
Checking Race Freedom via Linear Programming

Tachio Terauchi
Tohoku University

terauchi@ecei.tohoku.ac.jp

Abstract
We present a new static analysis for race freedom and race de-
tection. The analysis checks race freedom by reducing the prob-
lem to (rational) linear programming. Unlike conventionalstatic
analyses for race freedom or race detection, our analysis avoids
explicit computation of locksets and lock linearity/must-aliasness.
Our analysis can handle a variety of synchronization idiomsthat
more conventional approaches often have difficulties with,such as
thread joining, semaphores, and signals. We achieve efficiency by
utilizing modern linear programming solvers that can quickly solve
large linear programming instances. This paper reports on the for-
mal properties of the analysis and the experience with applying an
implementation to real world C programs.

Categories and Subject Descriptors F.3.2 [Logics and Meaning
of Programs]: Semantics of Programming Languages—Program
analysis; F.3.3 [Logics and Meaning of Programs]: Studies of
Program Constructs—Type structure

General Terms Algorithms, Languages, Theory, Verification

Keywords Fractional Capabilities,Linear Programming

1. Introduction
Race condition occurs when one thread writes to a memory location
that another thread is concurrently writing or reading. Race free-
dom, the absence of race conditions, is a basic building block for
developing and verifying shared-memory parallel programs, and
static analysis for race freedom and race detection has beenan ac-
tive focus of research.

In many static (or dynamic) analyses for race freedom or race
detection, the central idea is to computelocksets. A lockset is the
set of locks that are always held when accessing some memory
location (abstract memory location in static analyses) such that a
potential race is detected when the lockset is empty. It is important
that the locks in the locksets arelinear [20] (or must-alias[17]),
in the sense that each lock corresponds to a unique concrete lock.
Inferring locksets and lock linearity/must-aliasness statically can
be non-trivial, especially in the presence of non-lexically scoped
locks, that sometimes analyses make optimistic approximations.
Also, this approach is usually limited to locks and other lock like
synchronization idioms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’08, June 7–13, 2008, Tucson, Arizona, USA.
Copyright c© 2008 ACM 978-1-59593-860-2/08/06. . . $5.00.

e ::= x (variable)
| n (integer constant)
| let x = e1 in e2 (variable binding)
| if * then e1 else e2 (branch)
| while * do e (loop)
| newtid (new thread identifier)
| spawn(e1){e2} (new thread)
| join e (thread join)
| ref e (new reference cell)
| !e (reference read)
| e1 := e2 (reference write)
| newlock (new lock)
| freelock e (free lock)
| lock e (lock acquire)
| unlock e (lock release)

Figure 1. The syntax of the simple concurrent language.

This paper presents a different approach for statically checking
race freedom. The key idea is to reduce the race checking problem
to a linear programming problem such that if there exists a solution
to the constructed linear programming instance, then the program
is guaranteed to be race free. In contrast to previous approaches,
our approach only needs standard may-aliasing information, and
does not require locksets and lock linearity/must-aliasness. By uti-
lizing efficient linear programming algorithms, we achieveboth
good theoretical computational complexity (polynomial inthe size
of the program), and good practical running times, without sacrific-
ing soundness. The approach can be extended to synchronization
methods beyond simple lock-based idioms. The prototype imple-
mentation described in Section 3 handles programming idioms that
other analyses often have difficulties with, such as thread joining,
semaphores, signals, and read-write locks, as well as read only ac-
cesses and local accesses.

The rest of the paper is organized as follows. Section 2 intro-
duces the key concepts with a toy language that contains onlylocks
and thread spawning/joining, and formally proves soundness. Sec-
tion 3 discusses the implementation, LP-Race, a tool for detect-
ing races in multithreaded C programs. Section 4 discusses related
work, Section 5 discusses open issues, and Section 6 concludes.

2. Formal Aspects
Figure 1 shows a simple first order expression language (withside
effects) we use to present the key concepts of the analysis. The
language is minimized in ordered to focus on the novel aspects of
the analysis. We briefly describe the syntax. Variables are ranged
over by meta variablesx, x1, etc. The constructlet x = e1 in e2

binds the result of evaluatinge1 to x and evaluatese2. We write
e1; e2 for let x = e1 in e2 such thatx is not free ine2.
The language contains non-deterministic branches and loops. The

let x = ref 0 in
spawn(newtid){!x};
x := 1

(a)

let x = ref 0 in
let t = newtid in
spawn(t){!x};
join t;
x := 1

(b)

let x = ref 0 in
let l = newlock in
spawn(newtid){
lock l;
!x;
unlock l };

lock l;
x := 1;
unlock l

(c)

Figure 2. Simple race (a), and race avoidance via thread joining
(b) and locking (c).

F ::= t.E | F ||p | p||F
E ::= let x = E in e | ref E | E := e | v := E | !E

| lock E | unlock E | freelock E
| spawn(E){e} | join E

Figure 3. The evaluation contexts

constructspawn(e1){e2} creates a new thread to evaluatee2. Here,
e1 is a thread identifierthat can be used atjoin e to join threads.
Multiple threads are allowed to have the same thread identifier. The
language contains reference cells, that could be written and read
concurrently. Finally, the language contains syntax for creating,
deleting, acquiring, and releasing locks.

Figure 2 (a) shows a simple example program that contains a
read write race. The spawned thread may read from the reference
cell bound to the variablex while the spawner thread writes to it.
Such a race can be avoided by using locks, as shown in (c), or by
using join to wait until the other thread finishes, as shown in(b).

2.1 The Semantics

We formally define the semantics of the language. The semantics
is defined as small-step reductions from states to states. Astateis a
quadruple(ι, κ, θ, p) whereι is the set of currently allocated thread
identifiers,κ is the currentlock state, a mapping from the currently
available locks to{U, L} whereU denotes that the lock is unlocked
andL denotes that the lock is locked,θ is astoremappinglocations
to values, andp is aprogram state. Values,v, are defined as

v ::= t | l | ℓ | n

where the symbolt ranges over thread identifiers,l ranges over
locks, andℓ ranges over locations. A program state is defined as
follows.

e ::= · · · | v
p ::= t.e | p1|| p2

Here,e is extended with values. Intuitively, an (extended) expres-
sion prefixed by a thread identifier,t.e, denotes a thread with the
thread identified byt whose current program counter ise, whereas
p1 || p2 denotes a parallel composition of threads. Therefore, a
program state is a parallel composition of finitely many expres-
sions prefixed by thread identifiers. We let the parallel composition
operator|| be commutative and associative.

We define the following standard notational convention. Given
a mapping (i.e., a set-theoretic function)f , f [a 7→ b] denotes the
mapping{c 7→ f(c) | c ∈ dom(f) \ {a}} ∪ {a 7→ b}.

Figure 3 defines evaluation contexts. Figure 4 shows the reduc-
tion rules.If1, If2, Loop, andLet are straightforward. Note that
because the language is an expression language, every expression

(ι, κ, θ, F [if * then e1 else e2]) → (ι, κ, θ, F [e1])
If1

(ι, κ, θ, F [if * then e1 else e2]) → (ι, κ, θ, F [e2])
If2

(ι, κ, θ, F [while * do e)) →
(ι, κ, θ, F [if * then (e; while * do e) else 0])

Loop

(ι, κ, θ, F [let x = v in e]) → (ι, κ, θ, F [e[v/x]])
Let

t /∈ dom(ι)

(ι, κ, θ, F [newtid]) → (ι ∪ {t}, κ, θ, F [t])
NewT

(ι, κ, θ, F [spawn(t){e}]) → (ι, κ, θ, F [0] || t.e)
Spawn

(ι, κ, θ, F [join t] || t.v) → (ι, κ, θ, F [0])
Join

ℓ /∈ dom(θ)

(ι, κ, θ, F [ref v]) → (ι, κ, θ[ℓ 7→ v], F [ℓ])
Ref

(ι, κ, θ, F [!ℓ]) → (ι, κ, θ, F [θ(ℓ)])
Read

(ι, κ, θ, F [ℓ := v]) → (ι, κ, θ[ℓ 7→ v], F [0])
Write

l /∈ dom(κ)

(ι, κ, θ, F [newlock]) → (ι, κ[l 7→ U], θ, F [l])
NewL

κ = κ′ ∪ {l 7→ U} l /∈ dom(κ′)

(ι, κ, θ, F [freelock l]) → (ι, κ′, θ, F [0])
FreeL

κ(l) = U

(ι, κ, θ, F [lock l]) → (ι, κ[l 7→ L], θ, F [0])
Lck

(ι, κ, θ, F [unlock l]) → (ι, κ[l 7→ U], θ, F [0])
Ulck

Figure 4. The operational semantics.

needs to evaluate to a value if they terminate, and so we use0 as
the “unit” value for expressions that are evaluated purely for their
effects.

NewT creates a fresh thread identifier.Spawn spawns a new
thread using the given thread identifier, andJoin waits for a thread
with the thread identifier to finish.Ref allocates a new reference
cell that can be read byRead and written byWrite. NewL creates
a new lock, initialized to unlocked status. If the lock is unlocked,
Lck may acquire the lock, setting the lock status to locked.Ulck
releases the lock, setting the lock status to unlocked.FreeL deletes
a lock if the lock is unlocked1.

We write (ι1, κ1, θ1, p1) →∗ (ι2, κ2, θ2, p2) for zero or
more reduction steps from the state(ι1, κ1, θ1, p1) to the state
(ι2, κ2, θ2, p2). We now formally define race freedom.

DEFINITION 2.1 (Race Freedom).A state(ι1, κ1, θ1, p1) is said
to be race free if for any state(ι2, κ2, θ2, p2) such that
(ι1, κ1, θ1, p1) →

∗ (ι2, κ2, θ2, p2), p2 is not of the following form.

• F1[ℓ := v1] || F2[ℓ := v2]

1 This modelspthread mutex destroy in the POSIX threads library.

• F1[ℓ := v] || F2[!ℓ]

2.2 The Type System

We formulate the analysis as a type inference problem for a type
system. The type system guarantees that a typable program israce
free. The types are defined as follows.

τ ::= ref(ρ, τ) (reference cells)
| int integers
| lock(Ψ) (locks)
| tid(Ψ) (thread identifiers)

The typeref(ρ, τ) denotes a type of a reference cell pointing to
theabstract locationρ, storing a value of the typeτ . SymbolsΨ,
Ψ1, etc. range overcapability mappings. A capability mapping is a
function from abstract locations to non-negative rationalnumbers
[0,∞).

Capability mappings denote access capabilities to abstract loca-
tions. Each thread holds some amount of capabilities, representing
the access capabilities of the thread. Intuitively, a thread holding ca-
pabilitiesΨ such thatΨ(ρ) ≥ 1 is allowed to write to the abstract
locationρ, and a thread holding capabilitiesΨ such thatΨ(ρ) > 0
is allowed read from the abstract locationρ (thus the write capabil-
ity implies the read capability). The type system ensures that the to-
tal amount of capabilities summed across all live threads isat most
1 for any abstraction location. This property ensures race freedom
as there cannot be two threads, say holding capabilitiesΨ1 andΨ2

respectively, such that one thread can write to an abstract location
ρ, (i.e.,Ψ1(ρ) ≥ 1) while the other thread can read or write to it
(i.e.,Ψ2(ρ) > 0), because then the total amount of capabilities for
ρ would exceed1.

Threads maytransfer capabilities at synchronization points,
which in this simple language, is when accessing locks and spawn-
ing and joining threads. The capabilitiesΨ appearing in a lock
type lock(Ψ) represents the amount of capabilities transferred to
the thread when acquiring the lock, and transferred from when re-
leasing the lock. The capabilitiesΨ appearing in a thread identifier
type tid(Ψ) represents the amount of capabilities transferred to the
joiner thread by joining a thread with the thread identifier.

Figure 5 shows the type checking rules. The judgement are of
the formΓ, Ψ1,⊢ e : τ, Ψ2 whereΓ is a type environment mapping
variables to their types, thepre-capabilityΨ1 is the capabilities be-
fore the evaluation ofe, thepost-capabilityΨ2 is the capabilities
after the evaluation ofe, andτ is the type ofe. VAR andINT are
self-explanatory.LET, IF, WHILE make sure that capabilities are
“conserved” (i.e., not created out of thin air) through the sequen-
tial flow of computation. The inequalityΨ1 ≥ Ψ2 is defined as
∀ρ.Ψ1(ρ) ≥ Ψ2(ρ).

Also, the subtraction of capabilities is defined point-wiseas
Ψ1 − Ψ2 = λρ.Ψ1(ρ) − Ψ2(ρ). Note that because the range
of any capability mapping is restricted to non-negative rationals,
the subtraction is undefined if the result is negative. Similarly, the
addition of capabilities is defined asΨ1+Ψ2 = λρ.Ψ1(ρ)+Ψ2(ρ).

NEWT, SPAWN, and JOIN type thread creation and thread
joining. At SPAWN, the parent thread gives part of its capabilities,
Ψ3, to the newly created thread, and soΨ2 − Ψ3 amount of
capabilities are left for the continuation of the parent thread. The
capabilities that are left after the spawned thread finishes, Ψ4, or
at least a part of it (Ψ1), may be recovered by using the thread
identifier. At JOIN, the joiner thread gains capabilities from the
joined thread through the thread identifier.

REF, WRITE, and READ type reference cell accesses. As
remarked above,READ requires a positive amount of capability
for the abstract location, andWRITE requires capabilities at least
1. Because there is no notion of lockset, these rules do not assert
anything about which locks protect the reference cell. Notethat

Γ, Ψ ⊢ x : Γ(x),Ψ
VAR

Γ, Ψ ⊢ n : int, Ψ
INT

Γ, Ψ ⊢ e1 : τ1, Ψ1 Γ[x 7→ τ1], Ψ1 ⊢ e2 : τ2, Ψ2

Γ, Ψ ⊢ let x = e1 in e2 : τ2, Ψ2

LET

Γ, Ψ ⊢ e1 : τ, Ψ1 Ψ1 ≥ Ψ3

Γ, Ψ ⊢ e2 : τ, Ψ2 Ψ2 ≥ Ψ3

Γ, Ψ ⊢ if * then e1 else e2 : τ, Ψ3

IF

Γ, Ψ1 ⊢ e : τ, Ψ2 Ψ2 ≥ Ψ1 Ψ ≥ Ψ1

Γ, Ψ ⊢ while * do e : int, Ψ1

WHILE

Γ, Ψ ⊢ newtid : tid(Ψ1), Ψ
NEWT

Γ, Ψ ⊢ e1 : tid(Ψ1), Ψ2 Γ, Ψ3 ⊢ e2 : τ, Ψ4 Ψ4 ≥ Ψ1

Γ, Ψ ⊢ spawn(e1){e2} : int, Ψ2 − Ψ3

SPAWN

Γ, Ψ ⊢ e : tid(Ψ1), Ψ2

Γ, Ψ ⊢ join e : int, Ψ1 + Ψ2

JOIN

Γ, Ψ ⊢ e : τ, Ψ1

Γ, Ψ ⊢ ref e : ref(ρ, τ),Ψ1

REF

Γ, Ψ ⊢ e1 : ref(ρ, τ), Ψ1 Γ, Ψ1 ⊢ e2 : τ, Ψ2 Ψ2(ρ) ≥ 1

Γ, Ψ ⊢ e1 := e2 : int, Ψ2

WRITE

Γ, Ψ ⊢ e : ref(ρ, τ),Ψ1 Ψ1(ρ) > 0

Γ, Ψ ⊢ !e : τ, Ψ1
READ

Γ, Ψ ⊢ newlock : lock(Ψ1), Ψ − Ψ1

NEWL

Γ, Ψ ⊢ e : lock(Ψ1), Ψ2

Γ, Ψ ⊢ freelock e : int, Ψ2 + Ψ1

FREEL

Γ, Ψ ⊢ e : lock(Ψ1), Ψ2

Γ, Ψ ⊢ lock e : int, Ψ2 + Ψ1

LCK

Γ, Ψ ⊢ e : lock(Ψ1), Ψ2

Γ, Ψ ⊢ unlock e : int, Ψ2 − Ψ1

ULCK

Figure 5. The type checking rules.

READ naturally allows parallel reads (i.e., read-only accesses),
becausen threads may each hold1/n amount of capabilities for
the same abstract location and still satisfy the “at most1” property.

NEWL types lock creations. As remarked above, releasing a
lock loses the amount of capabilities associated with the lock.
Because new locks are initialized to the unlocked state, we subtract
the capabilities as if the lock is unlocked. Dually,FREEL gets
back the capability associated with the lock for destroyingthe
lock. At LCK, the thread gains the capabilities, and atULCK, the
capabilities are lost.

The simplicity of these rules may appear deceptive. Researchers
familiar with lockset-based race analysis might have expected to
see a rule requiring the locks to belinear [20] (or must-alias[17]).
A formal proof of correctness appears at the end of the section.
To see how the type system avoids linearity/must-aliasnessrequire-
ment, suppose the ruleNEWL is replaced by the following un-

sound rule.

Γ, Ψ ⊢ newlock : lock(Ψ1), Ψ
NEWL-unsound

Consider the following program.

let x = ref 0 in
let l1 = newlock in
let l2 = newlock in
spawn(newtid){
lock l1; !x; unlock l1 };

lock l2; x := 1; unlock l2

The program has a race onx because two threads concurrently
accessx (by holding different locks). However, withNEWL-
unsound, the program would type check (cf. Definition 2.3) by
assigning the typelock(Ψ) to bothl1 andl2 such thatΨ(ρ) = 1
wherex has the typeref(ρ, int). NEWL prevents such a situation
by making sure that capabilities (likeΨ above) are not created “out
of thin air”. In practice, this implies that if the type system cannot
distinguish two locks that are alive at the same time such that at
least one of them is used to guard some location, then the typesys-
tem may report a false positive because the total capabilitywould
exceed1 at one of the lock allocation point. The locality extension
discussed in Section 3.1.5 can soundly allow may-aliased live locks
to be used to guard locations in some situations.

We now define the notion of a well-typed state. We extend type
environments so that they map values to types as well as variables.
Non-integer values are typed by the following rule.

Γ, Ψ ⊢ v : Γ(v), Ψ

We define the notion of a well-typed store.

DEFINITION 2.2 (Well-typed Store).We writeΓ ⊢ θ if for each
ℓ ∈ dom(θ), Γ, 0 ⊢ θ(ℓ) : τ, 0 whereΓ(ℓ) = ref(ρ, τ) for someρ.

Here,0 is the null capability, defined as0 = λρ.0. Threads are
typed by the following rule, which says that the capabilities left at
the end of the thread is at least the capabilities obtainableby joining
the thread.

Γ, Ψ ⊢ e : Ψ1 Γ(t) = tid(Ψ2) Ψ1 ≥ Ψ2

Γ, Ψ ⊢ t.e : int, 0

Let cap(lock(Ψ)) = Ψ. Recall that any program state is a parallel
composition of finitely many threads, that is, it is of the form
t1.e1 || t2.e2 || . . . || tn.en wheren is the number of threads.

DEFINITION 2.3 (Well-typed State).Letp = t1.e1 || . . . || tn.en

such that there are no free variables inp. We writeΓ ⊢ (ι, κ, θ, p)
if there existΨ1, . . . , Ψn such that

(1) For all t ∈ ι, Γ(t) is a thread identifier type.
(2) For all l ∈ dom(κ), Γ(l) is a lock type.
(3) Γ ⊢ θ.
(4) For all i ∈ {1, . . . , n}, Γ, Ψi ⊢ ti.ei : int, 0 .
(5) LetU = {l | κ(l) = U}. Let

Ψ =
X

l∈U

cap(Γ(l)) +
n

X

i=1

Ψi

Then∀ρ.Ψ(ρ) ≤ 1

The first three conditions ensure thatι, κ, θ are well-typed. The
condition (4) states that all threads are well-typed. The condition
(5) asserts that the total amount of capabilities summed across all
threads (i.e..,

Pn

i=1
Ψi) and the amount of capabilities obtainable

by acquiring locks (i.e.,
P

l∈U cap(Γ(l))) is at most1 for any
abstract location.

Well-typedness is preserved across reductions.

LEMMA 2.4 (Preservation).SupposeΓ ⊢ (ι1, κ1, θ1, p1) and
(ι1, κ1, θ1, p1) → (ι2, κ2, θ2, p2). Then, there existsΓ′ ⊇ Γ such
thatΓ′ ⊢ (ι2, κ2, θ2, p2).

Proof: By case analysis on the reduction.2

Note that the condition (5) of Definition 2.3 implies that a well-
typed state cannot have two threads such that one thread is trying
to write to a location and the other thread is accessing the same
location. More formally,

LEMMA 2.5. Supposep is of the formF1[ℓ := v1] || F2[ℓ := v2]
or F1[ℓ := v] || F2[!ℓ]. Then for noΓ, Γ ⊢ (ι, κ, θ, p).

The soundness of the type system follows from the above lemmas.

THEOREM2.6. SupposeΓ ⊢ (ι, κ, θ, p). Then(ι, κ, θ, p) is race
free.

Proof: Straightforward from Lemma 2.4, Lemma 2.5, and Defini-
tion 2.1.2

The type system is inspired by research onfractional permis-
sions/capabilities. Fractional permissions were originally invented
to guarantee determinism of multithreaded programs in the pres-
ence of parallel reads [5]. The idea has been adopted in concurrent
separation logic [3], and has also been used to statically check de-
terminism of channel communicating processes [21].

2.2.1 Example

Consider the following example which spawns threads in a loop,
and uses locks and joins to avoid races to the shared reference cells
bound tox andy.

let x = ref 0 in let y = ref 0 in
let t = newtid in let l = newlock in
while * do
spawn(t){let z = !y in lock l; x := z; unlock l};
spawn(t){let z = !y in lock l; x := z; unlock l};
join t; join t; y := 1

Let e be the code above, and letp = t1.e. Consider the state
({t1}, ∅, ∅, p). Let Ψ1 = 0 [ρx 7→ 1][ρy 7→ 1]. Then we have
∅, Ψ1 ⊢ ({t1}, ∅, ∅, p), guaranteeing that Figure 2 (b) is race free.
The type derivation uses a type environment of the form

{ t1 7→ tid(0), x 7→ ref(ρx, int), y 7→ ref(ρy, int)
t 7→ tid(0 [ρy 7→ 0.5]), l 7→ lock(0 [ρx 7→ 1])}

to type check the main body ofe. Note that the type oft indicates
that the spawned thread gets a fraction of the capability to access
y in read-only mode, which is combined at joins so that the main
thread can write toy after the threads finish. The type ofl indicates
that the spawned threads get the full (i.e., write) capability for x by
acquiringl.

2.3 The Analysis Algorithm

Intuitively, the analysis algorithm is a type inference algorithm for
the type system presented in Section 2.2. The analysis is separated
in two phases. Informally, the first phase infers everythingabout the
type derivation except for the amount of capabilities. The second
phase uses linear programming to check if there exist an assignment
of capabilities that satisfies the capability constraints.

2.3.1 Phase 1

The first phase is mostly a standard unification-based inference,
generating capability constraints on the side. Figure 6 shows the
constraint generation rules. Here,α’s are type variables,̺’s are ab-
stract location variables, andϕ’s are capability mapping variables.
These rules are straightforward syntax-directed inference rules for
the type rules from Figure 5.

ϕ fresh

∆, ϕ ⊢ x : ∆(x), ϕ; ∅

α, ϕ fresh

∆, ϕ ⊢ n : α, ϕ; {α = int}

∆, ϕ ⊢ e1 : α1, ϕ1; C1 ∆, ϕ2 ⊢ e2 : α2, ϕ3; C2

∆, ϕ ⊢ let x = e1 in e2 : α2, ϕ3; C1 ∪ C2 ∪ {α1 = ∆(x), ϕ1 = ϕ2}

∆, ϕ ⊢ e1 : α, ϕ1; C1 ∆, ϕ′ ⊢ e2 : α′, ϕ′

1; C2

∆, ϕ ⊢ if * then e1 else e2 : α, ϕ2; C1 ∪ C2 ∪ {α = α′, ϕ = ϕ′, ϕ1 ≥ ϕ2, ϕ
′

1 ≥ ϕ2}

∆, ϕ1 ⊢ e : α, ϕ2; C α2, ϕ fresh

∆, ϕ ⊢ while * do e : α2, ϕ1; C ∪ {α2 = int, ϕ2 ≥ ϕ1, ϕ ≥ ϕ1}

α, ϕ, ϕ1 fresh

∆, ϕ ⊢ newtid : α, ϕ; {α = tid(ϕ1)}

∆, ϕ ⊢ e1 : α1, ϕ2; C1 ∆, ϕ3 ⊢ e2 : α2, ϕ4; C2 α, ϕ1, ϕ5 fresh

∆, ϕ ⊢ spawn(e1){e2} : α, ϕ5; C1 ∪ C2 ∪ {α = int, α1 = tid(ϕ1), ϕ4 ≥ ϕ1, ϕ5 = ϕ2 − ϕ3}

∆, ϕ ⊢ e : α, ϕ2; C α1, ϕ1, ϕ1 fresh

∆, ϕ ⊢ join e : α1, ϕ3; C ∪ {α = tid(ϕ1), α1 = int, ϕ3 = ϕ1 + ϕ2}

∆, ϕ ⊢ e : α, ϕ1; C α1, ̺ fresh

∆, ϕ ⊢ ref e : α1, ϕ1; C ∪ {α1 = ref(̺,α)}

∆, ϕ ⊢ e1 : α1, ϕ1; C1 ∆, ϕ′

1 ⊢ e2 : α2, ϕ2; C2 α, ̺ fresh

∆, ϕ ⊢ e1 := e2 : α, ϕ2; C1 ∪ C2 ∪ {α = int, α1 = ref(̺, α2), ϕ1 = ϕ′

1, ϕ2(̺) ≥ 1}

∆, ϕ ⊢ e : α, ϕ1; C α1, ̺ fresh

∆, ϕ ⊢ !e : α1, ϕ1; C ∪ {α = ref(̺, α1), ϕ1(̺) > 0}

α, ϕ1, ϕ
′ fresh

∆, ϕ ⊢ newlock : α, ϕ′; {α = lock(ϕ1), ϕ
′ = ϕ − ϕ1}

∆, ϕ ⊢ e : α, ϕ1; C

∆, ϕ ⊢ freelock e : α′, ϕ3; C ∪ {α′ = int, α = lock(ϕ2), ϕ3 = ϕ1 + ϕ2}

∆, ϕ ⊢ e : α, ϕ2; C α1, ϕ1, ϕ3 fresh

∆, ϕ ⊢ lock e : α1, ϕ3; C ∪ {α = lock(ϕ1), α1 = int, ϕ3 = ϕ2 + ϕ1}

∆, ϕ ⊢ e : α, ϕ2; C α1, ϕ1, ϕ3 fresh

∆, ϕ ⊢ unlock e : α1, ϕ3; C ∪ {α = lock(ϕ1), α1 = int, ϕ3 = ϕ2 − ϕ1}

Figure 6. The type inference rules.

The inference judgement,∆, ϕ1 ⊢ e : α, ϕ2; C, reads “under
the environment∆, e is inferred to have the typeα, the pre-
capabilityϕ1, the post-capabilityϕ2, with the set of constraintsC.”
For simplicity, we assume thatlet-bound variables are distinct. We
initialize ∆ to map each variable to a fresh type variable. We visit
each AST node (i.e., expression) in a bottom up manner to build
the set of constraints.

The resulting set of constraints contains three kinds of con-
straints:

(a) Type unification constraints:σ = σ′.

(b) Capability (in)equality constraints:φ = φ′ andφ ≥ φ′.

(c) Access constraints:ϕ(̺) ≥ 1 andϕ(̺) > 0.

where
σ ::= α | ref(̺, α) | int | lock(ϕ) | tid(ϕ)
φ ::= ϕ | φ + φ | φ − φ

The constraints of the kind (a) can be resolved by the standard
unification algorithm, which may create more constraints the kind
(b). In addition, it creates constraints of the form̺1 = ̺2, which
can also be resolved by the standard unification algorithm. This
leaves us with a set of constraints of the kind (b) and (c).

Because we used simple types for the sake of exposition, the
analysis algorithm may fail at this point, for example, whenthe
program uses integers as locks. We may reject the program at this
point. But it is easy to extend the system with sum types and

recursive types so that this phase never fails. We take such an
approach in the implementation described in Section 3.

2.3.2 Phase 2

The second phase of the algorithm finds a satisfying solutionto the
remaining constraints generated in the first phase so that the pro-
gram is well-typed. We reduce the problem to linear programming
as follows. Lete be the program being analyzed. Phase 1 returns
pre-capabilityϕe such that∆, ϕe ⊢ e : τ, ϕ′; C for someτ, ϕ′ and
C.

For each̺ (that is, its equivalence class obtained by the unifica-
tion in phase 1), we instantiate a linear programming problem using
the remaining constraints together with the constraintϕe(̺) ≤ 1.
More precisely, each constraint mapping variablesϕ is instanti-
ated as a linear programming variableϕ(̺), and access constraints
ϕ(̺′) ≥ 1 and ϕ(̺′) > 0 are removed from the constraints if
̺′ 6= ̺. We add constraintsϕ(̺) ≥ 0 for eachϕ to ensure that
capabilities are non-negative.

To apply linear programming algorithms that can only take
non-strict inequalities such as the one implemented in GLPK[1],
we add a fresh linear programming variableǫ and replace each
ϕ(̺) > 0 with ϕ(̺) ≥ ǫ, and set the objective function to beǫ. We
ask the linear programming solver to find a solution that maximizes
ǫ. If the solver returns a solution such thatǫ > 0, then we accept
the program as race free on the location̺. Otherwise, we report a
possible race on̺.

A write-write race is reported if the linear programming solver
cannot find any solution. A read-write race is reported if thelinear
programming solver finds a solution butǫ = 0.

2.3.3 Analysis of the Algorithm

We prove the correctness of the analysis algorithm. We use the sym-
bol η to denote aconstraint solution, which is a sorted substitu-
tion mapping type variables to types, abstract location variables to
abstract locations, and capability mapping variables to capability
mappings. A constraint solution becomes a mapping fromσ, ∆,
andφ in the obvious way.

DEFINITION 2.7. We writeη |= C (“ η solvesC”) if

• for eachσ = σ′ ∈ C, η(σ) = η(σ′).
• for eachφ ≥ φ′ ∈ C, η(φ) ≥ η(φ′).
• for eachφ = φ′ ∈ C, η(φ) = η(φ′).
• for eachφ(̺) ≥ 1 ∈ C, η(φ)(η(̺)) ≥ 1.
• for eachφ(̺) > 0 ∈ C, η(φ)(η(̺)) > 0.
• for eachφ(̺) ≤ 1 ∈ C, η(φ)(η(̺)) ≤ 1.

LEMMA 2.8. Suppose∆, ϕ1 ⊢ e : α, ϕ2; C and η |= C. Then,
η(∆), η(ϕ1) ⊢ e : η(α), η(ϕ2).

Proof: By induction on the type derivation.2

THEOREM 2.9 (Soundness).Suppose∆, ϕe ⊢ e : τ, ϕ; C and

η |=
[

̺

{ϕe(̺) ≤ 1} ∪ C

Let Γ = η(∆). Let x1, . . . , xn be the free variables ine. Let
v1, . . . , vn be such thatΓ ⊢ vi : Γ(xi) for each vi. Let ι,
κ, θ be such thatι ∪ dom(κ) ∪ dom(θ) ∪ Z ⊇ {v1, . . . , vn},
Γ ⊢ θ, and κ(l) = L for each l ∈ dom(κ). Let t /∈ ι. Then,
({t} ∪ ι, κ, θ, t.e[v1/x1] . . . [vn/xn]) is race free.

Proof: Straightforward from Lemma 2.8 and Theorem 2.6.2

We argue the theoretical computational complexity of the anal-
ysis algorithm. The instance of linear programming problemin
phase 2 can be solved in time polynomial in the size of the con-
straints by algorithms such as interior points methods. Therefore,
the complexity of the algorithm is polynomial in the time phase
1 takes to generate the capability constraints, which is polynomial
in the size of the program for our simple language. Therefore, the
complexity of the analysis algorithm is polynomial in the size of
the program.

In general, the complexity will increase if we include more com-
plex programming constructs such as data structures and higher or-
der functions if we stick with the simple types. But this can be
avoided by incorporating recursive types, as is done in the LP-Race
implementation.

3. LP-Race
We have implemented a prototype of the analysis algorithm, LP-
Race, a tool for detecting races in C programs. LP-Race uses
CIL [19] as a front-end to parse C files and handles the full-set
of C.

3.1 Handling C Features

LP-Race extends the analysis framework to handle C featuresnot
covered in the formalism detailed in Section 2. This includes structs
and unions, functions, and synchronization methods such assignal-
ing and semaphores. This section highlights some of the notable
extensions.

3.1.1 Alias Analysis

C programs use pointers and arrays extensively. To generatea sen-
sible set of abstract locations, LP-Race performs points-to analysis
and use the computed may-alias sets as abstract locations. For the
prototype implementation, we choose one-level-flow analysis [6, 7]
(with optimistic field sensitivity2), which is fast and known to pro-
duce good alias sets in practice. In principle, any may aliasanalysis
can be used to obtain abstract locations.

As remarked earlier, LP-Race uses sum types and recursive
types so that the first phase of the analysis never fails. Thisallows,
among other things, LP-Race to report all single-threaded Cpro-
grams to be race free.

3.1.2 Generic Control Flow

C contains unstructured control flow such as gotos and breaks. To
handle generic control flow, LP-Race uses CIL to generate a control
flow graph for each function, and associate a fresh capability for
each node in the control flow graph. Then, for each successor node
b of a nodea, LP-Race adds the constraintϕa ≥ ϕb whereϕa is
the capability associated witha andϕb is the capability associated
with b.

3.1.3 Functions

Because threads are typically created using function pointers, han-
dling first class functions is crucial for analyzing multithreaded C
programs. We extend the type system with function types of the
form

τ ::= · · · | (Ψpre , ~τ) → (Ψpost , τret)

where~τ are the arguments types (the notation~a denotes a se-
quence), andτret is the return type. IntuitivelyΨpre is the capa-
bility that the caller of the function must be holding, andΨpost is
the capability that can be returned to the caller when the function
returns.Ψpre is taken from the entry node of the function body,
andΨret is the solution for the capability variableϕret such that
for each return nodea in the function, LP-Race adds the constraint
ϕa ≥ ϕret whereϕa is the capability associated witha.

LP-Race type check function calls by the following rule.

Γ, Ψ ⊢ e : (Ψpre , τ1, . . . , τn) → (Ψpost , τret), Ψ1

∀i ∈ {1, . . . , n}.(Γ, Ψi ⊢ ei : τi, Ψi+1)
Ψn+1 = Ψpre + Ψkeep

Γ, Ψ ⊢ e(e1, . . . , en) : τret , Ψpost + Ψkeep

Here,Ψn+1 is the capability held by the caller just before entering
the function. Note that only a part ofΨn+1, that isΨpre , needs
to be given to the function. The remaining capabilities,Ψkeep is
kept by the caller and combined with the return capability ofthe
function. This capability “flow around” technique providescontext
sensitivity as each call site can use a differentΨkeep to avoid
conflating capabilities.

The flow around technique is inspired by similar ideas used in
Cqual [12] and Locksmith [20]. However, unlike Cqual or Lock-
smith, LP-Race does not require an effect analysis to determine
what to give to the function and what to keep, because the flow
around relation becomes just an additional set of linear equations
so that linear programming automatically discovers what toflow
around. Also, it is more general because it allows fractional amount
of capabilities to be flown around.

Polymorphic Function Signatures A polymorphic (i.e., a context
sensitive) alias analysis [8, 7, 23, 14] can be used to generate
polymorphic types for functions. That is, we can quantify function

2 The fields of a struct/union are allowed to have different types and abstract
locations.

types by abstract locations so that functions are given types of the
form

∀~ρ.(Ψpre , ~τ) → (Ψpost , τret)

This allows us to type check situations requiring parametric poly-
morphism, as in the code below.

int c, d;
pthread_t tid1, tid2;

void *f(void *p) {
*p = 1;

}
void main(void) {

pthread_create(&tid1, NULL, &f, &c);
pthread_create(&tid2, NULL, &f, &d);

}

Currently, LP-Race uses monomorphic one-level-flow analysis and
so polymorphic function signatures cannot be obtained. We leave
extending LP-Race with polymorphic function signatures for future
work.

3.1.4 Synchronization Primitives

As remarked earlier, our analysis approach is not limited tolocks.
Here, we discuss other kinds of synchronization primitivesLP-
Race handles.

Signaling Perhaps the simplest form of synchronization is to
send a signal from one thread to another thread waiting for a signal.
For example, POSIX threads programs use conditional variables
for signaling. LP-Race gives signal primitives like a conditional
variable the type of the formsig(Ψ) so that a send of a signal is
typed as follows.

Γ, Ψ ⊢ e : sig(Ψ1), Ψ2

Γ, Ψ ⊢ send e : int, Ψ2 − Ψ1

And a wait on a signal is typed as follows.

Γ, Ψ ⊢ e : sig(Ψ1), Ψ2

Γ, Ψ ⊢ wait e : int, Ψ2 + Ψ1

Semaphores Semaphores are straightforward to handle in our
framework. A semaphore is given the type of the formsem(Ψ).
A post of a semaphore is typed as follows.

Γ, Ψ ⊢ e : sem(Ψ1), Ψ2

Γ, Ψ ⊢ V e : int, Ψ2 − Ψ1

A wait on a semaphore is typed as follows.

Γ, Ψ ⊢ e : sem(Ψ1), Ψ2

Γ, Ψ ⊢ P e : int, Ψ2 + Ψ1

Unlike a lock release, a post of a semaphore is not idempotent.
For example, a race must be reported for the program in Figure7.
It is not difficult to prove that type system is sound for semaphores
with their usual semantics of a post incrementing a counter and a
wait waiting for a counter to be positive and then decrementing the
counter.3 We omit the details for space.

Read-Write Locks LP-Race models read-write locks when the
upper bound on the number of live threads are known. Read-write
locks are given types of the formrwlock(Ψr, Ψw). Figure 8 show

3 This actually implies that the type rule forunlock is somewhat conser-
vative for double unlocking. However, unlocking an alreadyunlocked lock
is often considered a bug and has undefined behavior in many thread li-
brary specifications. Issues on recursive locking and unlocking is discussed
further in Section 5.

int c;
pthread_t tid1, tid2;
sem_t sem;

void *f(void *) {
sem_wait(&sem);
c = 1;

}
void main(void) {
sem_init(&sem, 0, 0);
pthread_create(&tid1, NULL, &f, &c);
pthread_create(&tid2, NULL, &f, &c);
sem_post(&sem);
sem_post(&sem);

}

Figure 7. Double semaphore post.

Ψr ≤ Ψw/N

Γ, Ψ ⊢ newrwlock : rwlock(Ψr, Ψw), Ψ − Ψw

Γ, Ψ ⊢ e : rwlock(Ψr, Ψw), Ψ1

Γ, Ψ ⊢ rdlock e : int, Ψ1 + Ψr

Γ, Ψ ⊢ e : rwlock(Ψr, Ψw), Ψ1

Γ, Ψ ⊢ rdunlock e : int, Ψ1 − Ψr

Γ, Ψ ⊢ e : rwlock(Ψr, Ψw), Ψ1

Γ, Ψ ⊢ wrlock e : int, Ψ1 + Ψw

Γ, Ψ ⊢ e : rwlock(Ψr, Ψw), Ψ1

Γ, Ψ ⊢ wrunlock e : int, Ψ1 − Ψw

Figure 8. Read-write lock type rules.

the type rules for read-write lock acquires and releases, which are
much like those of regular locks, except thatΨw is used in write
mode andΨr is used in read-only mode.

Here, newrwlock creates a new read write lock,rdlock e
(rdunlock e) acquires (releases) the read-write locke in read-
only mode, andwrlock e (wrunlock e) acquires (releases) the
read-write locke in write mode.

In the rule fornewrwlock, N is the upper bound on the number
of threads. For instance, if a read-write lockl is used to guard
an abstract locationρ, then the type ofl would be of the form
rwlock(Ψw, Ψr) such thatΨw(ρ) ≥ 1. Obtaining a read lock
grantsΨr(ρ) ≤ Ψw(ρ)/N amount of capability, which could be
less than1, but is enough to do a read (i.e., greater than0). It is
easy to prove that this scheme is sound when the program spawns
at mostN threads.

3.1.5 Local Accesses

Consider the program shown in Figure 9. The memory region
allocated in the functionf is used only inside the function (which
include threads spawned by the function). To check that suchlocal
uses of memory regions are race free, LP-Race performs an escape
analysis to determine if an abstract location escapes through globals
or the function arguments or returns. Suppose̺ does not escape.
Then, LP-Race adds the constraintϕpre(̺) ≤ 1 whereϕpre is the
capability at the entry of the function, and removes the constraints

pthread_t tid1, tid2;
pthread_mutex_t lock;

void *g(void *q) {
pthread_mutex_lock(&lock);
*q = *q + 1;
pthread_mutex_unlock(&lock);

}
void *f(void *) {

int * p = malloc(sizeof(int));
*p = 1;
pthread_mutex_init(&lock, NULL);
pthread_create(&tid1, NULL, &g, p);
pthread_create(&tid2, NULL, &g, p);

}
void main(void) {

pthread_create(&tid1, NULL, &f, NULL);
pthread_create(&tid2, NULL, &f, NULL);

}

Figure 9. Local access example.

App Size LP Instances Warnings Time
aget 2.2 40 15 4

ctrace 2.2 24 12 5
smtprc 9.0 85 42 145
retawq 52.3 605 14 6855

Table 1. Experiment results.

of the form ϕ(̺) ≥ ϕpre(̺). This allows functions to use the
locally allocated locations in a race free manner.

3.1.6 Subtyping

LP-Race takes advantage of the one-level-flow points-to analysis
framework to do one level of subtyping (types are unified under
pointers).

We show the subtyping rules for lock types. LP-Race extends
the lock type tolock(Ψin, Ψout) such thatΨin is used atLCK and
Ψout is used atNEWL andULCK. We assertΨout ≥ Ψin, and
use the following subtyping rule.

Ψin ≥ Ψ′

in Ψout ≥ Ψ′

out

lock(Ψin, Ψout) ≤ lock(Ψ′

in, Ψ′

out)

The idea is inspired by the read-type write-type separationfor
subtyping reference cells. We type other synchronization primitives
similarly. This has the effect of reducing false-aliasing of locks.

3.2 Experiments

LP-Race is implemented in OCaml. LP-Race uses CIL 1.3.6 [19]
as the frontend parser, and GLPK 4.2.1 [1] as the backend linear
programming solver. In general, any tool capable of solvinga
system of rational linear inequalities can be used as the backend.
The code was compiled using OCaml 3.08 and gcc 3.4.4. The
experiments were run on a PC with a Intel T7200 2GHZ processor
with 2GB of RAM, running Cygwin inside Windows XP.

We ran LP-Race on several POSIX threads applications. We
chose three benchmarks from the Locksmith paper [20], aget,
ctrace and smtprc, mainly to check that the results from LP-Race
agree with their findings, and also tried a larger application, retawq,
a multithreaded webserver, to see how LP-Race scales to larger
code base. Table 1 summarizes the results. The size column isthe
number of kilo lines of code after CIL merges the preprocessed

application files and filters out duplicate or unused definitions. The
time column is in seconds. The warnings column shows the number
of possible races reported.

It is worth noting that the warning counts are sensitive to the
underlying alias analysis. LP-Race currently distinguishes possible
races by alias sets only (after removing duplicates), therefore, for
instance, if we had used a very coarse alias analysis that returns
a single alias set containing all locations, then the analysis would
always report at most one warning. Also, with this method, even if
there are multiple races on the same alias set, only one warning is
reported. Section 5 discusses issues regarding error reporting.

We reviewed the error reports. For aget, LP-Race was able to de-
tect the races reported in [20]. For ctrace, LP-Race detectsthe two
races reported in [20]. In addition, it reports ten false positives. Ex-
amining these false positives, as pointed out in [20], some appeared
to be due to semaphores. While LP-Race can handle standard
semaphore uses, ctrace contains a manual read-write semaphore
implemented with a counter, which LP-Race is not able to handle.
Replacing this manual read-write semaphore with LP-Race’sread-
write lock eliminated four false positives. The other falsepositives
are related to the unused lock problem discussed in Section 5, and
accesses to a global array indexed by thread identifiers. We also ob-
served that the handling of join was necessary for eliminating one
false positive.

For smtprc, many of the warnings are false read-write races
reported due to loops spawning unbounded number of threads (cf.
Section 5). Manually unrolling the loops twice eliminates 19 false
positives. The other false positives are due to accesses to aglobal
data structure indexed by thread identifiers. We noticed that smtprc
dangerously releases a lock in a loop, which, according to the
POSIX threads specification, has undefined behavior. Such lock
releases could lead to a race if a thread can release a lock that other
threads are holding (though this is implementation dependent). LP-
Race correctly reports warnings for such situations thanksto the
conservative handling of recursive unlocks. For retawq, many of
the warnings appear to be false positives caused by false aliasing of
locations returned by memory allocation wrapper functions. One
warning appears to be a race, though seemingly benign.

3.2.1 Discussion

The backend of LP-Race, which dominates the running time, isem-
barrassingly parallel. The backend solves one linear programming
instance per an alias set containing a possibly thread shared loca-
tion. The third column of Table 1 shows the number of instances
created, after some filtering to remove redundant instances. Each
linear programming instance is nearly the same size for the same
code base and can be solved independently of the others. Therefore,
by solving each instance in parallel, in theory, we should get near
N times speedup with N parallel processors for applicationswith
more than N alias sets.

Also, because the running times are dominated by the backend,
the choice of the linear programming solver may affect the perfor-
mance. We chose GLPK mostly out of convenience4, but GLPK
is by no means the fastest linear programming solver. Running
times often differ by several orders of magnitude across different
solvers [16]. We leave experimenting with other linear program-
ming solvers for future work.

4. Related Work
Many static race analyses focus on lexically-scoped locking pat-
terns such as thesynchronized blocks in Java. The essence of
lexically-scoped locking patterns can be cleanly capturedas a

4 We based the implementation on a partial OCaml interface forGLPK [15].

lockset-based analysis based on the classical type and effect sys-
tem. Early systems [9, 10, 13, 4] required the users to supplyan-
notations, whereas more recent work [2, 11, 18, 17] infer locksets
automatically by utilizing powerful reasoning techniquessuch as
binary decision diagrams and SAT solvers.

A lockset-based analysis for non-lexically scoped locks issaid
to require “flow-sensitivity” to infer locks held at each program
point [20, 22], and considered more difficult than that for lexically
scoped locks. Like lockset-based analyses for scoped locks, these
analyses are usually limited to locks and lock-like synchronization
patterns. An issue with handling non-lock synchronizationpatterns
like semaphores and signals is that it is ok for another thread to
“release” a semaphore that another thread has “acquired”, while
such a behavior is uncommon for locks.5

Also, unlike that for scoped locks that has a straightforward
formalization as a type and effect system, a lockset-based analysis
for non-scoped locks are rarely formalized and proven sound.6 This
paper gives a simple formalization of non-scoped locks (as well as
other synchronization patterns) in terms of capabilities.

Locksmith [20] is a lockset-based analysis that introducesthe
notion of correlation analysisto reason about non-scoped locks
used in a context sensitive manner. Relay [22] is a lockset-based
analysis for non-scoped locks that has been applied to a muchlarger
code base (millions of lines) than the applications we analyzed
with LP-Race. To scale to such a large code base, they parallelize
the analysis to utilize a cluster of high performance machines.
As remarked in Section 3.2, LP-Race should also benefit from
parallel computation. We leave implementing parallelizedLP-Race
for future work.

Both Relay and Locksmith employ a number of techniques to
trade unlikely sources of unsoundness for precision or speed, such
as optimistic thread-sharedness assumptions and using C types to
refine aliasing. Such techniques are important for analyzing large-
scale real-world programs. Many of such techniques affect only the
“may alias” part of the analysis, and therefore, they shouldalso be
adaptable to our framework.

The technique to reduce a static analysis problem to linear pro-
gramming may be of independent interest. The approach was in-
spired by the idea of fractional permissions/capabilities, originally
proposed by Boyland [5] as a way to allow parallel reads while
guaranteeing determinism. The idea has been used to reason about
concurrent reads in separation logic [3], and also to check deter-
minism of channel communicating processes [21]. This paperis
the first application of the fractional permissions/capabilities idea
to real world programs.

5. Open Issues
We identify the limitations of the current analysis system.We
address each issue and describe possible remedies.

The analysis does not handle recursive locks because it assumes
that a thread blocks when trying to acquire a lock that is already
held, regardless of who holds the lock. Therefore. If this condi-
tion is violated, it is easy to construct a program that gainsan in-
valid amount of capabilities (i.e., greater than1) by acquiring the
same lock multiple times. Effect-based approaches [9, 10, 13, 4]
can naturally express Java-style lexically-scoped recursive locks.
Effectively handling non-scoped recursive locks is an openissue
[22].

One limitation that seems unique to our analysis (and possibly
to others based on the permissions/capabilities idea) occurs when

5 In fact, many threads libraries, including POSIX threads, condemns such
idioms as erroneous.
6 The Locksmith paper [20] formalizes by assuming that each access is
annotated with the held locks.

a program spawns an unbounded number of live threads in a loop.
This implies that either the created threads start with no capability,
or the loop head has an infinite amount of capabilities (whichis
invalid for any program locations that are reachable). In practice,
this makes the analysis report some read-only access as a possible
read-write race. For example, a false race is detected in theprogram
below.

let x = ref 0 in
while * do
spawn(newtid){ !x }

Currently, we unroll thread allocating loops manually whenLP-
Race reports a false read-write race.

A related issue is locks created early. The key argument used
to prove soundness is to interpret locks and other lock-likeprim-
itives to be “storing” the capabilities in their unlocked state (cf.
Definition 2.3). Therefore, once a lock is created, the capabilities
stored in the lock can prevent a thread from accessing the loca-
tions guarded by the lock even when there is no contention on the
locations. In particular, this makes some thread-local accesses un-
typable, as shown below.

let x = ref 0 in
let l = newlock in
x := 1;
spawn(newtid){ lock l; x := 0; unlock l}
spawn(newtid){ lock l; x := 0; unlock l}

Here, l must hold the full (i.e.,1) capability for x so that the
spawned threads can write tox. But this implies thatx := 1 is
not typable becausel is at an unlocked state at that point. A similar
issue appears when accesses are made when the lock is no longer
used (but before the lock is explicitly destroyed). Currently, we fix
such situations by manually moving lock allocation/deletion points
or by inserting a lock acquire/release pair around the unguarded
access. A more principled remedy is to infer program points that
can acquire a lock without contention, and allow such program
points to use the capabilities stored in the lock without actually
acquiring the lock.

Another issue with our approach is error reporting. Because
the analysis does not compute locksets, LP-Race does not give a
feedback containing held locks at each program location when it
detects a possible race. This can make analyzing false positives
somewhat inconvenient. Currently, LP-Race reports the program
location and the kind (i.e., a read or a write) of accesses made to
the abstract location that failed the check, and whether theerror is
a possible write-write race or is a read-write race. How to concisely
represent thereasonfor the race (or a false positive) is an important
issue in race analysis. One approach that may work well with
LP-Race is an interactive debugging interface in which the user
specifies a subset of reported accesses as race free so that LP-Race
re-solves the linear programing instance for that locationwith the
reduced accesses. With such a strategy, we can avoid re-running the
entire analysis from scratch.

6. Conclusions
We have presented a new static analysis for race freedom thatre-
duces the problem to linear programming. The analysis is quite
different from more traditional analyses and does not require com-
putation of locksets nor lock linearity/must-aliasness. The analy-
sis has a straightforward formalization as a permissions/capabilities
system, and enjoys benefits such as being able to handle a variety
of synchronization primitives. The preliminary experiment reports
encouraging results analyzing small to medium size multithreaded
C programs.

References
[1] GNU Linear Programming Kit.

http://www.gnu.org/software/glpk/glpk.html.

[2] R. Agarwal and S. D. Stoller. Type inference for parameterized
race-free Java. InVerification, Model Checking, and Abstract Inter-
pretation, 5th International Conference, VMCAI 2004, Proceedings,
pages 149–160.

[3] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson.
Permission accounting in separation logic. InProceedings of the
32nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 259–270, Long Beach, California,
Jan. 2005.

[4] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership
types for safe region-based memory management in real-timeJava. In
Proceedings of the 2003 ACM SIGPLAN Conference on Programming
Language Design and Implementation, San Diego, California, June
2003.

[5] J. Boyland. Checking interference with fractional permissions. In
Static Analysis, Tenth International Symposium, pages 55–72, San
Diego, CA, June 2003.

[6] M. Das. Unification-based pointer analysis with directional
assignments. InProceedings of the 2000 ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 35–
46, Vancouver B.C., Canada, June 2000.

[7] M. Das, B. Liblit, M. Fähndrich, and J. Rehof. Estimating the impact
of scalable pointer analysis on optimization. InStatic Analysis, Eighth
International Symposium, pages 260–278, Paris, France, July 2001.

[8] M. Fähndrich, J. Rehof, and M. Das. Scalable context-sensitive flow
analysis using instantiation constraints. InProceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 253–263, Vancouver B.C., Canada, June 2000.

[9] C. Flanagan and M. Abadi. Types for safe locking. In D. Swierstra,
editor,8th European Symposium on Programming, volume 1576 of
Lecture Notes in Computer Science, pages 91–108, Amsterdam, The
Netherlands, Mar. 1999. Springer-Verlag.

[10] C. Flanagan and S. N. Freund. Type-based race detectionfor Java. In
Proceedings of the 2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 219–232, Vancouver
B.C., Canada, June 2000.

[11] C. Flanagan and S. N. Freund. Type inference against races. InStatic
Analysis, Eleventh International Symposium, pages 116–132, Verona,
Italy, August 2004.

[12] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitivetype
qualifiers. InProceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation, Berlin,
Germany, June 2002.

[13] D. Grossman. Type-safe multithreading in Cyclone. InProceedings
of the 2003 ACM Workshop on Types in Language Design and
Implementation, pages 13–25, New Orleans, Louisiana, Jan. 2003.

[14] J. Kodumal and A. Aiken. The set constraint/cfl reachability
connection in practice. InProceedings of the 2004 ACM SIGPLAN
Conference on Programming Language Design and Implementation,
pages 207–218, Washington DC, USA, June 2004.

[15] S. Mimram. ocaml-glpk. http://ocaml-glpk.sourceforge.net/.

[16] H. Mittelmann. Benchmarks for optimization software.
http://plato.asu.edu/bench.html.

[17] M. Naik and A. Aiken. Conditional must not aliasing for static
race detection. InProceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
327–338, Nice, France, Jan. 2007.

[18] M. Naik, A. Aiken, and J. Whaley. Effective static race detection
for Java. InProceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 308–319,
Ottawa, Ontario, Canada, June 2006.

[19] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation of c
programs. InCompiler Construction, 11th International Conference,
pages 213–228, Grenoble, France, Apr. 2002.

[20] P. Pratikakis, J. S. Foster, and M. W. Hicks. LOCKSMITH:context-
sensitive correlation analysis for race detection. InProceedings of the
2006 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 320–331, Ottawa, Ontario, Canada, June
2006.

[21] T. Terauchi and A. Aiken. A capability calculus for concurrency and
determinism. InConcurrency Theory, 17th International Conference,
volume 4137, pages 218–232, Bonn, Germany, Aug. 2006.

[22] J. W. Voung, R. Jhala, and S. Lerner. RELAY: static race detection on
millions of lines of code. InProceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 205–214, Dubrovnik, Croatia, Sept. 2007.

[23] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InProceedings of the
2004 ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 131–144, Washington DC, USA, June
2004.

