predicates. To obtain conditions for the unary version of X, we
just have to remove everything that belongs to the “right hand side.” Again,
the resulting X is contextual as long as the predicate P itself is contextual.

A prominent example of such unary properties is local memory safety. Let
us first classify all locations into “local” and “public” ones. The intent is that
local locations are kept secret from the context, whereas public locations can be
directly manipulated by the context. (This restriction is a mere matter of a proof
technique, and does not limit the observational power of contexts at runtime.

5



In other words, we can always divide locations so that all locations that are
directly manipulated by the context are public.) Next, let P (R, s . e) be false
if and only if e is immediately reading from, writing to, or deallocating a local
location that is not in dom(s). Then, just as in the binary case, we can prove
that the largest X satisfying the bisimulation-like conditions is contextual. (Of
course, we here are not considering a congruence or an equivalence relation—or
even a binary relation at all!—but the set X is still “bisimulation-like” in the
sense that it involves co-induction and is contextual.)

Another example of unary contextual properties is an upper bound on the
number of local locations. To be concrete, let P (R, s . e) and P (R, s) be true
if and only if the number of local locations in dom(s) is at most a constant
c. Then, again, we can use our approach to prove that a term e allocates at
most c local locations under arbitrary evaluation contexts (and arbitrary non-
evaluation contexts, if we consider λx. e for fresh x; see Section 1.3.2) that do
not create local locations themselves.

1.4. Overview of the paper
The rest of this paper is structured as follows. Section 2 discusses related

work. Section 3 defines our target language. Section 4 develops the binary ver-
sion of our proof technique and Section 5 gives examples (contextual relations
between two multiset implementations). In addition, Section 6 introduces an
auxiliary “up-to” technique to simplify the proofs, with examples in Section 7.
Section 8 defines the unary version of our approach and Section 9 gives an ex-
ample (directed acyclic graphs with garbage collection with reference counting).
Section 10 concludes with future work.

Throughout the paper, familiarity with induction, co-induction, traditional
(i.e., non-environmental) bisimulations, λ-calculus (with state), and (small-step)
operational semantics is assumed. Literature in these areas includes Milner
(1999), Pierce (2002, Chapter 21.1 in particular), and Sangiorgi and Walker
(2001).

2. Related work

As stated above, our technique is rooted in previous work on environmental
bisimulations by Sumii and others (Sumii and Pierce, 2007a,b; Koutavas and
Wand, 2006; Sangiorgi et al., 2007). Sumii and Pierce (2007a,b) published the
first environmental bisimulations for higher-order languages (λ-calculi with en-
cryption and type abstraction). Koutavas and Wand (2006) reformulated Sumii-
Pierce’s approach in λ-calculus with general references. Sangiorgi et al. (2007)
re-reformulated these approaches in λ-calculi and higher-order π-calculus. The
present work generalizes the notion of environmental bisimulation itself to non-
equivalence properties, in λ-calculus with general references and deallocation.

Denotational semantics can be used to prove contextual equivalence of pro-
grams (see, for example, Mitchell, 1996, pp. 77 and 344). In short, two pro-
grams are contextually equivalent if their denotations are the same (provided
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that the semantics is adequate, of course). However, it is known to be hard to
develop “fully abstract”—i.e., sound and complete—denotational semantics for
languages with local store (Meyer and Sieber, 1988), let alone general references
or deallocation.

Logical relations are relations between (semantics of) programs defined by
induction on their types, and can be used for proving properties like contex-
tual equivalence and memory safety. Pitts and Stark (1998) defined (binary)
syntactic logical relations—i.e., relations between the syntax of programs itself
rather than their semantics—for a simply-typed call-by-value higher-order lan-
guage with references to integers, and proved that they characterize contextual
equivalence in this language. Ahmed et al. (2009) developed step-indexed logical
relations—i.e., relations defined by induction on the number of reduction steps
instead of types—for call-by-value λ-calculus with general references (references
to arbitrary values, including functions and references themselves) and poly-
morphic (universal and existential) types. To our knowledge, no work has been
published on (binary) logical relations in a language with general references and
their deallocation.

Ahmed (2004, Chapter 7) defined unary step-indexed logical relations for a
continuation-passing-style higher-order language with regions and their deallo-
cation (like the capability calculus). Ahmed et al. (2005, 2007) defined unary
step-indexed logical relations in languages with linear types and deallocation.
None of these consider contextual equivalence or other binary properties.

3. The language

The syntax of our language is given in Figure 2. It is a standard call-by-value
λ-calculus extended with references and deallocation, in addition to first-order
primitives (such as Boolean values and integer arithmetic) and tuples, which
are added solely for the sake of convenience. The operational semantics is also
standard and given in Figure 3. It is parametrized by the semantics of primitives,
given as a partial function [[ ]] to constants from operations on constants.

A location `π is an atomic symbol that models a reference in ML (though
it is untyped and deallocatable in our language) or a pointer in C (although
our language omits pointer arithmetic for simplicity, it can easily be added by
modeling the store as a finite map from locations to arrays of values). It has a
locality label > or ⊥ to distinguish local and public locations, as outlined in the
introduction. In what follows, we omit locality labels when they are unimpor-
tant. We assume that there exist a countably infinite number of locations, both
local and public. A special location null⊥ is reserved for representing a never
allocated location. This treatment is just for the sake of simplicity of examples.
We write loc(e) for the set of locations that appear in e (except null⊥), and
fv(e) for the set of free variables in e. Note that there is no binder for locations
in the syntax of our language.

Allocation new xπ := e1; e2 creates a fresh location `π of the specified locality
π, initializes the contents with the value of e1, binds the location to x, and
executes e2. (It is just as easy to separate allocation new xπ from initialization
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π, ρ ::= locality
> local
⊥ public

d, e, C, D ::= term
x variable
λx. e function
e1e2 application
c constant
op(e1, . . . , en) primitive
if e1 then e2 else e3 conditional branch
〈e1, . . . , en〉 tupling
#i(e) projection
`π location
new xπ := e1; e2 allocation
free(e) deallocation
e1 := e2 update
!e dereference
e1

ptr
= e2 pointer equality

u, v, w ::= value
λx. e function
c constant
〈v1, . . . , vn〉 tuple
`π location

E, F ::= evaluation context
[ ] hole
Ee application (left)
vE application (right)
op(v1, . . . , vm, E, e1, . . . , en) primitive
if E then e1 else e2 conditional branch
〈v1, . . . , vm, E, e1, . . . , en〉 tupling
#i(E) projection
new xπ :=E; e allocation
free(E) deallocation
E := e update (left)
v :=E update (right)
!E dereference
E

ptr
= e pointer equality (left)

v
ptr
= E pointer equality (right)

Figure 2: Syntax
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s . (λx. e)v → s . [v/x]e
s . op(c1, . . . , cn) → s . [[op(c1, . . . , cn)]]
s . if true then e1 else e2 → s . e1

s . if false then e1 else e2 → s . e2

s . #i(v1, . . . , vi, . . . , vn) → s . vi

s . new xπ := v; e → s]{`π 7→ v} . [`π/x]e if `π 6= null⊥

s . free(`π) → s \ `π . 〈〉
s]{`π 7→ v} . `π :=w → s]{`π 7→w} . 〈〉
s . !`π → s . s(`π)
s . `π ptr

= `π → true

s . `π
1

ptr
= `ρ

2 → false if `π
1 6= `ρ

2

s . E[d] → t . E[e] if s . d→ t . e

Figure 3: Reduction

xπ := e1, but the present form is slightly shorter. In addition, we simply prefer
not to fix a single, arbitrary initial value of locations.) Our intent is to disallow
contexts to allocate local locations. This is not a limitation, as explained in the
introduction.

Deallocation free(e) releases memory and lets it be reused later. Update
e1 := e2 overwrites the contents of a location.

Pointer equality e1
ptr
= e2 compares locations themselves (not their contents).

We do not use it in our examples (except for comparison with null⊥), but it is
necessary for contexts to have a realistic observational power. If both locations
are live, their equality can be tested just by writing to one of the locations and
reading from the other. However, this is not possible when either (or both) of
them is “dead,” i.e., already deallocated.

Throughout this paper, we focus on properties of closed terms and values
only. (This is not a limitation, again as explained in the introduction.) Thus, we
can model a (possibly multi-hole) context C just by a term e with free variables
x1, . . . , xn, and a context application C[e1, . . . , en] by a variable substitution
[e1, . . . , en/x1, . . . , xn]e. For this reason, we use meta-variables C and D for
terms that are used for representing contexts. By convention, we require that
terms denoted by capital letters are location-free (except for null⊥) and do not
include local allocation new x>.

For brevity, we use various syntactic sugar. We write let x = e1 in e2

for (λx. e2)e1, and e1; e2 for let x = e1 in e2 where x does not appear free
in e2. Recursive function fix f(x). e is defined as (the value of) Y (λf. λx. e)
by using some call-by-value fixed-point operator Y as usual. As in Standard
ML, e1 before e2 denotes let x = e1 in e2; x, again with x not free in e2.
We also write e1 ∧ e2 for if e1 then e2 else false and e1 ∨ e2 for if e1

then true else e2. Note that these conjunction and disjounction operators
are not symmetric, as in most programming languages with side effects or di-
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vergence. As in Objective Caml, if e1 then e2 abbreviates if e1 then e2

else 〈〉, where 〈〉 is the nullary tuple. Moreover, ifnull e1 then e2 else e3

abbreviates if e1
ptr
= null⊥ then e2 else e3. Pattern matching λ〈x1, . . . , xn〉. e

means λx. let x1 = #1(x) in . . . let xn = #n(x) in e, for fresh x. Finally,
#i

j(!e1)← e2 stands for let x = e1 in x := 〈#1(!x), . . . , #j−1(!x), e2,#j+1(!x),
. . . , #i(!x)〉.

We give higher precedence to ; and before than λ, let, and if forms.
Thus, for instance, if e1 then e2 else e3; e4 and λx. e1; e2 mean if e1 then e2

else (e3; e4) and λx. (e1; e2), respectively, rather than (if e1 then e2 else e3); e4

or (λx. e1); e2.
Our operational semantics is a standard small-step reduction semantics with

evaluation contexts and stores. Here, a store s is a finite map from locations
(except null⊥) to closed values. We write dom(s) for the domain of store s.
We also write s]{` 7→ v} for the extension of store s with location ` mapped
to value v, with the assumption that ` 6∈ dom(s). It is undefined if ` ∈ dom(s).
Similarly, s1 ] s2 is defined to be s1∪s2 if dom(s1)∩dom(s2) = ∅, and undefined
otherwise. s\ ˜̀denotes the store obtained from s by removing ˜̀from its domain.
Again, it is undefined if ˜̀ 6∈ dom(s). We write ³ for the reflexive and transitive
closure of →. We also write s . e → if s . e → t . d for some t and d, and write
s . e 6→ if not s . e →. Furthermore, we write s . e 6⇓ if there exist no t and v
such that s . e ³ t . v.

Note that the reduction is non-deterministic, even up to renaming of lo-
cations. For instance, consider e = (new x := 〈〉; x ptr

= `). Then, we have
both ∅ . e → {` 7→ 〈〉} . (`

ptr
= `) → {` 7→ 〈〉} . true and ∅ . e → {m 7→ 〈〉} .

(m
ptr
= `)→ {m 7→ 〈〉} . false. This is one of the characteristics of our language,

where deallocation makes dangling pointers (like ` in the above example), which
may or may not get reallocated later.

Throughout the paper, we often abbreviate sequences A1, . . . , An to Ã, for
any kind of meta-variables Ai. We also abbreviate sequences of tuples, like
(A1, B1), . . . , (An, Bn), as (Ã, B̃). Thus, for example, [ṽ/x̃]e denotes [v1, . . . , vn/
x1, . . . , xn]e.

4. Binary environmental relations

In this section, we develop our approach for binary relations including con-
textual equivalence, which is closer to (the small-step version of) the original
environmental bisimulations (Sumii and Pierce, 2007a,b; Koutavas and Wand,
2006; Sangiorgi et al., 2007).

First, we establish the basic terminology for our developments. Intuitions
behind the definitions are given in the introduction.

Definition 4.1 (state and binary configuration). The pair s . e of store s
and closed term e is called a state. A binary configuration is a quintuple of
the form (R, s . e, s′ . e′) or a triple of the form (R, s, s′), where R is a binary
relation on closed values.
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Note that we do not impose well-formedness conditions such as loc(e) ⊆ dom(s)
and loc(e′) ⊆ dom(s′), because deallocation may (rightfully) make dangling
pointers.

Definition 4.2 (context closure). The context closure R? of a binary re-
lation R on closed values, is defined by R? = {([ṽ/x̃]C, [ṽ′/x̃]C) | (ṽ, ṽ′) ∈
R, fv(C) ⊆ {x̃}}.
We write R?

val for the restriction of R? to values. Note R ⊆ R? = (R?
val)

?.
Then, we give the main definitions in this section. For brevity, we omit

some universal and existential quantifications on meta-variables in the condi-
tions below. They should be clear from the context—or, more precisely, from
the positions of the first occurrences of the meta-variables. For instance, when
we say

For every (R, s . d, s′ . d′) ∈ X, if s . d → t . e, then s′ . d′ ³ t′ . e′

and (R, t . e, t′ . e′) ∈ X

it means

For every (R, s . d, s′ . d′) ∈ X, and for any t and e, if s . d → t .
e then for some t′ and e′ we have s′ . d′ ³ t′ . e′ and (R, t . e, t′ .
e′) ∈ X

because t and e first appear in the assumption, whereas t′ and e′ first appear in
the conclusion.

Definition 4.3 (reduction closure). A set X of binary configurations is reduction-
closed if, for every (R, s . d, s′ . d′) ∈ X,

i. If s . d→ t . e, then s′ . d′ ³ t′ . e′ and (R, t . e, t′ . e′) ∈ X.
ii. If d = v, then s′ . d′ ³ t′ . v′ and (R∪ {(v, v′)}, s, t′) ∈ X.
iii. Symmetric versions of the two conditions above, that is:

(i’) If s′ . d′ → t′ . e′, then s . d ³ t . e and (R, t . e, t′ . e′) ∈ X.
(ii’) If d′ = v′, then s . d ³ t . v and (R∪ {(v, v′)}, t, s′) ∈ X.

Intuitively, reduction closure means that the property in question is preserved
throughout the execution of the programs e and e′ (including the returned values
v and v′, which are then learned by the context).

Definition 4.4 (consistency). A predicate P on binary configurations is con-
sistent if for any (R, s . d, s′ . d′) ∈ P and for any (R, s, s′) ∈ P ,

• If (u, u′) ∈ R, then the outermost syntactic shape of u is the same as that
of u′.

• If (u, u′) ∈ R, then u = c ⇐⇒ u′ = c, for any constant c.

• If (`⊥1 , `′1
⊥) ∈ R and (`⊥2 , `′2

⊥) ∈ R, then `⊥1 = `⊥2 ⇐⇒ `′1
⊥ = `′2

⊥.

• If (`π, `′π
′
) ∈ R, then π = π′ = ⊥ and `⊥ ∈ dom(s) ⇐⇒ `′⊥ ∈ dom(s′).
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Informally, consistency is required for ensuring that

• the “forms” of values on the left and right hand sides are the same, in-
cluding the equality of constants and locations (and whether the locations
are allocated or deallocated), and

• all locations known to the context are indeed public (recall Section 1.3.4).

Note that any subset of a consistent predicate is again consistent. In the rest of
the paper, we require that all the predicates P are consistent, often implicitly.
This is a trivial restriction because none of them mention the environments
R anyway. We also assume that our primitives include equality tests for all
constants.

Definition 4.5 (environmental P -simulation). Let P be a (consistent) pred-
icate on binary configurations. A reduction-closed subset X of P is called an
environmental P -simulation if, for every (R, s, s′) ∈ X and (u, u′) ∈ R,

1. If u = λx. e and u′ = λx. e′, then (R, s . uv, t . u′v′) ∈ X for any (v, v′) ∈
R?.1

2. If u = 〈v1, . . . , vi, . . . , vn〉 and u′ = 〈v′1, . . . , v′i, . . . , v′n〉, then (R∪{(vi, v
′
i)},

s, s′) ∈ X.
3. If u = `⊥, u′ = `′⊥, s = t]{`⊥ 7→ v} and s′ = t′ ]{`′⊥ 7→ v′}, then

(a) (R, t, t′) ∈ X.
(b) (R, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈ X for any (w,w′) ∈ R?.
(c) (R∪ {(v, v′)}, s, s′) ∈ X.

4. For any `⊥ 6∈ dom(s) and (v, v′) ∈ R?, we have (R ∪ {(`⊥, `′⊥)}, s]
{`⊥ 7→ v}, s′ ]{`′⊥ 7→ v′}) ∈ X for some `′⊥ 6∈ dom(s′).

An environmental P -simulation X is called an environmental P -bisimulation if
its inverse

X−1 = {(R−1, s′ . e′, s . e) | (R, s . e, s′ . e′) ∈ X}
∪ {(R−1, s′, s) | (R, s, s′) ∈ X}

is also an environmental P -simulation (or, if X is an environmental P−1-simulation—
this is equivalent because all the other conditions are symmetric). An environ-
mental simulation is defined as an environmental P obs -simulation, where P obs

is the largest consistent predicate on binary configurations. Since all the con-
ditions of environmental P -simulations (i.e., their generating function, to be
precise) are monotone on X, the union of all environmental P -simulations is
also an environmental P -simulation, called the environmental P -similarity. In
what follows, we often omit the adjective “environmental” and just write “a
simulation” to mean an environmental simulation. The same holds for all the
combinations of P - and bi- simulations and similarity.

1Previous work (Sangiorgi et al., 2007) required (R, [v/x]e, [v′/x]e′) ∈ X instead of (R, s .
uv, t . u′v′) ∈ X here. The latter is slightly more convenient for proving completeness in our
non-deterministic language.
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As outlined in the introduction, the conditions of P -simulation reflect ob-
servations made by contexts. In Definition 4.3 (reduction closure), Condition i
(and the first half of Condition iii) mean reduction on the left hand side can be
simulated by the right (and vice versa). Condition ii (and ii’) adds the values
returned by the programs to the knowledge of the context. In Definition 4.5 (P -
simulation), Condition 1 corresponds to function application, and Condition 2
to element projection from tuples. Conditions 3a, 3b, 3c, and 4 represent deal-
location of, writing to, reading from, and allocation of locations, respectively.
Putting aside the generalization from contextual equivalence to arbitrary predi-
cates, the major difference of the definition from previous work (Sangiorgi et al.,
2007, Definition 4.1) is naturally Condition 3a, which corresponds to dealloca-
tion.

We are now going to prove the main result of this section: let P?→ be the
largest contextual, reduction-closed subset of P (which exists because the union
of contextual, reduction-closed sets is again contextual and reduction-closed);
then the P -similarity coincides with P?→, provided that P itself is contextual
in the following sense.

Definition 4.6 (contextuality). A set P of binary configurations is contex-
tual if its context closure

P ? = {(S, s . [ṽ/x̃]E[e], s′ . [ṽ′/x̃]E[e′]) |
(R, s . e, s′ . e′) ∈ P, S ⊆ R?

val , (ṽ, ṽ′) ∈ R, fv(E) ⊆ {x̃}}
∪ {(S, s . [ṽ/x̃]C, s′ . [ṽ′/x̃]C) |

(R, s, s′) ∈ P, S ⊆ R?
val , (ṽ, ṽ′) ∈ R, fv(C) ⊆ {x̃}}

∪ {(S, s, s′) | (R, s, s′) ∈ P, S ⊆ R?
val}

is included in P .

Note that P ⊆ P ? = (P ?)?. An informal intuition for this definition has been
given in Section 1.3.2. In short, contextuality means that P is preserved under
contexts. Once again, the restriction to location-free (evaluation) contexts does
not limit the applicability of our approach.

The inclusion S ⊆ R?
val is necessary for the following technical reason: sup-

pose we have a configuration (R, s . d, s′ . d′) ∈ X and put it under an evalua-
tion context E, like (R, s . E[d], s′ .E[d′]) ∈ X. If d and d′ reduce to values v
and v′, respectively, then the context learns these values and adds them to its
knowledge, like (R ∪ {(v, v′)}, s . E[v], s′ .E[v′]) ∈ X. However, according to
the conditions of reduction closure, we need (R, s . E[v], s′ . E[v′]) ∈ X, where
the knowledge R is smaller than R∪ {(v, v′)}. A similar case occurs when the
context by itself allocates a fresh location.

This is not a real problem because smaller knowledge means fewer observa-
tions. In fact, instead of taking S ⊆ R?

val here, it is also possible to generalize
the definition of simulation to allow the increase of knowledge in the middle of an
evaluation. This amounts to an up-to environment technique (Sangiorgi et al.,
2007). In this paper, it is subsumed by the up-to context technique (Section 6)
because of the inclusion above.
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Lemma 4.7 (context closure preserves consistency). If P is consistent,
so is P ?.

Proof. Immediate from Definition 4.4 with Definition 4.2 and 4.6. ¤

Lemma 4.8 (value contexts). For any C, x̃, ṽ and ṽ′, if [ṽ/x̃]C is a value,
then so is [ṽ′/x̃]C.

Proof. Straightforward induction on the syntax of C. ¤

Lemma 4.9 (soundness of P -similarity). For any P , the P ?-similarity is
included in (P ?)?→.

Proof. Let X be the P ?-similarity. By Definition 4.5, X ⊆ P ?. Since (P ?)?→
is defined as the largest contextual and reduction-closed subset of P ?, if we
prove that X? is reduction-closed (and contextual—but the latter is obvious
since (X?)? = X? by Definition 4.6), then X ⊆ (P ?)?→. We carry out this
proof by case analysis on elements of X? along Definition 4.6.

Case (S, s . [ṽ/x̃]E[e], s′ . [ṽ′/x̃]E[e′]) ∈ X? with (R, s . e, s′ . e′) ∈ X and S ⊆
R?

val and (ṽ, ṽ′) ∈ R and fv(E) ⊆ {x̃}.
We need to prove the conditions of reduction closure (Definition 4.3) for the

element (S, s . [ṽ/x̃]E[e], s′ . [ṽ′/x̃]E[e′]) of X?.
To prove Condition i (of Definition 4.3), suppose s . [ṽ/x̃]E[e] →. Since

(R, s . e, s′ . e′) ∈ X and X is reduction-closed (by Definition 4.5), if e is a
value, then e′ also reduces to some value (by Condition ii of Definition 4.3) and
the rest of the proof amounts to the next case. Suppose thus that e is not a
value. Since s . [ṽ/x̃]E[e]→ and E is an evaluation context, we have s . e→ t .
d for some t and d. Again since (R, s . e, s′ . e′) ∈ X and X is reduction-closed
(by Definition 4.5), we have s′ . e′ ³ t′ . d′ for some t′ and d′ with (R, t . d, t′ .
d′) ∈ X (by Condition i of Definition 4.3). Hence (S, t . [ṽ/x̃]E[d], t′ . [ṽ′/x̃]
E[d′]) ∈ X? by Definition 4.6.

To prove Condition ii, suppose [ṽ/x̃]E[e] is a value, which we call w. Since
E is an evaluation context, this can be the case only if e is also a value v. Since
(R, s . v, s′ . e′) ∈ X and X is reduction-closed (by Definition 4.5), we have s′ .
e′ ³ t′ . v′ for some t′ and v′ with (R ∪ {(v, v′)}, s, t′) ∈ X (by Condition ii
of Definition 4.3). Since [ṽ/x̃]E[v] is a value, so is [ṽ′/x̃]E[v′] (by Lemma 4.8),
which we call w′. Since (w, w′) ∈ (R∪ {(v, v′)})?

val by Definition 4.2, we obtain
(S ∪ {(w,w′)}, s, t′) ∈ X? by Definition 4.6.

The proof of Condition iii is symmetric to the proofs above.

Case (S, s . [ṽ/x̃]C, s′ . [ṽ′/x̃]C) ∈ X? with (R, s, s′) ∈ X and S ⊆ R?
val and

(ṽ, ṽ′) ∈ R and fv(C) ⊆ {x̃}.
Again, we prove the conditions of reduction closure for (S, s . [ṽ/x̃]C, s′ . [ṽ′/

x̃]C) ∈ X?.
First, we prove Condition i (of Definition 4.3) by induction on C. Suppose

s . [ṽ/x̃]C →.
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If C is of the form E[D] for some E 6= [ ], and if s . [ṽ/x̃]D → t . d for some t
and d, then s′ . [ṽ′/x̃]D ³ t′ . d′ for some t′ and d′ with (S, t . d, t′ . d′) ∈ X? by
the induction hypothesis. Hence s′ . [ṽ′/x̃]C ³ t′ .E[d′], with (S, t . E[d], t′ .
E[d′]) ∈ (X?)? = X? by Definition 4.6.

Otherwise, we proceed by case analysis on C.

Subcase C = C1C2. Then [ṽ/x̃]C1 is a λ-abstraction and [ṽ/x̃]C2 (resp. [ṽ′/x̃]
C2, by Lemma 4.8) is a value w (resp. w′).

If C1 itself is a λ-abstraction λx.C0, then the only possible reduction on the
“left hand side” (of the bisimulation) is s . [ṽ/x̃]C → s . [ṽ/x̃]([C2/x]C0), which
corresponds to s′ . [ṽ′/x̃]C → s′ . [ṽ′/x̃]([C2/x]C0) on the right hand side, with
(S, s . [ṽ/x̃]([C2/x]C0), s′ . [ṽ′/x̃]([C2/x]C0)) ∈ X? by Definition 4.6.

Otherwise, C1 is a variable xi and vi is a λ-abstraction. Since (vi, v
′
i) ∈ R

and (R, s, s′) ∈ X and X is a P ?-simulation, v′i is also a λ-abstraction by
Definition 4.4, and therefore (R, s . viw, s′ . v′iw

′) ∈ X by Condition 1 of Defi-
nition 4.5. Since X is reduction-closed (by Definition 4.5), if s . viw → t . e for
some t and e, then s′ . v′iw

′ ³ t′ . e′ for some t′ and e′ with (R, t . e, t′ . e′) ∈ X
(by Condition i of Definition 4.3). Hence (S, t . e, t′ . e′) ∈ X? by Definition 4.6.

Subcase C = op(C1, . . . , Cn). Then [ṽ/x̃]Ci is a constant ci, for i = 1, . . . , n,
and s . [ṽ/x̃]C → s . c for c = [[op(c1, . . . , cn)]]. If Ci itself is ci, then [ṽ′/x̃]
Ci = ci. Otherwise, Ci is a variable xi and vi = ci. By Definition 4.4, v′i = ci.
Therefore, [ṽ′/x̃]Ci = ci anyway. Hence s′ . [ṽ′/x̃]C → s′ . c, with (S, s . c, s′ .
c) ∈ X? by Definition 4.6.

Subcase C = if C1 then C2 else C3. Then [ṽ/x̃]C1 is a Boolean constant b
and so is [ṽ′/x̃]C1 (for the same reason as in the previous subcase). If b = true,
then the only possible reduction on the left hand side is s . [ṽ/x̃]C → s . [ṽ/
x̃]C2, which corresponds to s′ . [ṽ′/x̃]C → s′ . [ṽ′/x̃]C2 on the right hand side,
with (S, s . [ṽ/x̃]C2, s

′ . [ṽ′/x̃]C2) ∈ X? by Definition 4.6. The case b = false
is similar.

Subcase C = #i(C0). Then [ṽ/x̃]C0 is a tuple 〈w1, . . . , wn〉 and s . [ṽ/x̃]C → s .
wi.

If C0 itself is a tuple 〈C1, . . . , Cn〉, then [ṽ/x̃]Ci = wi, so [ṽ′/x̃]Ci is also a
value w′i (Lemma 4.8), for i = 1, . . . , n. Hence s′ . [ṽ′/x̃]C → s′ .w′i, with (S, s .
wi, s

′ .w′i) ∈ X? by Definition 4.6.
Otherwise, C0 is a variable xi and vi = 〈w1, . . . , wn〉. Since (〈w1, . . . , wn〉, v′i) ∈

R and (R, s, s′) ∈ X and X is a P ?-simulation, v′i is also a tuple 〈w′1, . . . , w′n〉
by Definition 4.4, and therefore (R ∪ {(wi, w

′
i)}, s, s′) ∈ X by Condition 2 of

Definition 4.5. Hence s′ . [ṽ′/x̃]C → s′ .w′i, with (S, s . wi, s
′ .w′i) ∈ X? by

Definition 4.6.

Subcase C = (new x⊥ :=C1;C2). Then [ṽ/x̃]C1 (resp. [ṽ′/x̃]C1, by Lemma 4.8)
is a value w (resp. w′) and the only possible reductions on the left hand side are
of the form s . [ṽ/x̃]C → s]{`⊥ 7→w} . [ṽ, `⊥/x̃, x]C2 for some `⊥ 6∈ dom(s),
which corresponds to s′ . [ṽ′/x̃]C → s′ ]{`′⊥ 7→w′} . [ṽ′, `′⊥/x̃, x]C2 for some
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`′⊥ 6∈ dom(s′) on the right hand side. Since (R, s, s′) ∈ X and X is a P ?-
simulation, we have (R∪{(`⊥, `′⊥)}, s]{`⊥ 7→w}, s′ ]{`′⊥ 7→w′}) ∈ X by Con-
dition 4 of Definition 4.5. Hence (S, s]{`⊥ 7→w} . [ṽ, `⊥/x̃, x]C2, s

′ ]{`′⊥ 7→w′} .
[ṽ′, `′⊥/x̃, x]C2) ∈ X? by Definition 4.6.

Subcase C = free(C1). Then [ṽ/x̃]C1 is a location `π with s = t]{`π 7→w} for
some t and w, so s . [ṽ/x̃]C → t . 〈〉. Since contexts are location-free, it must
be that C1 is a variable xi and vi = `π. By Definition 4.4, we have π = ⊥
and v′i is also a public location `′⊥ with s′ = t′ ]{`′⊥ 7→w′} for some t′ and
w′, so s′ . [ṽ′/x̃]C → t′ . 〈〉. Furthermore, Condition 3a of Definition 4.5 implies
(R, t, t′) ∈ X. Hence (S, t . 〈〉, t′ . 〈〉) ∈ X? by Definition 4.6.

Subcase C = (C1 := C2). Then [ṽ/x̃]C1 is a location `π, and [ṽ/x̃]C2 (resp. [ṽ′/x̃]
C2, by Lemma 4.8) is a value w (resp. w′), with s = t]{`π 7→u} for some t and
u, so s . [ṽ/x̃]C → t]{`π 7→w} . 〈〉. Since contexts are location-free, it must be
that C1 is a variable xi and vi = `π. By Definition 4.4, we have π = ⊥ and v′i
is also a public location `′⊥, with s′ = t′ ]{`′⊥ 7→u′} for some t′ and u′, so s′ .
[ṽ′/x̃]C → t′ ]{`′⊥ 7→w′} . 〈〉. Furthermore, since (w,w′) ∈ R?, Condition 3b
of Definition 4.5 implies (R, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈ X. Hence (S, t]
{`⊥ 7→w} . 〈〉, t′ ]{`′⊥ 7→w′} . 〈〉) ∈ X? by Definition 4.6.

Subcase C = !C1. Then [ṽ/x̃]C1 is a location `π with s = t]{`π 7→w} for some
t and w, so s . [ṽ/x̃]C → s . w. Since contexts are location-free, it must be
that C1 is a variable xi and vi = `π. By Definition 4.4, we have π = ⊥ and
v′i is also a public location `′⊥ with s′ = t′ ]{`′⊥ 7→w′} for some t′ and w′,
so s′ . [ṽ′/x̃]C → s′ .w′. Furthermore, Condition 3c of Definition 4.5 implies
(R∪ {(w, w′)}, s, s′) ∈ X. Hence (S, s .w, s′ .w′) ∈ X? by Definition 4.6.

Subcase C = (C1
ptr
= C2). Then [ṽ/x̃]C1 and [ṽ/x̃]C2 are locations `π1

1 and
`π2
2 , respectively, so s . [ṽ/x̃]C → s . b, where b is true if `π1

1 = `π2
2 and false

otherwise. Since contexts are location-free, it must be that C1 and C2 are
variables xi and xj , respectively, with vi = `π1

1 and vj = `π2
2 . By Definition 4.4,

we have π1 = π2 = ⊥, and v′i and v′j are also public locations `′1
⊥ and `′2

⊥,
respectively, with (`⊥1 = `⊥2 ) ⇐⇒ (`′1

⊥ = `′2
⊥). Hence s′ . [ṽ′/x̃]C → s′ . b,

with (S, s . b, s′ . b) ∈ X? by Definition 4.6.

This concludes the proof of Condition i (of Definition 4.3).
To prove Condition ii, suppose [ṽ/x̃]C is a value w. Then [ṽ′/x̃]C is also

a value w′ (Lemma 4.8) and (w, w′) ∈ R? by Definition 4.2. Hence (S ∪
{(w, w′)}, s, s′) ∈ X? by Definition 4.6.

The proof of Condition iii is symmetric to those of Condition i and ii.

Case (S, s, s′) ∈ X? with (R, s, s′) ∈ P and S ⊆ R?
val . Definition 4.3 requires

no condition for elements of this form. ¤

Lemma 4.10 (completeness of P -similarity). For any P , (P ?)?→ is in-
cluded in the P ?-similarity.
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Proof. Let X = (P ?)?→ for the sake of readability. Since the P ?-similarity
is defined as the largest P ?-simulation, it suffices to prove that X is a P ?-
simulation. We carry out this proof by checking each condition of Definition 4.5.
Take (R, s, s′) ∈ X and (u, u′) ∈ R.

To prove Condition 1, suppose u = λx. e and u′ = λx. e′, and take (v, v′) ∈
R?. Since (u, u′) ∈ R, we have (R, s . uv, s′ . u′v′) ∈ X? by Definition 4.6.
Since X is contextual by definition, we also have X? = X. Hence (R, s . uv, s′ .
u′v′) ∈ X.

To prove Condition 2, suppose u = 〈v1, . . . , vi, . . . , vn〉 and u′ = 〈v′1, . . . , v′i, . . . , v′n〉,
and consider (R, s . #i(u), s′ . #i(u′)) ∈ X? = X. Since X is reduction-closed
by definition, and since s . #i(u) → s . vi and s′ . #i(u′) → s . v′i, we obtain
(R∪ {(vi, v

′
i)}, s, s′) ∈ X by Definition 4.3.

To prove Condition 3a, 3b and 3c, suppose u = `⊥, u′ = `′⊥, s = t]
{`⊥ 7→ v} and s′ = t′ ]{`′⊥ 7→ v′}.
• For Condition 3a, consider (R, s . free(u), s′ . free(u′)) ∈ X? = X. Again,

since X is reduction-closed by definition, and since s . free(u) → t . 〈〉
and s′ . free(u′) → t′ . 〈〉, we obtain (R ∪ {(〈〉, 〈〉)}, t, t′) ∈ X by Defini-
tion 4.3. Hence (R, t, t′) ∈ X? = X by Definition 4.6 (since R ⊆ R? ⊆
(R∪ {(〈〉, 〈〉)})?).

• For Condition 3b, suppose (w,w′) ∈ R?, and consider (R, s . u :=w, s′ .
u′ :=w′) ∈ X? = X. Once again, since X is reduction-closed by def-
inition, and since s . u :=w → t]{`⊥ 7→w} . 〈〉 and s′ . u′ :=w′ → t′ ]
{`′⊥ 7→w′} . 〈〉, we obtain (R ∪ {(〈〉, 〈〉)}, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈
X by Definition 4.3. Hence (R, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈ X? = X
by Definition 4.6 (again since R ⊆ R? ⊆ (R∪ {(〈〉, 〈〉)})?).

• For Condition 3c, consider (R, s . !u, s′ . !u′) ∈ X? = X. Twice again,
since X is reduction-closed by definition, and since s . !u→ s . v and s′ .
!u′ → s′ . v′, we obtain (R∪ {(v, v′)}, s, s′) ∈ X by Definition 4.3.

To prove Condition 4, take `⊥ 6∈ dom(s) and (v, v′) ∈ R?, and consider
(R, s . (new x⊥ := v; x), s′ . (new x⊥ := v′; x)) ∈ X? = X. Thrice again, since X
is reduction-closed by definition, and since s . (new x⊥ := v;x)→ s]{`⊥ 7→ v} .
`⊥ and s′ . (new x⊥ := v′; x) → s′ ]{`′⊥ 7→ v′} . `′⊥ for some `′⊥ 6∈ dom(s′), we
obtain (R∪ {(`⊥, `′⊥)}, s]{`⊥ 7→ v}, s′ ]{`′⊥ 7→ v′}) ∈ X by Definition 4.3. ¤

From the two lemmas above, we obtain our main theorem:

Theorem 4.11 (characterization). For any P , the P ?-similarity coincides
with (P ?)?→. In particular, if P is contextual, then the P -similarity coincides
with P?→.

By Definition 4.4 and 4.6, the largest consistent predicate P obs is trivially con-
textual. Thus:

Corollary 4.12 (bisimilarity equals contextual equivalence). The bisim-
ilarity coincides with the contextual equivalence P obs

?→ .
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5. Examples of P -bisimulations

We first show an example of contextual equivalence between two implemen-
tations of integer multisets, one with linked lists and the other with binary
search trees.

5.1. Linked lists
We implement (mutable) linked lists in our language as follows.

Definition 5.1 (linked list).

set = new z := null; 〈add ,mem, del〉
add = λx. x + 0; new y := 〈x, !z〉; z := y
mem = λx. x + 0;memx(!z)

memx = fix f(y). y
ptr

6= null ∧ (#1(!y) int= x ∨ f(#2(!y)))
del = λx. x + 0; z := delx(!z)
delx = fix g(y).

ifnull y then y else

if #1(!y) int= x then #2(!y) before free(y) else
#2

2(!y)← g(#2(!y)); y

Here, z is bound to the location of the present list, which is kept local to prevent
direct (and unsafe) access. An empty list is represented by null. A non-empty
list is represented by the location of the pair (e, r) of its first element e and the
rest r of the list.

The list is equipped with three operations: addition, membership, and dele-
tion. All of them are simple and standard (perhaps except for the integer
addition x + 0, which serves as an assertion to ensure that x is indeed an inte-
ger, assuming that v + 0 is undefined for all non-integers v). For example, the
recursive function delx takes a list y, searches it for the element x, deletes it
from y, and returns the updated list. (The syntactic sugar used above is defined
in Section 3.)

Let S, T, . . . denote multisets of integers. We write + and − for multiset
union and difference. The predicate Set(`, S, s), read “` represents S under s,”
is defined by induction as follows.

• Set(null, ∅, ∅).
• Set(`, S0 + {i}, s0 ]{` 7→ 〈i, `0〉}) if ` 6= null and Set(`0, S0, s0).

The predicate Set(`, S, s) is “precise” in the sense that it allows no extra lo-
cations in the store s other than those required for representing the set S.
It is also possible to consider its “imprecise” version by replacing the axiom
Set(null, ∅, ∅) with Set(null, ∅, s). However, it is always possible to state in-
precise properties by using precise predicates, like ∃s0 ⊆ s.Set(`, S, s0). More-
over, precise predicates are often useful for reasoning about memory leaks (or
lack thereof), as we will see in examples.

The following lemmas follow by straightforward induction on the derivation
of Set(`, S, s) or Set(`0, S, s0).
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Lemma 5.2. Suppose Set(`0, S, s0). Then, for any t,

s0 ]{m 7→ `0}] t . [m/z]add(i) ³ s]{m 7→ `}] t . 〈〉
with Set(`, S + {i}, s).
Lemma 5.3. Suppose Set(`, S, s). Then, for any t, we have s] t .memi(`) ³
s] t . b with b = true if i ∈ S, and b = false otherwise.

Corollary 5.4. Suppose Set(`, S, s). Then, for any t,

s]{m 7→ `}] t . [m/z]mem(i) ³ s]{m 7→ `}] t . b

with b = true if i ∈ S, and b = false otherwise.

Lemma 5.5. Suppose Set(`, S, s). Then, for any t, we have s] t . del i(`) ³
s0 ] t . `0 with Set(`0, S − {i}, s0).

Like the other lemmas above, the last lemma is proved by induction on Set(`, S, s).
However, since it is the most important of these lemmas, we detail its proof.

Proof. Trivial if ` = null. Suppose ` 6= null, S = S1 + {j}, s = s1 ]
{` 7→ 〈j, `1〉}, and Set(`1, S1, s1). If i = j, then s] t . del i(`) ³ s1 ] t . `1. Thus,
it suffices to take s0 = s1 and `0 = `1. Suppose i 6= j. By induction, s1 ]
{` 7→ 〈j, `1〉}] t . del i(`1) ³ s2 ]{` 7→ 〈j, `1〉} ] t . `2 with Set(`2, S1 − {i}, s2).
Therefore, s1 ]{` 7→ 〈j, `1〉}] t . del i(`) ³ s2 ]{` 7→ 〈j, `2〉}] t . `. Since Set(`2, S1−
{i}, s2) and i 6= j, we have Set(`, S1 +{j}−{i}, s2 ]{` 7→ 〈j, `2〉}). Thus, it suf-
fice to take s0 = s2 ]{` 7→ 〈j, `2〉} and `0 = `. ¤

Corollary 5.6. Suppose Set(`, S, s). Then, for any t,

s]{m 7→ `}] t . [m/z]del(i) ³ s0 ]{m 7→ `0}] t . 〈〉
with Set(`0, S − {i}, s0).

One may notice that all the lemmas above have the form

for any t, we have s1 ] t . e1 ³ s2 ] t . e2

and might perhaps wonder why we do not establish a general “lemma” like

if s1 . e1 ³ s2 . e2, then s1 ] t . e1 ³ s2 ] t . e2.

However, because of dangling pointers (which can be created by deallocation),
this property does not hold in general. For example, consider

∅ . new x := 0; x
ptr
= ` → {` 7→ 0} . `

ptr
= `

→ {` 7→ 0} . true

and let t = {` 7→ 1}. Then m cannot equal ` in

t . new x := 0; x
ptr
= ` → t]{m 7→ 0} .m

ptr
= `
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so
t . new x := 0; x

ptr
= ` 6³ t]{` 7→ 0} . true.

The above property would hold if we restrict dom(t) to be fresh, i.e., dom(t) ∩
loc(e1) = ∅. However, as we shall see, this restriction is too strong for many
examples.

5.2. Binary search trees
We give another implementation—by (mutable) binary search trees—of in-

teger multisets.

Definition 5.7 (binary search tree).

set ′ = new z := null; 〈add ′,mem ′, del ′〉

add ′ = λx. x + 0; z := add ′x(!z)
add ′x = fix f(y).

ifnull y then new y′ := 〈x, null, null〉; y′ else
if x

int
< #1(!y) then #3

2(!y)← f(#2(!y)); y else
#3

3(!y)← f(#3(!y)); y

mem ′ = λx. x + 0;mem ′
x(!z)

mem ′
x = fix g(y).

ifnull y then false else

if x
int
< #1(!y) then g(#2(!y)) else

if x
int
> #1(!y) then g(#3(!y)) else

true

min = fix m(y).
ifnull #2(!y) then #1(!y) else m(#2(!y))

del ′ = λx. x + 0; z := del ′ (!z)x
del ′ = fix h(y). λx.

ifnull y then y else

if x
int
< #1(!y) then #3

2(!y)←h(#2(!y))x; y else

if x
int
> #1(!y) then #3

3(!y)←h(#3(!y))x; y else
ifnull #3(!y) then #2(!y) before free(y) else
let x′ = min(#3(!y)) in
#3

1(!y)←x′;#3
3(!y)←h(#3(!y))x′; y

Similarly to the case of linked lists, z is bound to the location of the present
tree. A tree is either a leaf or a node. A leaf is represented by null. A node is
represented by the location of the tuple 〈x, y1, y2〉 of its element x, left sub-tree
y1, and right sub-tree y2. The recursive function add ′x takes a tree y, inserts
x into an appropriate place, and returns the updated tree. Function mem ′

x

searches a given tree for element x. Function del ′ is a little trickier: it looks for
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a given element x in a given tree y, and replaces x with the minimum element
in the right sub-tree.

We define a predicate Set ′(`, S, s) for binary search tree ` representing mul-
tiset S under store s, by induction as follows.

• Set ′(null, ∅, ∅).
• Set ′(`, {i}+ S1 + S2, s1 ] s2 ]{` 7→ 〈i, `1, `2〉}) if ` 6= null, Set ′(`1, S1, s1)

and Set ′(`2, S2, s2), with i > j for any j ∈ S1 and i ≤ k for any k ∈ S2.

The following lemmas are proved by induction on the derivation of Set ′(`0, S, s0)
or Set ′(`, S, s).

Lemma 5.8. Suppose Set ′(`0, S, s0). Then, for any t, we have s0 ] t . add ′i(`0) ³
s] t . ` with Set ′(`, S + {i}, s)
Corollary 5.9. Suppose Set ′(`0, S, s0). Then, for any t,

s0 ] t]{m 7→ `0} . [m/z]add ′(i) ³ s] t]{m 7→ `} . 〈〉
with Set ′(`, S + {i}, s)
Lemma 5.10. Suppose Set ′(`, S, s). Then, for any t, we have s] t .mem ′

i(`) ³
s] t . b with b = true if i ∈ S, and b = false otherwise.

Corollary 5.11. Suppose Set ′(`, S, s). Then, for any t,

s]{m 7→ `}] t . [m/z]mem ′(i) ³ s]{m 7→ `}] t . b

with b = true if i ∈ S, and b = false otherwise.

Lemma 5.12. Suppose Set ′(`, S, s). If ` 6= null, then for any t, we have s] t .
min(`) ³ s] t . i and i is the minimum element of S.

Lemma 5.13. Suppose Set ′(`, S, s). Then, for any t, we have s] t . del ′ (`)i ³
s0 ] t . `0, with Set ′(`0, S − {i}, s0).

Again, we give a detailed proof for the last lemma only.

Proof. By induction on the size of S. Trivial if ` = null. Suppose

• ` 6= null,

• S = {i′}+ S1 + S2,

• s = s1 ] s2 ]{` 7→ 〈i′, `1, `2〉},
• Set ′(`1, S1, s1),

• Set ′(`2, S2, s2),

• i′ > j for any j ∈ S1, and

• i′ ≤ k for any k ∈ S2.

Case i′ = i and `2 = null. Then S2 = ∅ and s2 = ∅, and we have s] t .
del ′ (`)i ³ s1 ] t . `1, so it suffices to take s0 = s1 and `0 = `1.
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Case i′ = i and `2 6= null. Then by Lemma 5.12 we have s .min(`2) ³ s . k′

and k′ is the minimum element of S2. By induction, we obtain

s] t . del ′ (`)i ³ s1 ] s3 ]{` 7→ 〈k′, `1, `3〉}] t . `

with Set ′(`3, S2−{k′}, s3). Thus, it suffices to take s0 = s1 ] s3 ]{` 7→ 〈k′, `1, `3〉}
and `0 = `.

Case i′ < i. Then, by induction,

s] t . del ′ (`)i ³ s3 ] s2 ]{` 7→ 〈i′, `3, `2〉}] t . `

with Set ′(`3, S1−{i}, s3). Thus, it suffices to take s0 = s3 ] s2 ]{` 7→ 〈i′, `3, `2〉}
and `0 = `.

Case i′ > i. Similar to the case i′ < i. ¤

Corollary 5.14. Suppose Set ′(`, S, s). Then, for any t,

s]{m 7→ `}] t . [m/z]del ′(i) ³ s0 ]{m 7→ `0}] t . 〈〉

with Set(`0, S − {i}, s0).

5.3. The bisimulation
We now prove the bisimulation between the multiset implementations by

linked lists and binary search trees, roughly as follows:

• We first define a binary relation Rm,m′ consisting of the three pairs of
functions, taken from the two implementations. The parameters m and
m′ represent the (local) locations of the multiset data structures.

• Second, we define an environmental relation X consisting of configurations
where no programs are running (the first and second subsets of X in the
proof below) or the functions are about to start (the third and fourth
subsets).

• We then define another environmental relation Y ⊇ X that accounts for
(public) locations allocated (and deallocated) by the context, as well as
for reducts of the started functions.

• Finally, we prove that the context closure Y ? is an environmental bisim-
ulation. This concludes the entire proof because (∅, ∅ . set , ∅ . set ′) ∈ Y ?.

Obviously, this proof is rather lengthy and burdensome. These burdens will be
removed by the up-to techniques in Section 6.

Theorem 5.15. set and set ′ are bisimilar. That is, (∅, ∅ . set , ∅ . set ′) belongs
to the bisimilarity.
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Proof. Take:

Rm,m′ = {([m>/z]add , [m′>/z]add ′),
([m>/z]mem, [m′>/z]mem ′),
([m>/z]del , [m′>/z]del ′)}

X = {(∅, ∅ . set , ∅ . set ′)}
∪ {(Rm,m′ , s]{m> 7→ `>}, s′ ]{m′> 7→ `′>}) |

Set(`>, S, s), Set ′(`′>, S, s′)}
∪ {(Rm,m′ , s]{m> 7→ `>} . d(i), s′ ]{m′> 7→ `′>} . d′(i)) |

Set(`>, S, s), Set ′(`′>, S, s′), (d, d′) ∈ Rm,m′}
∪ {(Rm,m′ , s]{m> 7→ `>} . d(v), s′ ]{m′> 7→ `′>} . d′(v′)) |

Set(`>, S, s), Set ′(`′>, S, s′), (d, d′) ∈ Rm,m′ ,
v and v′ are not integers}

Y = {(S, s]{˜̀⊥ 7→ w̃} \ m̃⊥, s′ ]{˜̀′⊥ 7→ w̃′} \ m̃′⊥) |
(R, s, s′) ∈ X,

S = R∪ {(˜̀⊥, ˜̀′⊥)},
(w̃, w̃′) ∈ S?,
(m̃⊥, m̃′⊥) ∈ S}

∪ {(S, t . e, t′ . e′) |
(R, s . d, s′ . d′) ∈ X,

S = R∪ {(˜̀⊥, ˜̀′⊥)},
(w̃, w̃′) ∈ S?,
(m̃⊥, m̃′⊥) ∈ S,

s]{˜̀⊥ 7→ w̃} \ m̃⊥ . d ³ t . e,

s′ ]{˜̀′⊥ 7→ w̃′} \ m̃′⊥ . d′ ³ t′ . e′}
We then prove that Y ? is a bisimulation, by case analysis and induction on the
context in the definition of Y ?. Since a simpler proof will be given in Section 7
by using a more general theorem in Section 6, we only sketch the outline here.

First, we prove that Y ? is reduction-closed. The cases for non-evaluation
contexts are straightforward. Let the context be E. Cases where E 6= [ ] follow
by induction. The case E = [ ] follows from the reduction-closed construction of
Y with the lemmas in previous subsections. (Note that, if the arguments v and
v′ of d and d′ are not integers, reductions get stuck both on the left hand side
and on the right.) The inclusion of all reducts of d and d′ works here because X
involves only a deterministic fragment of our language with no dangling pointers
(though the context can still create dangling pointers and be non-deterministic).

Then, we check each condition of bisimulation for each (u, u′) ∈ S with
(S, t, t′) ∈ Y ? by induction on the context. Again, the inductive cases are easy.
As for the base case,

• Condition 1 and Condition 2 are satisfied by the (application-closed and
projection-closed) construction of X and Rm,m′ , respectively. Note that
(v, v′) ∈ S? means either v = v′ = i, or else v and v′ are not integers (easy
case analysis on contexts).
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• Condition 3 and 4 are also satisfied by construction, i.e., by the inclusion
of arbitrary `⊥ and `′⊥ (and the exclusion of arbitrary m⊥ and m′⊥) in
Y .

¤

5.4. Beyond contextual equivalence
In fact, we can prove a stronger property than contextual equivalence by

reusing the same bisimulation as above: Set(`, S, s) and Set(`′, S, s′) imply that
the number of locations, both in s and in s′, is equal to the size of S (this can
be checked by easy induction on the size of S). Thus, we can define

P size = {(R, s . e, s′ . e′) | |dom(s)| = |dom(s′)|}
∪ {(R, s, s′) | |dom(s)| = |dom(s′)|}

and prove that (Y ∩P size)? is a P size -bisimulation. (The intersection with P size

is for excluding intermediate states with mismatched numbers of locations on the
left hand side and on the right.) In this particular example, even the previous
proof (Section 5.3) remains valid only by replacing P obs with the above P size

and Y with Y ∩ P size . The P size -bisimulation then means that the number of
locations allocated on the left hand side and on the right are the same under
arbitrary contexts.

Similarly, we can easily prove (local) memory safety of the two implementa-
tions under arbitrary (public) contexts.

Definition 5.16 (local memory safety). State s . e is local memory unsafe
if e is either E[free(`>)], E[`> := v], or E[!`>], with `> 6∈ dom(s). It is local
memory safe if not local memory unsafe. We often omit “local” and “memory,”
saying just “safe” or “unsafe,” and write safe(s . e) when s . e is safe.

Note that the definition above does not imply so-called “type safety,” which is
a more general property. For instance, safe does not preclude stuck states such
as ∅ . (` 3). Note also that local memory safety only concerns local locations,
so it is satisfied by a function like λx. free(x); !x even though this function is
(very) unsafe when applied to a public location by an (innocent) context like
new z⊥ := 〈〉; [ ]z. (In this work, we intend to protect programs’ memory from
contexts, but not vice versa. Alternatively, we could attach a localty ⊥ or >
to each read from or write to locations—instead of the locations themselves—in
order to distinguish contexts’ accesses from programs’.)

Then, we take

P safe = {(R, s . e, s′ . e′) | safe(s . e), safe(s′ . e′)}
∪ {(R, s, s′) | true}

and prove that (Y ∩ P safe)? is a P safe -bisimulation, which is again straightfor-
ward: the only essential work is to check the predicate safe against each reduct
of add(v), add ′(v′), etc. Note that the arguments v and v′ can be non-integers,
in which case the reducts get stuck at the integer addition x + 0. According to
the definition, this is still considered (local) memory safe.
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6. Up-to technique

As stated in Section 5.3, proof of bisimulation by using only its definition
(Definition 4.5) is still tedious and bureaucratic. Specifically,

• the deallocation of arbitrary public locations m̃⊥ and m̃′⊥,

• the allocation of arbitrary public locations ˜̀⊥ and ˜̀′⊥ (with contents w̃
and w̃′), and

• the context closure Y ? instead of Y (or even X) itself

seem inessential by intuition.
To remove such bureaucracy, up-to techniques—as found in the bisimulation

theory of concurrent calculi (see, e.g., Sangiorgi and Milner, 1992)—are useful in
our case as well. There can be many up-to techniques and their combinations; we
only present one of the most useful combinations below. Note that combination
of up-to techniques is known to be subtle in general (Sangiorgi and Milner,
1992), so it is not straightforward to derive the soundness of a combination only
from the soundness of each of the combined techniques.

Definition 6.1 (allocation closure). The (binary) allocation closure of X is
defined as:

Xν = {(R, s . e, s′ . e′) | (R, s . e, s′ . e′) ∈ X}
∪ {(S, s]{˜̀⊥ 7→ w̃} \ m̃⊥, s′ ]{˜̀′⊥ 7→ w̃′}) \ m̃′⊥ |

(R, s, s′) ∈ X, S = R∪ {(˜̀⊥, ˜̀′⊥)}, (w̃, w̃′) ∈ S?, (m̃⊥, m̃′⊥) ∈ S}

where s]{˜̀⊥ 7→ w̃} \ m̃⊥ denotes extensions and restrictions of store s by loca-
tions ˜̀ and m̃, respectively, in any order.

Trivially, X ⊆ Xν = (Xν)ν for any X. Also, if P is consistent, then so is P ν .

Definition 6.2 (environmental P -simulation up-to). Let P be a (consis-
tent) predicate on binary configurations. A subset X of P is called an environ-
mental P -simulation up-to context and allocation, or just a P -simulation up-to
in short, if all of the following conditions hold. (Differences from Definition 4.5
are underlined.)

A. For every (R, s . d, s′ . d′) ∈ X,
(i) If s . d→ t . e, then s′ . d′ ³ t′ . e′ and (R, t . e, t′ . e′) ∈ (Xν)?.
(ii) If d = v, then s′ . d′ ³ t′ . v′ and (R∪ {(v, v′)}, s, t′) ∈ (Xν)?.
(iii) Symmetric versions of the two conditions above, that is:

i’. If s′ . d′ → t′ . e′, then s . d ³ t . e and (R, t . e, t′ . e′) ∈ (Xν)?.
ii’. If d′ = v′, then s . d ³ t . v and (R∪ {(v, v′)}, t, s′) ∈ (Xν)?.

B. For every (R, s, s′) ∈ X and (u, u′) ∈ R,
(1) If u = λx. e and u′ = λx. e′, then for any (S, t, t′) ∈ {(R, s, s′)}ν and

(v, v′) ∈ S?, we have (S, t . uv, t′ . u′v′) ∈ X.
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(2) If u = 〈v1, . . . , vi, . . . , vn〉 and u′ = 〈v′1, . . . , v′i, . . . , v′n〉, then (R ∪
{(vi, v

′
i)}, s, s′) ∈ (Xν)?.

(3) If u = `⊥, u′ = `′⊥, `⊥ ∈ dom(s) and `′⊥ ∈ dom(s′), then (R ∪
{(s(`⊥), s′(`′⊥))}, s, s′) ∈ (Xν)?.

Intuitively, these conditions are a sound simplification of the original conditions
of P -simulation by allowing to omit elements of the P -simulation. Specifically,

• The context closure ? allow us to omit smaller knowledge (S ⊆ R?
val in

Definition 4.6) as well as configurations that can be reconstructed by the
context from other configurations (again see Definition 4.6). Technically,
all the positive occurrences of X are replaced with (Xν)? except in Con-
dition B1 (because it does not correspond to any reduction step; it does
so only in combination with Condition Ai and its symmetric version).

• The allocation closure ν allow us to omit allocation of, writing to, and
deallocation of public locations as long as their contents can be recon-
structed by the context from its knowledge (see Definition 6.1). Note that
the closure {(R, s, s′)}ν before function application in Condition B1 is
still essential for soundness: consider, for example, a function that takes
n locations and checks whether they are pairwise distinct.

Theorem 6.3 (soundness of P -simulation up-to). Let X be a P -simulation
up-to. Then (Xν)? is a (P ν)?-simulation.

Proof. First, we prove that (Xν)? is reduction-closed. The proof is similar to
that of Lemma 4.9 (soundness of P -similarity) except for the cases C = free(C1)
or C1 :=C2 or (new x := C1; C2), where Condition 3a, 3b and 4 of Definition 4.5
(P -simulation) are no longer available in Definition 6.2 (P -simulation up-to);
instead, the required conditions follow from Definition 6.1 (allocation closure).

To be concrete, we carry out the proof by case analysis on elements of (Xν)?

along Definition 4.6, as follows. Key differences from the proof of Lemma 4.9
are underlined below.

Case (S, s . [ṽ/x̃]E[e], s′ . [ṽ′/x̃]E[e′]) ∈ (Xν)? with (R, s . e, s′ . e′) ∈ Xν and
S ⊆ R?

val and (ṽ, ṽ′) ∈ R and fv(E) ⊆ {x̃}. By Definition 6.1, (R, s . e, s′ . e′) ∈ Xν

implies (R, s . e, s′ . e′) ∈ X.
To prove Condition i (of Definition 4.3), suppose s . [ṽ/x̃]E[e] →. Since

(R, s . e, s′ . e′) ∈ X and X is a P -simulation up-to, if e is a value, then e′ also
reduces to some value (by Condition Aii of Definition 6.2) and the rest of the
proof amounts to the next case. Suppose thus that e is not a value. Since s .
[ṽ/x̃]E[e]→ and E is an evaluation context, we have s . e→ t . d for some t and
d. Again since (R, s . e, s′ . e′) ∈ X and X is a P -simulation up-to, we have s′ .
e′ ³ t′ . d′ for some t′ and d′ with (R, t . d, t′ . d′) ∈ (Xν)? (by Condition Ai of
Definition 6.2). Hence (S, t . [ṽ/x̃]E[d], t′ . [ṽ′/x̃]E[d′]) ∈ ((Xν)?)? = (Xν)? by
Definition 4.6.

To prove Condition ii, suppose [ṽ/x̃]E[e] is a value, which we call w. Since
E is an evaluation context, this can be the case only if e is also a value v. Then,
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since (R, s . v, s′ . e′) ∈ X and X is a P -simulation up-to, we have s′ . e′ ³ t′ .
v′ for some t′ and v′ with (R ∪ {(v, v′)}, s, t′) ∈ (Xν)? (by Condition Aii of
Definition 6.2). Since [ṽ/x̃]E[v] is a value, so is [ṽ′/x̃]E[v′] (by Lemma 4.8),
which we call w′. Since (w, w′) ∈ (R∪ {(v, v′)})?

val by Definition 4.2, we obtain
(S ∪ {(w,w′)}, s, t′) ∈ ((Xν)?)? = (Xν)? by Definition 4.6.

The proof of Condition iii is symmetric to the proofs above.

Case (S, s . [ṽ/x̃]C, s′ . [ṽ′/x̃]C) ∈ (Xν)? with (R, s, s′) ∈ Xν and S ⊆ R?
val

and (ṽ, ṽ′) ∈ R and fv(C) ⊆ {x̃}. By Definition 6.1, (R, s, s′) ∈ Xν implies
(R, s, s′) ∈ {(R0, s0, s

′
0)}ν for some (R0, s0, s

′
0) ∈ X.

First, we prove Condition i (of Definition 4.3) by induction on C. Suppose
s . [ṽ/x̃]C →.

If C is of the form E[D] for some E 6= [ ], and if s . [ṽ/x̃]D → t . d for some t
and d, then s′ . [ṽ′/x̃]D ³ t′ . d′ for some t′ and d′ with (S, t . d, t′ . d′) ∈ (Xν)?

by the induction hypothesis. Hence s′ . [ṽ′/x̃]C ³ t′ .E[d′], with (S, t . E[d], t′ .
E[d′]) ∈ ((Xν)?)? = (Xν)? by Definition 4.6.

Otherwise, we proceed by case analysis on C.

Subcase C = C1C2. Then [ṽ/x̃]C1 is a λ-abstraction and [ṽ/x̃]C2 (resp. [ṽ′/x̃]
C2, by Lemma 4.8) is a value w (resp. w′).

If C1 itself is a λ-abstraction λx.C0, then the only possible reduction on the
“left hand side” (of the bisimulation) is s . [ṽ/x̃]C → s . [ṽ/x̃]([C2/x]C0), which
corresponds to s′ . [ṽ′/x̃]C → s′ . [ṽ′/x̃]([C2/x]C0) on the right hand side, with
(S, s . [ṽ/x̃]([C2/x]C0), s′ . [ṽ′/x̃]([C2/x]C0)) ∈ (Xν)? by Definition 4.6.

Otherwise, C1 is a variable xi and vi is a λ-abstraction. Since (vi, v
′
i) ∈ R

and (R, s, s′) ∈ {(R0, s0, s
′
0)}ν and vi is not a location, we have (vi, v

′
i) ∈ R0

by Definition 6.1. Since X is a P ?-simulation up-to, v′i is also a λ-abstraction
by Definition 4.4, and therefore (R, s . viw, s′ . v′iw

′) ∈ X by Condition B1 of
Definition 6.2. Again since X is a P ?-simulation up-to, if s . viw → t . e for some
t and e, then s′ . v′iw

′ ³ t′ . e′ for some t′ and e′ with (R, t . e, t′ . e′) ∈ (Xν)?

(by Condition Ai of Definition 6.2). Hence (S, t . e, t′ . e′) ∈ ((Xν)?)? = (Xν)?

by Definition 4.6.

Subcase C = op(C1, . . . , Cn). Then [ṽ/x̃]Ci is a constant ci, for i = 1, . . . , n,
and s . [ṽ/x̃]C → s . c for c = [[op(c1, . . . , cn)]]. If Ci itself is ci, then [ṽ′/x̃]
Ci = ci. Otherwise, Ci is a variable xi and vi = ci. By Definition 4.4, v′i = ci.
Therefore, [ṽ′/x̃]Ci = ci anyway. Hence s′ . [ṽ′/x̃]C → s′ . c, with (S, s . c, s′ .
c) ∈ (Xν)? by Definition 4.6.

Subcase C = if C1 then C2 else C3. Then [ṽ/x̃]C1 is a Boolean constant b
and so is [ṽ′/x̃]C1 (for the same reason as in the previous subcase). If b = true,
then the only possible reduction on the left hand side is s . [ṽ/x̃]C → s . [ṽ/x̃]C2,
which corresponds to s′ . [ṽ′/x̃]C → s′ . [ṽ′/x̃]C2 on the right hand side, with
(S, s . [ṽ/x̃]C2, s

′ . [ṽ′/x̃]C2) ∈ (Xν)? by Definition 4.6. The case b = false is
similar.

Subcase C = #i(C0). Then [ṽ/x̃]C0 is a tuple 〈w1, . . . , wn〉 and s . [ṽ/x̃]C → s .
wi.
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If C0 itself is a tuple 〈C1, . . . , Cn〉, then [ṽ/x̃]Ci = wi, so [ṽ′/x̃]Ci is also a
value w′i (Lemma 4.8), for i = 1, . . . , n. Hence s′ . [ṽ′/x̃]C → s′ .w′i, with (S, s .
wi, s

′ .w′i) ∈ (Xν)? by Definition 4.6.
Otherwise, C0 is a variable xi and vi = 〈w1, . . . , wn〉. Since (vi, v

′
i) ∈ R

and (R, s, s′) ∈ {(R0, s0, s
′
0)}ν and vi is not a location, we have (vi, v

′
i) ∈ R0 by

Definition 6.1. Since X is a P ?-simulation up-to, v′i is also a tuple 〈w′1, . . . , w′n〉
by Definition 4.4, and therefore (R0 ∪ {(wi, w

′
i)}, s0, s

′
0) ∈ (Xν)? by Condi-

tion B2 of Definition 6.2. Hence s′ . [ṽ′/x̃]C → s′ . w′i, with (S, s . wi, s
′ .

w′i) ∈ ((Xν)?)? = (Xν)? by Definition 4.6.

Subcase C = (new x⊥ :=C1;C2). Then [ṽ/x̃]C1 (resp. [ṽ′/x̃]C1, by Lemma 4.8)
is a value w (resp. w′) and the only possible reductions on the left hand side are
of the form s . [ṽ/x̃]C → s]{`⊥ 7→w} . [ṽ, `⊥/x̃, x]C2 for some `⊥ 6∈ dom(s),
which corresponds to s′ . [ṽ′/x̃]C → s′ ]{`′⊥ 7→w′} . [ṽ′, `′⊥/x̃, x]C2 for some
`′⊥ 6∈ dom(s′) on the right hand side. Since (R, s, s′) ∈ Xν , we have (R∪ {(`⊥, `′⊥)},
s]{`⊥ 7→w}, s′ ]{`′⊥ 7→w′}) ∈ (Xν)ν = Xν by Definition 6.1. Hence (S, s]
{`⊥ 7→w} . [ṽ, `⊥/x̃, x]C2, s

′ ]{`′⊥ 7→w′} . [ṽ′, `′⊥/x̃, x]C2) ∈ (Xν)? by Defini-
tion 4.6.

Subcase C = free(C1). Then [ṽ/x̃]C1 is a location `π with s = t]{`π 7→w} for
some t and w, so s . [ṽ/x̃]C → t . 〈〉. Since contexts are location-free, it must
be that C1 is a variable xi and vi = `π. By Definition 4.4, we have π = ⊥
and v′i is also a public location `′⊥ with s′ = t′ ]{`′⊥ 7→w′} for some t′ and
w′, so s′ . [ṽ′/x̃]C → t′ . 〈〉. Since (`⊥, `′⊥) ∈ R and (R, s, s′) ∈ Xν , we have
(R, t, t′) ∈ (Xν)ν = Xν by Definition 6.1. Hence (S, t . 〈〉, t′ . 〈〉) ∈ (Xν)? by
Definition 4.6.

Subcase C = (C1 := C2). Then [ṽ/x̃]C1 is a location `π, and [ṽ/x̃]C2 (resp. [ṽ′/x̃]
C2, by Lemma 4.8) is a value w (resp. w′), with s = t]{`π 7→u} for some t and
u, so s . [ṽ/x̃]C → t]{`π 7→w} . 〈〉. Since contexts are location-free, it must be
that C1 is a variable xi and vi = `π. By Definition 4.4, we have π = ⊥ and
v′i is also a public location `′⊥, with s′ = t′ ]{`′⊥ 7→u′} for some t′ and u′, so
s′ . [ṽ′/x̃]C → t′ ]{`′⊥ 7→w′} . 〈〉. Since (`⊥, `′⊥) ∈ R and (R, s, s′) ∈ Xν , and
since (w, w′) ∈ R?, we have (R, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈ (Xν)ν = Xν by
Definition 6.1. Hence (S, t]{`⊥ 7→w} . 〈〉, t′ ]{`′⊥ 7→w′} . 〈〉) ∈ (Xν)? by Def-
inition 4.6.

Subcase C = !C1. Then [ṽ/x̃]C1 is a location `π with s = t]{`π 7→w} for
some t and w, so s . [ṽ/x̃]C → s . w. Since contexts are location-free, it must
be that C1 is a variable xi and vi = `π. By Definition 4.4, we have π =
⊥ and v′i is also a public location `′⊥ with s′ = t′ ]{`′⊥ 7→w′} for some t′

and w′, so s′ . [ṽ′/x̃]C → s′ .w′. Since (`⊥, `′⊥) ∈ R and (R, s, s′) ∈ Xν , the
locations `⊥ and `′⊥ are either introduced by Xν or else taken from R0. In the
former case, we have (w, w′) ∈ R? by Definition 6.1. In the latter case, we have
(R0∪{(w, w′)}, s0, s

′
0) ∈ (Xν)? by Condition B3 of Definition 6.2. Hence (S, s .

w, s′ .w′) ∈ (((Xν)?)ν)? = (Xν)? by Definition 4.6 and 6.1.

Subcase C = (C1
ptr
= C2). Then [ṽ/x̃]C1 and [ṽ/x̃]C2 are locations `π1

1 and
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`π2
2 , respectively, so s . [ṽ/x̃]C → s . b, where b is true if `π1

1 = `π2
2 and false

otherwise. Since contexts are location-free, it must be that C1 and C2 are
variables xi and xj , respectively, with vi = `π1

1 and vj = `π2
2 . By Definition 4.4,

we have π1 = π2 = ⊥, and v′i and v′j are also public locations `′1
⊥ and `′2

⊥,
respectively, with (`⊥1 = `⊥2 ) ⇐⇒ (`′1

⊥ = `′2
⊥). Hence s′ . [ṽ′/x̃]C → s′ . b,

with (S, s . b, s′ . b) ∈ (Xν)? by Definition 4.6.

This concludes the proof of Condition i (of Definition 4.3).
To prove Condition ii, suppose [ṽ/x̃]C is a value w. Then [ṽ′/x̃]C is also

a value w′ (Lemma 4.8) and (w, w′) ∈ R? by Definition 4.2. Hence (S ∪
{(w, w′)}, s, s′) ∈ (Xν)? by Definition 4.6.

The proof of Condition iii is symmetric to those of Condition i and ii.

Case (S, s, s′) ∈ (Xν)? with (R, s, s′) ∈ P and S ⊆ R?
val . Definition 4.3 requires

no condition for elements of this form.

This concludes the proof that (Xν)? is reduction-closed.
Then, we prove Conditions 1 to 4 (of Definition 4.5) for (Xν)?. Suppose

(R, s, s′) ∈ (Xν)? and (u, u′) ∈ R. By Definition 4.6 and 6.1, we have R ⊆
(R0)?

val and (R0, s, s
′) ∈ {(R1, s0, s

′
0)}ν for some R0 and (R1, s0, s

′
0) ∈ X.

To prove Condition 1, suppose (v, v′) ∈ R?. Since (u, u′) ∈ R and (v, v′) ∈
R? with (R, s, s′) ∈ (Xν)?, we have (R, s . uv, s′ . u′v′) ∈ ((Xν)?)? = (Xν)? by
Definition 4.6.

To prove Condition 2, suppose u = 〈v1, . . . , vi, . . . , vn〉 and u′ = 〈v′1, . . . , v′i, . . . , v′n〉.
Since (u, u′) ∈ R ⊆ (R0)?

val , the tuples u and u′ are either introduced by (R0)?
val

or else taken from R0. In the former case, we have (vi, v
′
i) ∈ (R0)?

val by Defini-
tion 4.2, so (R ∪ {(vi, v

′
i)}, s, s′) ∈ (Xν)? by Definition 4.6. In the latter case,

since (u, u) ∈ R0 and (R0, s, s
′) ∈ {(R1, s0, s

′
0)}ν and u and u′ are not locations,

we have (u, u′) ∈ R1 by Definition 6.1, so (R1∪{(vi, v
′
i)}, s0, s

′
0) ∈ (Xν)? by Con-

dition B2 of Definition 6.2. Hence (R ∪ {(vi, v
′
i)}, s, s′) ∈ (((Xν)?)ν)? = (Xν)?

by Definition 6.1 and 4.6.
To prove Condition 3a, 3b and 3c, suppose u = `⊥, u′ = `′⊥, s = t]

{`⊥ 7→ v} and s′ = t′ ]{`′⊥ 7→ v′}. Since (`⊥, `′⊥) ∈ R ⊆ (R0)?
val , we have

(`⊥, `′⊥) ∈ R0 by Definition 4.2.

• Condition 3a. Since (R0, s, s
′) ∈ Xν and (`⊥, `′⊥) ∈ R0, we have (R0, t, t

′) ∈
(Xν)ν = Xν by Definition 6.1. Hence (R, t, t′) ∈ (Xν)? by Definition 4.6.

• Condition 3b. Suppose (w, w′) ∈ R? ⊆ ((R0)?
val)

?
val = (R0)?

val . Since
(R0, s, s

′) ∈ Xν and (`⊥, `′⊥) ∈ R0, we have (R0, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈
(Xν)ν = Xν by Definition 6.1. Hence (R, t]{`⊥ 7→w}, t′ ]{`′⊥ 7→w′}) ∈
(Xν)? by Definition 4.6.

• Condition 3c. Since (`⊥, `′⊥) ∈ R0 and (R0, s, s
′) ∈ {(R1, s0, s

′
0)}ν , the

locations `⊥ and `′⊥ are either introduced by {(R1, s0, s
′
0)}ν or else taken

from R1. In the former case, we have (v, v′) ∈ R?
0 by Definition 6.1, so

(R ∪ {(v, v′)}, s, s′) ∈ (Xν)? by Definition 4.6. In the later case, we have
(R1 ∪ {(v, v′)}, s0, s

′
0) ∈ (Xν)? by Condition B3 of Definition 6.2. Hence

(R∪ {(v, v′)}, s, s′) ∈ (((Xν)?)ν)? = (Xν)? by Definition 6.1 and 4.6.
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Finally, to prove Condition 4, suppose `⊥ 6∈ dom(s) and (v, v′) ∈ R? ⊆
((R0)?

val)
?
val = (R0)?

val . Then we have (R∪{(`⊥, `′⊥)}, s]{`⊥ 7→ v}, s′ ]{`′⊥ 7→ v′}) ∈
((Xν)?)ν = (Xν)? for some `′⊥ 6∈ dom(s′) by Definition 6.1. ¤

7. Examples of P -bisimulations up-to

To (re-)prove the bisimulation and other results in Section 5, take

X = {(∅, ∅ . set , ∅ . set ′)}
∪ {(Rm,m′ , s]{m> 7→ `>}, s′ ]{m′> 7→ `′>}) |

Set(`>, S, s),Set ′(`′>, S, s′)}
∪ {(S, t . e, t′ . e′) |

Set(`>, S, s),Set ′(`′>, S, s′), (d, d′) ∈ Rm,m′ ,

S = Rm,m′ ∪ {(˜̀⊥, ˜̀′⊥)},
(v, v′), (w̃, w̃′) ∈ S?,
(m̃⊥, m̃′⊥) ∈ S,

s]{m> 7→ `>}] {˜̀⊥ 7→ w̃} \ m̃⊥ . d(v) ³ t . e,

s′ ]{m′> 7→ `′>}] {˜̀′⊥ 7→ w̃′} \ m̃′⊥ . d′(v′) ³ t′ . e′}

where
Rm,m′ = {([m>/z]add , [m′>/z]add ′),

([m>/z]mem, [m′>/z]mem ′),
([m>/z]del , [m′>/z]del ′)}.

Then X∩P is a P -bisimulation up-to, for any P ∈ {P obs , P size , P safe} (see Sec-
tion 5 for their definitions). Note that P ν ⊆ P holds for all of them (immediate
from each of the definitions).

The first and second subsets (the first three lines) of X are the same as
those in Section 5, representing the configurations with no running programs.
The third subset (the other lines) corresponds to the third and fourth subsets
of X in Section 5, and to the latter half of Y in Section 5, representing the
configurations in the middle of reductions. The first half of Y in Section 5
is now omitted, thanks to the up-to allocation technique. We do not have to
consider Y ?, either, thanks to the up-to context technique.

It may also be possible to remove the reducts t . e and t′ . e′ from the X above
by developing an “up-to deterministic reduction” technique. To be concrete,
let ⇀ be the largest deterministic subset of →. Then, we may replace the
first two occurrences of (Xν)? with ((Xν)?)⇀ in Definition 6.2 (environmental
P -simulation up-to), where X⇀ denotes (deterministic) reduction closure of
an environmental bisimulation X. In our operational semantics, however, all
allocations are non-deterministic per se: the reduction s . (new x := v; e)→ (s]
{` 7→ v}) . [`/x]e holds for any fresh (and non-null) location `. Thus, in fact,
we would need to develop an “up-to deterministic reduction and renaming”
technique to allow the difference of fresh names. Confer Sumii (2009, Definition
7) for such a technique in a language that is deterministic up to renaming.
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8. Unary environmental predicates

Suppose that we want to prove the local memory safety of the multiset
implementation set by linked lists. In Section 5.4, we proved it in combination
with contextual equivalence to another multiset implementation set ′ (by binary
search trees). However, if we are interested only in the safety of set , there is
no reason to care about set ′. Instead, we can just consider the “bisimulation”
between set and set itself! This idea generalizes to the following definitions.

Definition 8.1. A unary configuration is a triple of the form (R, s . e) or a
pair of the form (R, s), where R is a predicate on values.

Definition 8.2 (environmental P -predicate). Let P be a predicate on unary
configurations. A set X ⊆ P of unary configurations is called an environmen-
tal P -predicate if its duplication X2 = {(R2, s . e, s . e) | (R, s . e) ∈ X} ∪
{(R2, s, s) | (R, s) ∈ X} is an environmental P 2-simulation, where R2 =
{(v, v) | v ∈ R}. To spell out all the conditions,

1. For every (R, s . d) ∈ X,
(a) If s . d→ t . e, then (R, t . e) ∈ X.
(b) If d = v, then (R∪ {v}, s) ∈ X.

2. For every (R, s) ∈ X and u ∈ R,
(a) If u = λx. e, then (R, s . uv) ∈ X for any v ∈ R?.
(b) If u = 〈v1, . . . , vi, . . . , vn〉, then (R∪ {vi}, s) ∈ X.
(c) If u = `⊥ and s = t]{`⊥ 7→ v}, then (R, t) ∈ X, (R, t]{`⊥ 7→w}) ∈

X for any w ∈ R?, and (R∪ {v}, s) ∈ X.
(d) (R∪ {`⊥}, s]{`⊥ 7→ v}) ∈ X for any `⊥ 6∈ dom(s) and v ∈ R?.

where the unary version of context closure is defined as R? = {[ṽ/x̃]C | ṽ ∈
R, fv(C) ⊆ {x̃}}.

All the results from binary environmental P -simulations apply to this unary
version, because the latter is just a special case of the former. This includes
soundness and the up-to technique. For pedagogy, we spell out the conditions
of environmental P -predicate up-to context and allocation.

Definition 8.3 (allocation closure). The (unary) allocation closure of X is
defined as:

Xν = {(R, s . e) | (R, s . e) ∈ X}
∪ {(S, s]{˜̀⊥ 7→ w̃} \ m̃⊥) | (R, s) ∈ X, S = R∪ {˜̀⊥}, w̃ ∈ S?, m̃⊥ ∈ S}

Definition 8.4 (environmental P -predicate up-to). A set X ⊆ P of unary
configurations is called an environmental P -predicate up-to context and alloca-
tion (or just a “P -predicate up-to” in short) if

A. For every (R, s . d) ∈ X,
(i) If s . d→ t . e, then (S, t . e) ∈ (Xν)?.
(ii) If d = v, then (R∪ {v}, s) ∈ (Xν)?.
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B. For every (R, s) ∈ X and u ∈ R,
(1) If u = λx. e, then for any (S, t) ∈ {(R, s)}ν and v ∈ S?, we have

(S, t . uv) ∈ X.
(2) If u = 〈v1, . . . , vi, . . . , vn〉, then (R∪ {vi}, s) ∈ (Xν)?.
(3) If u = `⊥ and `⊥ ∈ dom(s), then (R∪ {s(`⊥)}, s) ∈ (Xν)?.

where ν and ? denote unary versions of allocation and context closures, respec-
tively.

9. Example of environmental P -predicates up-to

The code in Figure 1 implements directed acyclic graphs (DAGs), with
garbage collection by reference counting. For simplicity, we use immutable lists
in this example (in addition to a mutable data structure for representing the
DAGs themselves), and assume their basic operations such as member , append ,
and remove1 (the function to remove the first instance of a given element from
a given list).

Here, z is bound to the location of the last added node in the DAG. A node
is either null or a quintuple 〈i, b, n, p, `〉, where i is an integer ID of the node, b
a Boolean value meaning whether the node is “in the root set” (i.e., cannot be
garbage collected), n the reference count of the node, p the (immutable) list of
the integer IDs of child nodes, and ` the pointer to the second last added node.
This pointer is different from child pointers, for which we use the list of integer
IDs.

Function addn takes a pair of integer x and integer list p, and adds a node
with ID x and children p. The code x + 0 and map(λy. y + 0)p ensures they
are indeed an integer and an integer list (assuming that + 0 is defined only
for integers). An auxiliary function incrx is used to increment the reference
counts of nodes in p, as well as to check if node x already exists (in which case
it diverges). Note that the same node may appear more than once in p. Its
reference count is increased by the number of appearance.

Function deln prepares to delete a node by (un)marking it as non-root.
Function gc invokes the garbage collector decr , which takes a node pointer n
and an integer list p. It decreases the reference counts of nodes in p, again
according to the number of their appearances. If the reference count becomes
0, and if the root flag is not set, then the node is deleted, and its children are
added to p so that their reference counts will be decreased recursively. In the
end, decr returns the updated node pointer n.

We define the shape predicate for DAGs by induction.

• DAGS(null, ∅, ∅)
• DAGS(`, [(i, b, S0)]@ L0, s0 ]{` 7→ 〈i, b, S(i), S0, `0〉})

if ` 6= null, DAGS+S0(`0, L0, s0), and i 6= i0 for any (i0, , ) ∈ L0.

Here, the subscript S is a multiset of node IDs, representing the number of
references to each node.
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We also give a specification of our garbage collector as follows. It is more
abstract than the implementation because it looks at only the positiveness of
the reference count S(i), not its concrete value (i.e., only whether the node is
referred to, not how many times).

GCS([ ]) = [ ]
GCS([(i, b, S0)]@ L1) = [(i, b, S0)] @GCS+S0(L1) if b = true or S(i) > 0
GCS([(i, false, S0)]@ L1) = GCS(L1) if S(i) = 0

GCS takes a list of triples (i, b, S0) that represent nodes, where i is the node
ID, b the root flag, and S0 the multiset of the IDs of the children. Here, the
subscript S is the multiset of the IDs of nodes pointed to by “external” nodes,
i.e., by nodes that are not in the list.

Now, the following lemma can be proved.

Lemma 9.1. Suppose DAGS(`, L, s). Then, for any t and T , we have s] t .
decr(`)T ³ s0 ] t . `0 with DAGS−T (`0,GCS−T (L), s0). (Here, we are abusing
notation and writing T for an integer list representing the integer multiset T .)

Proof. By lexical induction on the lengths of L and T . Trivial if ` = null.
Suppose

• ` 6= null,

• L = [(i, b, S1)]@ L1,

• s = s1 ]{` 7→ 〈i, b, S(i), S1, `1〉},
• DAGS+S1(`1, L1, s1), and

• i 6= i1 for any (i1, , ) ∈ L1.

If T (i) > 0, then

s] t . decr(`)T
³ s1 ]{` 7→ 〈i, b, S(i)− 1, S1, `1〉}] t . decr(`)(T − {i}).

Since DAGS−{i}(`, L, s1 ]{` 7→ 〈i, b, S(i)− 1, S1, `1〉}), we have

s1 ]{` 7→ 〈i, b, S(i)− 1, S1, `1〉}] t . decr(`)(T − {i})
³ s0 ] t . `0

with DAGS−T (`0,GCS−T (L), s0) by induction, which concludes the case. Sup-
pose T (i) = 0, and b = true or S(i) > 0. Since DAGS+S1(`1, L1, s1), we have

s1 ] t . decr(`1)T ³ s2 ] t . `2

with DAGS+S1−T (`2,GCS+S1−T (L1), s2) by induction. Thus,

s] t . decr(`)T ³ s2 ] t]{` 7→ 〈i, b, S(i), S1, `2〉} . `
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with DAGS−T (`,GCS−T (L), s2 ]{` 7→ 〈i, b, S(i), S1, `2〉}, concluding the case.
Last, suppose T (i) = 0, b = false, and S(i) = 0. Since DAGS+S1(`1, L1, s1),
we have

s1 ] t . decr(`1)(S1 + T ) ³ s0 ] t . `0

with DAGS−T (`0,GCS−T (L1), s0) by induction. Hence

s] t . decr(`)T ³ s0 ] t . `0.

¤

Given the lemma above, it is straightforward to give an environmental predicate
for dag and prove it to be safe under arbitrary (public) contexts. In fact, we
can prove more properties, e.g., that the number of local locations matches the
number of nodes (and therefore the number of live nodes after a call to gc) plus
one (for z). To be specific, take

X = {(∅, ∅ . dag)}
∪ {(Rm, s]{m> 7→ `>}) | DAG∅(`>, L, s)}
∪ {(Rm, t . e) |

DAG∅(`>, L, s), d ∈ Rm, S = Rm ∪ {˜̀⊥}, v, w̃ ∈ S?, m̃⊥ ∈ S,

s]{m> 7→ `>}] {˜̀⊥ 7→ w̃} \ m̃⊥ . d(v) ³ t . e}
where

Rm = {[m>/z]addn, [m>/z]deln, [m>/z]gc}.
Then, X is an environmental P -predicate up-to, where

P = {(R, t . e) | safe(t . e)}
∪ {(R, s]{m> 7→ `>}] {˜̀⊥ 7→ w̃}) | DAG∅(`>, L, s)}.

10. Conclusions

As is often the case in programming language theories, our theory may seem
trivial in hindsight. In particular, all the proofs are arguably straightforward
(though sometimes just lengthy because of case analyses) once organized in the
way presented here. The technical contributions of this work—besides the very
idea of using “bisimulations” for non-equivalence properties—are the organiza-
tion and definitions. Specifically, our technicalities included:

• The definition of local memory safety (Definition 5.16)—based on the
distinction of public and local locations (Section 1.3.4)—that makes sense
“under arbitrary contexts” in the sense that it does not restrict their
observational power.

• The definition of consistency (Definition 4.4), separated from the definition
of bisimulations. Without consistency, the conditions (Condition 2, for
example) of bisimulations would have required a number of extra elements
(e.g., like “if u is a tuple, then (R, s . #i(u), s′ . #i(u′)) ∈ X for any i”).
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In addition, not only the bisimulations X, but also the predicates P , were
required to be consistent. This requirement simplified the completeness
statements (we would otherwise have had to say “the largest consistent
subset of P” everywhere in place of P ) without sacrificing the applicability
of our approach (recall that all the predicates in our examples were trivially
consistent, because none of them referred to the environments R at all).

• The definition of reduction closure (Definition 4.3) for environmental rela-
tions (Condition ii, in particular), separated from the definitions of bisimu-
lations (Definition 4.5). Thanks to this separation, soundness (Lemma 4.9)
and completeness (Lemma 4.10) of the P ?-bisimilarity were stated sim-
ply as its equality to P ?

?→ (Theorem 4.11), the largest contextual and
reduction-closed subset of P ?.

• The definition of allocation closure (Definition 6.1) and the up-to alloca-
tion technique (Definition 6.2).

Our future work includes systematically deriving the conditions of environ-
mental bisimulations from the operational semantics of a language (cf. Koutavas
and Wand, 2006), so that the definitions and proofs do not have to be manu-
ally repeated for every language. Another direction is mechanization. Although
complete automation is clearly impossible, ideas from model checking and type-
based analyses may be useful for sound approximation. Weakening the contex-
tuality to restrict the possible contexts—so that more programs can be proved
correct—would also be useful in practice.
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