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Abstract. It is well known that programs written in C are apt to suffer
from nasty errors due to dangling pointers and/or buffer overflow. In
particular, such errors in Internet servers are often exploited by mali-
cious attackers to “crack” an entire system, which becomes even social
problems nowadays. Nevertheless, it is yet unrealistic to throw away the
C language at once because of legacy programs and legacy programmers.
To alleviate this dilemma, many approaches to safe implementations of
the C language—such as Safe C and CCured—have been proposed and
implemented. To our knowledge, however, none of them support all the
features of the ANSI C standard and prevent all unsafe operations. (By
unsafe operations, we mean any operation that leads to “undefined be-
havior”, such as array boundary overrun and dereference of a pointer in
a wrong type.)

This paper describes a memory-safe implementation of the full ANSI
C language. Our implementation detects and disallows all unsafe opera-
tions, yet conforming to the full ANSI C standard (including casts and
unions) and even supporting many “dirty tricks” common in programs
beyond ANSI C. This is achieved using sophisticated representations of
pointers (and integers) that contain dynamic type and size information.
We also devise several techniques—both compile-time and runtime—to
reduce the overhead of runtime checks.

1 Introduction

The C language, which was originally designed for writing early Unix systems,
allows a programmer to code flexible memory operations for high runtime per-
formance. Especially, the C language provides flexible pointer arithmetic and
type casting of pointers, which can be used for direct access to raw memory.
Thus it can be used as an easy-to-use replacement for assembly languages to
write many low-level system programs such as operating systems, device drivers
and runtime systems of programming languages.

Today, the C language is still one of the major languages for writing ap-
plication programs including various Internet servers. As requirements for ap-
plications become complex, programs written in the C language have come to
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perform complex pointer manipulations very frequently, which tends to cause se-
rious security bugs. In particular, destroying on-memory data structures by array
buffer overflows or dangling pointers makes the behavior of a running program
completely different from its text. In addition, by forging specially formed input
data, malicious attackers can sometimes take over the behavior of such buggy
programs. Most of recently reported security holes are due to such misbehavior.

To resolve the current situation, we propose a method for safe execution
which can accept all programs written in conformity with the ANSI C specifica-
tion. The notion of safety can be stated basically in terms of “well-definedness”
in ANSI C. The phrase behavior undefined in the specification implies that any
behavior including memory corruption or program crashes conforms to the spec-
ification. In other words, all unsafe behavior of existing programs corresponds
to the undefined behavior in the specification. So, if the runtime system detects
all operations whose behavior is undefined, we can achieve safe execution of pro-
grams. Our compiler inserts check code into the program to prevent operations
which destroy memory structures or execution states. If a buggy program at-
tempts to access a data structure in a way which leads to memory corruption,
the inserted code reports the error and then terminates the execution. By using
our compiler system instead of usual C compilers, existing C programs can be
executed safely without change.

2 Basic Approach

This section explains our basic approach to preventing memory failure, using a
simple model.

In a safe programming language with dynamic typing such as Scheme and
Lisp, memory safety is usually assured by a tag assigned to each memory block
as well as by runtime type checking. This idea can also be applied to the C
language. (Actually, some interpreter implementations of the C language take
this approach.) Each contiguous memory region has a tag which keeps type
information about that region. Accordingly, a source program is transformed
into an equivalent program with runtime checking inserted. (Currently, the target
language is also C.) Every memory access is in principle type-checked at runtime,
although most of such runtime checking is actually omitted without losing safety,
thanks to our representations of integers and pointers described later.

2.1 Integer and Pointer Representations

We use a kind of smart pointers called fat pointers. A pointer is represented
by a triple and every pointer operation in a source program is translated into
operations on the triple. The representations of integers and pointers in our
execution model can be described as follows:

v ::= num(n) | ptr(b, o, f)
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An integer is denoted by num(n) where n is the value of the integer, while a
pointer is denoted by ptr(b, o, f) where b is the base address of some contiguous
memory region, o is an offset in the memory region, and f is a cast flag. The
NULL value is represented by num(0). When the cast flag of a pointer is set, it
indicates that the pointer may refer to a value of a type different from its static
type.

e ::= (typed expression)

v : t (constant)

x : t (variable)

∗ e : t (dereference)

∗ e = e : t (update)

(t)e : t (cast)

e + e : t (addition)

new〈t〉(e) : t (new)

let x : t = e in e : t (let binding)

Fig. 1. Typed expressions

2.2 Expressions and Heaps

A simple language with a type system and an operational semantics is introduced
to illustrate how pointers and integers are handled in our implementation. Ex-
pressions of the language are defined in Fig. 1. Every expression in the language
is typed. This reflects the fact that the semantics of C is defined according to
the type of an expression. For example, when a pointer p points to some ele-
ment in an array, p + 1 have the address of the next element, while (int)p +
1 evaluates to the address of the next byte. A type is either the integer type or
a pointer type:

t ::= int | t pointer

A heap H is a partial mapping from base addresses to finite vectors of values.
Pointer ptr(b, o, f) refers to the o-th element of a vector associated with b in a
heap. Each element of a heap has its type, which is defined by a heap typing
HT . A heap typing is a partial mapping from base addresses to vectors of types.

We always force heaps and heap typings to keep the invariant condition that
each element in a heap is either:

1. int(v),
2. ptr(b, o, 0) of a correct type (i.e., the heap type of the region containing the

value is HT (b) pointer), or
3. ptr(b, o, 1) of any type.
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The runtime system manipulates the cast flags so that the type of a pointer
whose cast flag is off is always trustworthy, that is, the static type of such a
pointer is correct. It only checks the type of the pointers whose cast flags are
set.

We do not have a condition that an offset of a pointer is within a valid region
since the ANSI C Standard allows a pointer which exceeds its limit by one when
the control exits out of a for- or while-statement. Such an invalid pointer per se
does not bring about undefined behavior unless it is dereferenced. We therefore
postpone the boundary check until the pointer is dereferenced.

2.3 Pointer Operations

The relation H, HT ; e : t � H ′, HT ′; e′ : t means that the expression e : t
reduces to e′ : t in one step under the heap H and the heap typing HT , and the
heap and the heap typing are updated to H ′ and HT ′ respectively. In addition,
H, HT ; e : t� fail means that the evaluation of e : t causes handled error under
H and HT . The part “H, HT ; ” may be omitted if the operations do not modify
or depend on heap states.

Cast. The cast operation is defined as follows:

H, HT ; (t) (num(n)) : t� H, HT ; num(n) : t

HT (b) = t

H, HT ; (t pointer) (ptr(b, o, f)) : t pointer� H, HT ; ptr(b, o, 0) : t pointer

HT (b) �= t

H, HT ; (t pointer) (ptr(b, o, f)) : t pointer� H, HT ; ptr(b, o, 1) : t pointer

H, HT ; (int) (ptr(b, o, f)) : int� H, HT ; ptr(b, o, 1) : int

In conventional compilers, cast operations over pointers are usually an iden-
tity function. In Fail-Safe C, however, cast operations become more complex
because our invariant conditions on pointer values refer to the static types of
pointers. A cast operator checks the dynamic type of the region pointed to by a
pointer, and if the pointer refers to a value of a wrong type, the cast flag of the
pointer is set.1

Note that when a pointer value is cast to an integer, its result is still of the
form ptr(b, o, 1), called a fat integer, so that it can be cast back to a pointer.
This is due to an ANSI C requirement: if an integer variable has enough width
(i.e. if sizeof(int) ≥ sizeof(void∗)), then the variable must be able to hold
pointer values which may be cast back to pointer types later.
1 Alternatively, we can set the cast flag without runtime type checking. In this case,

type check is performed on each memory access. We think this algorithm will have
worse performance than that shown in the main text, because cast pointers are often
used more than once, but rarely discarded without being used.
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Dereference. A pointer in C may refer to a location outside of a valid region.
So our compiler always inserts boundary checking code unless an optimizer rec-
ognizes the pointer to be inside a valid region [2,15,16]. It is impossible to make a
pointer referring to a memory region from a pointer referring to another memory
region in the ANSI-C. Consequently a pointer whose offset is outside of its re-
ferred region is always invalid. That is, when two pointers which refer to different
memory regions are subtracted, the result is defined to be “undefined”.

H, HT ; ∗(num(n)) : t� fail

o outside H(b)
H, HT ; ∗(ptr(b, o, f)) : t� fail

If the cast flag of a pointer is unset (i.e., f = 0), the value read via the pointer
is guaranteed to have the correct type by the invariant stated above. Therefore,
no type checking is needed when such a pointer is dereferenced.

o inside H(b) HT(b) = t
H, HT ; ∗(ptr(b, o, 0)) : t� H, HT ; v : t

where v is the o-th element of H(b)

On the other hand, a value read using a pointer with f = 1 may have an
incorrect type. Therefore, the type of the value to be read is checked. The cast
operator (t) shown in the rule below represents this runtime type check.

o inside H(b)
H, HT ; ∗(ptr(b, o, 1)) : t� H, HT ; (t)v : t

where v is the o-th element of H(b)

Update. Memory writing operation ∗e : t = v is defined as follows: If the
pointer operand is actually an integer, the program execution is terminated.

H, HT ; ∗(num(n)) = v � fail

When the cast flag of the pointer is not set, the runtime system checks whether
the offset is inside the boundary. If the check succeeds, the value of the second
operand is stored.

o inside H(B)
H, HT ; ∗(ptr(b, o, 0)) = v � H[(b, o) := v], HT ; v

o outside H(B)
H, HT ; ∗(ptr(b, o, 0)) = v � fail
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However, if the cast flag of the pointer operand is set, the second operand is
converted as if it is cast into the element type of the first operand.

o outside H(B)
H, HT ; ∗(ptr(b, o, 1)) = v � fail

o inside H(B)
H, HT ; ∗(ptr(b, o, 1)) = num(n)� H[(b, o) := num(n)], HT ; v

o inside H(B) HT (b′) pointer = HT (b)
H, HT ; ∗(ptr(b, o, 1)) = ptr(b′, o′, f ′)� H[(b, o) := ptr(b′, o′, 0)], HT ; v

o inside H(B) HT (b′) pointer �= HT (b)
H, HT ; ∗(ptr(b, o, 1)) = ptr(b′, o′, f ′)� H[(b, o) := ptr(b′, o′, 1)], HT ; v

2.4 Integer and Pointer Arithmetic

Addition is defined as follows:

Adding two integers:

num(n1) : int +num(n2) : int� num(n1 + n2) : int
ptr(b1, o1, f1) : int +num(n2) : int� num(b1 + o1 + n2) : int
num(n1) : int +ptr(b2, o2, f2) : int� num(n1 + b2 + o2) : int

ptr(b1, o1, f1) : int +ptr(b2, o2, f2) : int� num(b1 + o1 + b2 + o2) : int

When two integers are added, the arguments must be treated as numbers.
We define the integer interpretation of the value ptr(b, o, f) to be (b + o), which
equals the usual representation of pointer values in conventional compilers.2 Both
arguments are converted to their integer interpretations and then added. The
result will not be a pointer.3

2 We take care of this equivalence, because this is the easiest way to retain the property
that any different pointers have the different integer values, which many programs
rely on (although this is not guaranteed by ANSI-C). See Section 6.2 for some dis-
cussion.

3 Alternatively, we can keep the base value of one operand when the other operand
is statically known to be non-pointer (e.g., a constant value). By this trick our
compiler can support some non-ANSI-C hacks, e.g., (int *)((int)p & ˜3) to get
aligned pointers. In this paper, however, we does not take this into account because
we cannot define the semantic consistently, e.g., it is unclear which of two base values
should be kept when two pointer values are added. We will consider such tricks in
our future version of compiler as a kind of “dirty” compatibility features.
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Adding a pointer and an integer:

ptr(b1, o1, f1) : t pointer +num(n2) : int� ptr(b1, o1 + n2, f1) : t pointer

ptr(b1, o1, f1) : t pointer +ptr(b2, o2, f2) : int� ptr(b1, o1 + b2 + o2, f1) : t pointer

num(n1) : t pointer +num(n2) : int� num(n1 + n2) : t pointer

num(n1) : t pointer +ptr(b2, o2, f2) : int� num(n1 + b2 + o2) : t pointer

When an integer is added to a pointer, the base (b1) and the flag (f1) of the
pointer operand are kept in the result. A pointer of the integer type loses its
pointer information. All the rules of the operational semantics are listed in the
Appendix.

3 Implementation

3.1 Encoded Pointers and Integers

As described in the previous section, pointers and integers in Fail-Safe C con-
tain more information than those in usual implementations. Both pointers and
integers are represented by two machine words. We use one word for the base (b)
and another for the offset (o), and borrow the least significant bit from the base
word for the cast flag (f), assuming that base values are at least 2-byte aligned
(i.e., its least significant bit is always zero). Non-pointer values (num) are stored
in offset fields and the base fields are kept to be zero which means null (invalid)
base.

If the base of a pointer is non-zero, the value of the base must point to the
top of a valid memory block. In addition, if the cast flag of a pointer is unset, it
indicates that 1) the pointer refers to the region of a correct type, and that 2)
the offset of the pointer is correctly aligned according to the static type of the
pointer.

Figure 2 illustrates those representations. In each case, the value (base +
offset) in a fat pointer is equal to its integer interpretation. Those representations
are first proposed in our earlier papers [12,13]. In our present scheme, however,
we refine them by requiring the pointer whose cast flag is off to be aligned so
that alignment checks can also be eliminated.

Well-typed aligned pointers base 0 offset

Cast or unaligned pointers base 1 offset

Non-pointer integers 0 1 value

Fig. 2. Representations of fat pointers



140 Y. Oiwa et al.

TypeInfo

Size of block

Data

(format depends on
  type info,
  indexed with
  virtual offset)

Memory Block

Size of element

Name of the type

Type information structure

Handler Method Table:
void *(*read_word)(base, vofs);
byte (*read_byte)(base, vofs);
void (*write_word)(base, vofs, void*);
void (*write_byte)(base, vofs, byte);
void (*copyto)(vofs from, base, vofs);

Base

flag

Pointer

Handler method

read/
write

Offset

Size of block: Byte count of the data block (= max. virtual offset + 1)

Fig. 3. Structure of memory header and type information

The optimizer may reduce a fat integer to a simple, conventional represen-
tation unless doing so changes the semantics of a program. For example, the
results of arithmetic operations are always non-pointers, and if a value is used
only as an operand to integer arithmetics, it does not need to be a fat integer.
In addition, the cast flag can often be proved to be a constant and thus can be
omitted. For example, the flags of fat integers are always set and thus can be
omitted, because there is no object which may be pointed to by integers without
casting. Those properties can be used for optimization to reduce the runtime
overhead of our implementation scheme.

3.2 Memory Blocks

Every memory access operation in Fail-Safe C must ensure that the offset and
the type of a pointer are valid. To check this property at runtime, the system
must know the boundary and the type of the contents of the referred regions. The
runtime of Fail-Safe C keeps track of them by using custom memory management
routines.

A memory block is the atomic unit of memory management and boundary
detection. Each block consists of a block header and a data block. A block header
contains information on its size and its dynamic type, which we call data rep-
resentation type. Figure 3 illustrates a pointer and a memory block it refers
to.

The actual layout and representation of the data stored in a block may de-
pend on its data representation type. For example, we use a simple array struc-
ture identical to those of usual compilers for data of type double, and a packed
array of two-word encoded pointers for data of pointer types (e.g. char *).
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Virtual Offset. Although the actual representation of data in a memory block
is different from that of conventional compilers, the difference should be hidden
from user programs. (If a program can access the base field of a pointer by
tweaking the offset of a cast pointer, the safety invariants on which the whole
runtime system relies may not hold.) For this purpose, we introduce a notion
of virtual offset to handle all memory accesses by user programs. Virtual offsets
are the offsets visible to user programs. More specifically, the virtual offset of
an element e in a memory block B is the difference of e’s address from B’s base
address in conventional compilers. For example, the virtual offset of the second
element of a pointer array should be four in 32 bit architectures, even if it is
actually stored at the 8–15th bytes of the memory block.

Type Information and Cast Operation. The TypeInfo field of a memory
block is used to support cast operations. The field points to a type informa-
tion structure, which is generated one per each type appeared in the programs.
Whenever a pointer is cast to another type, the runtime compares the typeinfo of
the region referred to by the pointer, with the target type of the cast operation.
If the types do not match, the runtime set the cast flag of the resulting pointer.

The TypeInfo is also utilized when a cast pointer is used. Although the
ANSI-C standard does not support memory accesses via cast pointers, an ill-
typed memory access is sometimes safe, e.g., when reading the first byte of a
pointer. Actually, a usual C programmer is very skillful in using it and likes
to use it. We have decided to allow ill-typed memory access as far as possible
unless it collapses runtime memory structures since it appears frequently in usual
application programs.

However, it is not always safe to allow arbitrary updates to memory regions.
For example, neither overwriting the first byte of an array of pointers by an
integer, nor overwriting any byte of the regions pointed to by function pointers
is safe. Furthermore, actual operations needed for memory accesses depend on
the data representation type of memory regions. This implies that the type check
code must know the actual layout of the memory regions and must change its
behavior according to the type. We solve this problem by a method quite similar
to the so-called virtual function table in C++ implementations.

Every type information structure has a handler method table that contains
function pointers to access handler methods for read and write operations. Han-
dler methods have interfaces which are independent of actual data representa-
tions in memory blocks. If a pointer with its cast flag set is dereferenced, the
read handler method associated with the referred region is called. The method
converts the referred contents of the region to a generic fat value and returns
it. If a value is written through a cast pointer, the handler checks the runtime
type to set the cast flag appropriately. Thus using so-called “method indirec-
tions”, we can safely allow programs to access the memory via ill-typed pointers
(e.g., reading four chars through a pointer of type int *), even if we adopt
different representations for various types as a means of optimization.
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Deallocation. Liveness of memory blocks is maintained by garbage collection
to prevent the creation of dangling pointers. The library function free() does
not actually release any memory block, but marks the memory block as “already
released” by changing its size field to zero. This disallows further access to that
block, yet preventing dangling pointers from capturing another objects allocated
at the same location.

3.3 Memory Operations

Dereference of a pointer is not trivial. We need to know if the pointer refers
to a valid region and if the type of the target value is correct. The Fail-Safe C
compiler translates it to the following sequence of operations.

1. Check if the pointer is NULL (i.e., base = 0). If so, signal a runtime error.
2. If the cast flag is not set, compare the offset with the size of the memory re-

gion referred to. If it is inside the boundary, read the content in the memory.
Otherwise, signal a runtime error.

3. If the cast flag is set, get the pointer to the handler method from the type
information block of the referred region, and invoke it with the pointer as
an argument. The value returned from the handler method is converted to
the expected result type.

If a pointer is non-null, our invariants on the pointer value shown in Sec-
tion 2.2 ensures that the value in the base field always points to a correct mem-
ory block. Therefore, the data representation type and the size of the referred
block is always accessible even if the pointer has been cast.

In step 2, if the cast flag of a non-NULL pointer is not set, the invariants
ensures that the referred region has the data representation type expected by
the static type of the pointer. Thus exactly one storage format can be assumed.
However, if the cast flag is set, the actual representation of the referred block may
differ from statically expected one. In this case, the code sequence delegates the
actual memory read operation to the handler method associated to the referred
block.

Store operations to the memory are performed in almost the same sequence.
If a pointer has ever been cast, its handler method performs appropriate cast
operations to keep the invariant conditions on its stored value.

3.4 Malloc() and Other Allocation Functions

Our guarantee of type safety heavily relies on the type information associated
with each memory block. However, the interface of the malloc() function in
the standard C library does not take any type information. Thus, we have to
recover the missing information. Our approach is to “guess” the intended type by
analyzing a cast expression whose operand is the return value of the malloc()
function, and we use an additional argument for the function to pass the type
information. If the compiler fails to guess the type, the malloc() library function
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prepares a “large-enough” region, and marks that region as “type undecided”.
The type information is post-filled upon the first write access to that region,
using the write handler method mechanism described before.

We apply this approach not only to the malloc() function but to a more
general set of functions. We assume that each function returning void * need
a hint about its return type. For each, we add a hidden type parameter to its
interface. If such a “polymorphic” function returns a value which is returned from
another polymorphic function, we pass the received type hint to the subsidiary
function (see Fig. 4 for example). In this way, various malloc()-wrappers can
be supported naturally without rewriting source code.

void *xalloc(size_t size) {
void *p = malloc(size);
if (p) return p;
abort(); /* allocation failure */

}

(a) original source.

fat_pointer *xalloc(typeinfo_t __rettype , size_t size) {
fat_pointer *p = malloc(__rettype , size);
if (p) return p;
abort();

}

(b) translated program (example).

Fig. 4. An example of type hint passing

3.5 Structures and Unions

When a structure or an array of structures appears in a program, the compiler
unfolds the nested structures, and lay each element of the structure continually
(except required padding for alignments) on memory. Only one header is added
for each array of structures (see Fig. 5). The virtual offset is counted on the
basis of the virtual size of each member. The general invariants on pointers to
scalar also apply to pointers to structures: a pointer to the inside of an array of
structures has the cast flag off only if its type is a pointer to that structure type
and its offset is the multiple of the size of the structure.

In this approach, pointers to members of the structures will have the cast
flag on. Therefore, taking the address of an internal member (e.g., &(a->elem))
may have some performance penalties. We are currently implementing a pointer
range analysis which can reduce this performance penalty. Direct member ac-
cesses (e.g., a.elem) and member accesses through pointers to structures (e.g.,
a->elem) have no additional performance penalties compared with scalar ac-
cesses.
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struct S {
  double d;
  char *p[2];
} s[2];

header

type = struct S
size = 32

base offset

d

p[0]

base offset

p[1]

s[0]

base offset

d

p[0]

base offset

p[1]

s[0]

0 8 12 16 24 28 32
0 8 16 24 32 40 4812 20 36 44real offset

virtual offset

(We assume the field d never holds any pointer value.)

Fig. 5. An example of the representation of structures

Unions are decomposed to the types of the members, and operations are
converted as if there is an explicit cast operation between those types. If a
region of union type is initialized (i.e., written for the first time), the TypeInfo
field of the region is set to the type of the referenced member of union. Thus the
pointer to the union type always has cast flag on. If the value of a pointer to
a member of a union is created, the creation is treated as a cast operation: the
cast flag is cleared if the referenced member (type) matches the firstly written
member (type). If the type does not match, the handler methods associated with
the region absorb the difference between structure representations.

For more rigorous and clearer presentation, we plan to formalize the above
treatment of structures and unions.

3.6 Function Pointers and Varargs

Pointers to functions are often cast to other types and then called. For example,
programmers usually write comparator functions used in qsort as functions tak-
ing two pointers to elements, and cast them to type int (*)(void *, void *).
The qsort function calls such a function with two void * arguments, and the ar-
guments are implicitly cast to the expected type. Fail-Safe C supports idiomatic
operations of this kind.

Functions whose addresses are taken by the & operator are represented by
small constant memory blocks. Two entry points are generated by the compiler
for each function whose address is taken, and their addresses are stored in the
block. The first entry has a normal interface, and used in all cases except for
calls through cast pointers. The second entry has an interface which is common
to all functions: all arguments are packed into one array of fat values, and results
are also encoded to fat values. If a function is invoked through a cast pointer
(f = 1), the callee converts all arguments to the universal representation (fat
integers), calls the second entry, and converts the result back into the expected
type. Variable-number arguments (varargs) can also be supported using this
scheme. All optional arguments are passed as uniform argument arrays.
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3.7 Local Variables

Taking the address of a local variable could be dangerous, as it may result in a
dangling pointer if the pointer escapes from the scope of the function. Therefore,
if the address of a local variable is taken, that variable should be allocated in
a heap rather than on the stack. Appropriate allocation code is inserted by our
compiler. Alternatively, an optimizer can perform escape analysis to allocate
some of those object blocks on stack. A local variable whose address is not taken
can be treated in the standard way: they can be stored either on the stack or in
a register.

3.8 External Libraries

Since system calls and lots of C libraries do not respect our representations of
pointers and integers, those functions are implemented via wrapper interfaces.
A common sequence for such wrappers are:

1. convert scalar arguments,
2. check the boundary of array arguments with predefined constraints,
3. copy the contents of array arguments to a temporally allocated array,
4. call the original function,
5. write back any modification to the array arguments,
6. convert the return value and return it to the caller.

Steps 3. and 5. can be omitted if the internal representation of data is the same
as those of a native implementation (e.g., if the dynamic type of an argument
is double[]). Since the C-level types of library functions do not have enough
information to generate those wrappers, some manual intervention is needed.

Some functions are too complex to be implemented in the above common way.
For example, the meaning and type of the third argument of the Unix system call
ioctl() depends on the first and second arguments. So the wrapper must parse
those arguments to check the correctness of the third argument. The well-known
printf() function is another example of such a function. In addition, functions
like gets() or scanf() have possibly unlimited side effects—it may write even
over the whole memory if the input does not contain the expected delimiter
character. In those functions, boundary checks can be performed only during the
operations. Functions such as strcat() and strchr() are other examples where
wrappers cannot perform boundary checks in advance. We provide hand-written
custom wrappers for those functions—or, alternatively, we can just compile them
from their source code by using our Fail-Safe C compiler.

4 Preliminary Experiments

4.1 Preliminary Implementation

We implemented a preliminary compiler system of Fail-safe C. To estimate the
performance of our system, we conducted small-scale experiments. The compiler



146 Y. Oiwa et al.

Table 1. Result of experiments

Pentium III 1 GHz

Program Native Safe version Ratio
Fib 0.648 0.736 1.14

Int qsort 0.310 1.243 4.01
Poly qsort 0.821 3.422 4.17

UltraSPARC II 400 MHz

Program Native Safe version Ratio
Fib 1.301 1.314 1.01

Int qsort 0.467 2.075 4.44
Poly qsort 1.993 16.278 8.17

[unit: s (except for ratios)]

consists of a C-to-C source code translator, implemented in Objective Caml, and
runtime libraries implemented in the native C language. The translator reads a
program, converts representations of pointers or integers, and inserts appropriate
check code, most of which are inlined. The converted code is then passed to a
native C compiler and compiled into a machine language. In this experiment,
garbage collector is not implemented yet.

The translator removes “useless” conversion of integers between native and
two-word representations, that is, when the two round-trip conversions appear in
sequence in the resulting program. No other optimizations are performed at the
source-to-source translation stage, intended to know the worst-case estimation
of the runtime overhead of our scheme.

4.2 Test Programs

We chose the following three micro-benchmarks as test programs, since these
programs represent typical kinds of operations in usual C programs. For each
test, we compared the execution time of the translated program to that of the
program compiled directly by gcc (version 2.95.2 with -O6).

In the first test, we want to measure overheads due to fat integers (arith-
metic operations, and increase in function arguments and return values). The
second, called int-qsort, sorts an array filled with one-million random integers
in ascending order using the quick sort algorithm. This shows the overhead of
fat pointer operations, such as boundary and cast flag checks. The last, called
poly-qsort, is a polymorphic version of the above quick sort test. It takes a com-
parator function, a data swap function, and the element size of a target array as
additional parameters, thus being able to sort an array of any element type. We
use the same input data in int-qsort.

All tests were performed on two different platforms: one is an x86 PC system
with a 1 GHz Pentium-III CPU, and the other is Sun’s Ultra Enterprise 4500
with 400 MHz UltraSPARC II CPUs.
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4.3 Analysis of the Results

The results are shown in Table 1. The overhead of “fib” was between 1% and
14%. In this test, the argument and the return value of the fib function are
increased to two words, and before each addition which originally appears in
the source code, two word integers are coerced to one word by adding base
and offset. Thus, the one step calculation of fib performs three additions and
two invocation of function with a two-word argument, which were originally one
addition and two invocations with an one-word argument. It seems that the
overhead of arithmetic and function invocations introduced by two-word integer
representation is relatively small.

In int-qsort, the overhead of safe pointer operations makes the program ex-
ecution 3–3.5 times slower (including integer overhead). This result is not quite
satisfactory, but we believe that the overhead can be considered as a trade-off of
efficiency for security in certain application domains. Moreover, we expect that
implementing optimizations such as common subexpression elimination([9], for
example) and redundant boundary check elimination in our compiler system will
reduce this overhead.

Finally, the execution time of poly-qsort in Fail-Safe C is around 4–8 times
as large as the original. This is caused by 1) the additional overhead of runtime
type checking, and 2) our current poor implementation of function pointers.

We are aware that the programs used in this experiments are very small.
We will perform more extensive tests with larger programs as soon as the full
implementation is completed.

5 Related Work

There are many related research activities. They can be roughly classified into
two categories.

The focus of the first category is to detect various error states at runtime
which are common to many programs. For example, Purify [5] and Sabar-C
(CodeCenter) [8] dynamically detect memory access errors caused by array
boundary overflow. In addition, StackGuard [3] and many other recent imple-
mentations focus on preventing well-known security holes such as stack buffer
overflow used by many recent security attacks. However, all of them detect only
some common patterns of memory misuse, so complete safety is not guaranteed.
Loginov et. al. [10] proposes a method to keep pointer safety by adding a 4-bit
tag to every octet in the working memory. Backward-compatible bounds check-
ing by Jones and Kelly [7] have modified gcc compiler to insert bounds checking
code which uses a table of live objects. By their approach, it is impossible to
access a memory which is exterior of any objects (e.g., function return addresses
in the stack), but it can still reads and modifies any data in the memory by forg-
ing pointer offsets. Jones and Kelly claims their method detects pointer offset
forging, but it does not seem to work when on-memory pointers are overwritten
by integers.
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Safe-C [1] can detect all error caused by early deallocation of memory regions.
However, their paper does not mention about cast operations and, as far as we
know, supporting unlimited cast operations with Safe-C seems non-trivial, for the
same reason as that of Jones and Kelly’s work. Patil and Fischer [14] proposed
an interesting method to detect memory misuses. Their work perform boundary
checking in a separate guard process and use program slice techniques to reduce
runtime overhead. However, it has some limitation on the source and destination
types of cast operations.

Another category works on safe imperative languages that resemble to the C
language. The major examples of such languages are CCured and Cyclone. To
conform common C programs to Cyclone [4,6], it is reported to require rewrit-
ing about 10% of program code (which we consider not so small). Extremely
speaking, Java and (the type-safe portion of) C# can also be considered to be
examples of such languages, but of course porting C programs to those languages
is more burdensome.

CCured [11] supports cast over pointer types. The approach of CCured is to
analyze a whole program to split the program into two parts: one is the “type-
safe part” which does not use cast operations, and the other is the “type-unsafe
part” which can be poisoned by cast operations. However, to our knowledge,
they do not focus on source-level compatibility to existing programs, and in fact
it supports only a subset of ANSI-C semantics. We are focusing on complete
compatibility with the ANSI-C specification, and on the highest compatibility
with existing programs. The main technical difference between CCured and our
work is that our system allows to use optimized representation for data even
if it is pointed from unsafe pointers. Because “wild pointers” in CCured have
only a base field and an offset field, the representation of a wild pointer’s target
must be unique, and thus they cannot point to data in the “safe part” of a
program. This means that all objects which can be traced transitively from one
single wild pointer must adopt slow and fat representation. We suppose that
such a kind of data structures can not be neglected for many programs in the
real world, although this supposition must be verified by detailed analysis of
existing programs.

6 Current Status and Future Work

6.1 Current Status

We are currently implementing a complete version of the Fail-Safe C compiler.
We have already implemented type analysis and program flow analysis, and
are currently working on data flow analysis for removing redundant use of fat
pointers as much as possible. We will formalize the whole execution model of
Fail-Safe C and finish the implementation soon. Then, we are planning to analyze
various existing server programs to evaluate the source-level compatibility of our
compiler with conventional compilers, and also plan to measure the overhead of
our scheme as well as the possibility for further optimization.
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6.2 Future Work: Beyond ANSI-C

In this paper, we focus on how to support all the ANSI-C features safely by
using runtime checks. We are aware, however, that ANSI-C specification is too
restrictive and only few of existing programs are fully ANSI-C compliant. The
compiler which only supports fully ANSI-C compatible programs may not be
useful for general purposes. For example, ANSI C does not define the behavior
of a program which casts a pointer to an integer and take the hash index of it.
In addition, the interface of well-known Unix system calls such as getsockaddr
relies on pointer casting undefined in ANSI-C specification.

For these reasons, our Fail-Safe C system actually accepts some superset
of ANSI C language, which is still sufficient to prevent serious misbehavior of
programs. The implementation techniques we have described in this paper, espe-
cially those of memory block representations and handler methods, are carefully
designed to allow extensions beyond the ANSI-C specification which accept many
idioms common in existing Unix/C programs. For example, although the result
of integer overflow is undefined in ANSI C, our system allows it because it does
not cause any unsafe situation by itself.4 For another example, reading an array
of floats via an integer pointer, which our compiler supports by emulation using
handler methods, is “safe” in terms of security. Supporting those operations in-
crease the compatibility between Fail-Safe C and conventional implementations
of C.

However, our current support for such “beyond ANSI-C” programs is not yet
enough to accept many existing programs. For example, using the least signifi-
cant bits of pointers for the purpose of tagging, which is common in interpreters
of dynamically-typed languages, cannot be supported in our current schema, be-
cause setting the least significant bits by using integer arithmetic loses the base
addresses of pointers.

Thus, we plan to examine existing programs and implement various compat-
ibility features, some of which might be ad-hoc, to our system, provided that
they do not affect base-line safety requirements. Of course, not all C programs
can be supported on our system. Programs which really depend on the exact
structure of memory and hardware, for example operating system kernels, and
programs which generate execution code dynamically (e.g., A language runtime
with just-in-time compilers) can not be supported at all and are out of the scope
of our research. Also, as for programs which allocate memory as a bulk and
perform their own memory management inside (e.g., the Apache web server),
the protection of such memory regions would be weak (because the allocated
bulk memory would become one memory region in our implementation, but ex-
ecution code injection attack is still impossible) and severe performance penalty
4 We think that defining the behavior of integer overflow in terms of the modulus of

232 or 264 is a reasonable choice for C language implementations. Recently reported
security holes related to integer overflow are actually not caused directly by the
overflow itself but caused by wrongly implemented array boundary check which goes
wrong by integer overflow. As our system performs its own boundary check in a safe
way, this does not affect security in Fail-Safe C.
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would be caused (because almost all pointers would have cast flag set). One so-
lution for those programs is to remove such custom memory allocators and use
the allocator which our runtime provides, but it requires rewriting part of the
programs.

At the same time, we may as well give a second, more careful thought to the
support of those extended features from the viewpoint of debugging and “further
safety”. Although some programs really need such “beyond ANSI-C” features as
above, those weird operations are simply a bug in many cases. It may sometimes
(e.g., for debugging) make more sense to stop the program execution as soon as
those suspicious operations are performed before it reaches to critically dangerous
situations such as overrunning buffer boundaries or accessing forged pointers. We
also plan to consider the balance between compatibility and strength of error-
detection, and provide various options for programmers.

7 Conclusion

We proposed a method for fail-safe implementation of the ANSI C language, and
estimated its performance overhead via preliminary experiments. Even without
optimizations, the execution time is limited within 1–8 times of the original. We
are still developing a complete version of the compiler which can be used as a
drop-in replacement for conventional unsafe compilers.
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A The Semantic Rules

Notations

The meta-functions and judgments used in the rules of dynamic semantics have
the following meanings:

– Γ � e : t
The expression e is typed to t under environment Γ .

– H, HT ; e : t� H ′, HT ′; e′ : t
The expression e : t reduces to e′ : t in one step under the heap H and the
heap typing HT , and the heap and heap typing are updated to H ′ and HT ′

after reduction respectively.
The static type t does not change during evaluation, and is omitted when it
is unimportant.
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– H, HT ; e : t� fail
The reduction of the expression e : t causes a detected runtime error under
the heap H and the heap typing HT .

– H[(b, o) := v]
The heap H with the o-th element of H(b) updated to v.

– H[b := l]
The heap H with a new element l added as H(b).

– HT [b := t]
The heap typing HT with a new element t added as HT (b).

– e[v/x]
The expression e with all free occurrences of the variable x substituted with
the value v.

– v × s
A vector of length s with all elements initialized by v.

Static Semantics

We allow both integers and pointers to have fat pointer values.5

Γ � num(n) : t Γ � ptr(b, o, f) : t

Typing rules for memory operations are as follows:

Γ � e : t pointer
Γ � ∗e : t

Γ � e1 : t pointer Γ � e2 : t

Γ � ∗e1 = e2 : t

We allow cast operations between arbitrary types.

Γ � e : t′

Γ � (t) e : t

The second operand of an addition must be an integer. The first operand may
be either a pointer or integer, and the return value has the same type as the first
operand.6

Γ � e1 : int Γ � e2 : int
Γ � e1 + e2 : int

Γ � e1 : t pointer Γ � e2 : int
Γ � e1 + e2 : t pointer

The typing rules for the other expressions are obvious.

Γ � e : int
Γ � new〈t〉(e) : t pointer

Γ � e1 : t1 Γ, x : t1 � e2 : t2
Γ � let x : t1 = e1 in e2 : t2

Γ (x) = t

Γ � x : t
5 Constants which appear in a source program will never have a pointer value, but

our typing rule allows them because the transition rules cause such terms during
evaluation.

6 ANSI C allows expressions of the form “integer + pointer”, but it can be obviously
canonicalized to this form by commutativity.
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One-Step Reduction of Innermost Expressions

The rules for dereference, update, cast and additions are already shown in Sec-
tion 2.

Let

H, HT ; let x : t′ = v : t′ in e : t� H, HT ; e[v/x] : t

Allocation. The new expression allocates a new block in the heap, and updates
H and HT . The complex part of the side condition in the following rule assures
the “freshness” of the address of the allocated block, that is, if two different
pointers point to two valid locations in the heap, the integer interpretation of
the pointers must also differ. The size of the allocation is converted to a simple
integer, and the allocation fails if the requested size is not positive.

∀b′ ∈ H. ∀o′ inside H(b′). (b′ + o′) /∈ [b, b + s − 1] s > 0
H, HT ; new〈t〉(num(s))� H[b := num(0) × s], HT [b := t]; ptr(b, 0, 0) : t pointer

s ≤ 0
H, HT ; new〈t〉(num(s))� fail

H, HT ; new〈t〉(ptr(b, o, f))� H, HT ; new〈t〉(num(b + o))

One-Step Reduction of Expressions

An evaluation context C determines the order of reductions.

C ::= [] | ∗ C | (t)C | C + e | v +C | ∗ C = e | ∗ v = C

| let x = C in e | let x = v in C | new〈t〉(C)

A one-step reduction −→ is defined by using innermost reductions � and
the evaluation context. The meaning of H, HT is the same as those of innermost
reductions.

H, HT ; e� H ′, HT ′; e′

H, HT ; C[e] −→ H ′, HT ′; C[e′]
H, HT ; e� fail

H, HT ; C[e] −→ fail
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