
To appear in EPTCS.

Quantitative Information Flow as Safety and Liveness
Hyperproperties∗

Hirotoshi Yasuoka
Tohoku University

Sendai, Japan

yasuoka@kb.ecei.tohoku.ac.jp

Tachio Terauchi
Nagoya University

Nagoya, Japan

terauchi@is.nagoya-u.ac.jp

We employ Clarkson and Schneider’s “hyperproperties” to classify various verification problems
of quantitative information flow. The results of this paper unify and extend the previous results
on the hardness of checking and inferring quantitative information flow. In particular, we identify
a subclass of liveness hyperproperties, which we call “k-observable hyperproperties”, that can be
checked relative to a reachability oracle via self composition.

1 Introduction

We consider programs containing high security inputs and low security outputs. Informally, the quan-
titative information flow problem concerns the amount of information that an attacker can learn about
the high security input by executing the program and observing the low security output. The problem
is motivated by applications in information security. We refer to the classic by Denning [13] for an
overview.

In essence, quantitative information flow measureshowsecure, or insecure, a program (or a part of a
program –e.g., a variable–) is. Thus, unlike non-interference [11, 15], that only tells whether a program
is completely secure or not completely secure, a definition of quantitative information flow must be able
to distinguish two programs that are both interfering but have different levels of security.

For example, consider the programsM1 ≡ if H = g then O := 0 else O := 1 andM2 ≡ O := H.
In both programs,H is a high security input andO is a low security output. ViewingH as a password,
M1 is a prototypical login program that checks if the guessg matches the password. By executingM1,
an attacker only learns whetherH is equal tog, whereas she would be able to learn the entire content
of H by executingM2. Hence, a reasonable definition of quantitative information flow should assign a
higher quantity toM2 than toM1, whereas non-interference would merely say thatM1 andM2 are both
interfering, assuming that there are more than one possible value ofH.

Researchers have attempted to formalize the definition of quantitative information flow by appealing
to information theory. This has resulted in definitions based on the Shannon entropy [13, 8, 21], the min
entropy [28], and the guessing entropy [17, 3]. All of these definitions map a program (or a part of a
program) onto a non-negative real number, that is, they define a functionX such that given a programM,
X (M) is a non-negative real number. (Concretely,X is SE[µ] for the Shannon-entropy-based definition
with the distributionµ, ME[µ] for the min-entropy-based definition with the distributionµ, andGE[µ]
for the guessing-entropy-based definition with the distributionµ.)

In a previous work [32, 31], we have proved a number of hardness results on checking and infer-
ring quantitative information flow (QIF) according to these definitions. A key concept used to connect

∗This work was supported by MEXT KAKENHI 23700026, 22300005, 23220001, and Global COE Program “CERIES.”

2 Quantitative Information Flow as Safety and Liveness Hyperproperties

the hardness results to QIF verification problems was the notion ofk-safety, which is an instance in a
collection of the class of program properties calledhyperproperties[10]. In this paper, we make the
connection explicit by providing a fine-grained classification of QIF problems, utilizing the full range of
hyperproperties. This has a number of benefits, summarized below.

1.) A unified view on the hardness results of QIF problems.

2.) New insights into hyperproperties themselves.

3.) A straightforward derivation of some complexity theoretic results.

Regarding 1.), we focus on two types of QIF problems, an upper-bounding problem that checks if QIF
of a program is bounded above by the given number, and a lower-bounding problem that checks if QIF is
bounded below by the given number. Then, for each QIF definitionsSE, GE, ME, we classify whether or
not they are safety hyperproperty,k-safety hyperproperty, liveness hyperproperty, ork-observable hyper-
property (and give a bound onk for k-safe/k-observable). Safety hyperproperty,k-safety hyperproperty,
liveness hyperproperty, and observable hyperproperty are classes of hyperproperties defined by Clarkson
and Schneider [10]. In this paper, we identify new classes of hyperproperties,k-observable hyperprop-
erty, that is useful for classifying QIF problems.k-observable hyperproperty is a subclass of observable
hyperproperties, and observable hyperproperty is a subclass of liveness hyperproperties.1 We focus on
the case the input distribution is uniform, that is,µ = U , as showing the hardness for a specific case
amounts to showing the hardness for the general case. Also, checking and inferring QIF under the uni-
formly distributed inputs has received much attention [16, 3, 18, 7, 21, 8], and so, the hardness for the
uniform case is itself of research interest.2

Regarding 2.), we show that thek-observable subset of the observable hyperproperties is amenable
to verification via self composition [4, 12, 29, 25, 30], much likek-safety hyperproperties, and identify
which QIF problems belong to that family. We also show that the hardest of the QIF problems (but nev-
ertheless one of the most popular) can only be classified as a general liveness hyperproperty, suggesting
that liveness hyperproperty is a quite permissive class of hyperproperties.

Regarding 3.), we show that many complexity theoretic results for QIF problems of loop-free boolean
programs can be derived from their hyperproperties classifications [32, 31]. We also prove new com-
plexity theoretic results, including the (implicit state) complexity results for loop-ful boolean programs,
complementing the recently proved explicit state complexity results [6].

Table 1 and Table 2 summarize the hyperproperties classifications and computational complexities
of upper/lower-bounding problems. We abbreviate lower-bounding problem, upper-bounding problem,
and boolean programs to LBP, UBP, and BP, respectively. The “constant bound” rows correspond to
bounding problems with a constant bound (whereas the plain bounding problems take the bound as an
input).

The proofs omitted from the main body of the paper appear in the Appendix.

2 Preliminaries

2.1 Quantitative Information Flow

We introduce the information theoretic definitions of QIF that have been proposed in literature. First,
we review the notion of theShannon entropy[27], H [µ](X), which is the average of the information

1Technically, only non-empty observable hyperproperties are liveness hyperproperties.
2In fact, computing QIF under other input distributions can sometimes be reduced to this case [2]. See also Section 5.3.

H. Yasuoka & T. Terauchi 3

SE[U] ME[U] GE[U]
LBP Liveness Liveness Liveness
UBP Safety Safety Safety

LBP constant bound Liveness k-observable k-observable
UBP constant bound Safety k-safety [31] k-safety [31]

Table 1: A summary of hyperproperty classifications

SE[U] ME[U] GE[U]
LBP for BP PSPACE-hard PSPACE-complete PSPACE-complete
UBP for BP PSPACE-hard PSPACE-complete PSPACE-complete

LBP for loop-free BP PP-hard PP-hard PP-hard
UBP for loop-free BP PP-hard [31] PP-hard [31] PP-hard [31]

LBP for loop-free BP, constant bound Unknown NP-complete NP-complete
UBP for loop-free BP, constant bound Unknown coNP-complete coNP-complete

Table 2: A summary of computational complexities

content, and intuitively, denotes the uncertainty of the random variableX. And, we review the notion of
theconditional entropy, H [µ](Y|Z), which denotes the uncertainty ofY after knowingZ.
Definition 2.1 (Shannon Entropy and Conditional Entropy) Let X be a random variable with sample
spaceX and µ be a probability distribution associated with X (we writeµ explicitly for clarity). The
Shannon entropy of X is defined as

H [µ](X) = ∑
x∈X

µ(X = x) log
1

µ(X = x)

Let Y and Z be random variables with sample space Y and Z, respectively, andµ ′ be a probability
distribution associated with Y and Z. Then, the conditional entropy of Y given Z is defined as

H [µ](Y|Z) = ∑
z∈Z

µ(Z = z)H [µ](Y|Z = z)

where
H [µ](Y|Z = z) = ∑y∈Y µ(Y = y|Z = Z) log 1

µ(Y=y|Z=z)

µ(Y = y|Z = z) = µ(Y=y,Z=z)
µ(Z=z)

(The logarithm is in base 2.)

Let M be a program that takes a high security inputH, and gives the low security output traceO.
For simplicity, we restrict to programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples or lists). Also, for the
purpose of the paper, unobservable (i.e., high security) output traces are irrelevant, and so we assume
that the only program output is the low security output trace. Letµ be a probability distribution over the
values ofH. Then, the semantics ofM can be defined by the following probability equation. (We restrict
to deterministic programs in this paper.)

µ(O = o) = ∑
h∈H
M(h) = o

µ(H = h)

4 Quantitative Information Flow as Safety and Liveness Hyperproperties

Here,M(h) denotes the infinite low security output trace of the programM given a inputh, andM(h) = o
denotes the output trace ofM given h that is equivalent too. In this paper, we adopt the termination-
insensitive security observation model, and let the outputso ando′ be equivalent iff∀i ∈ω.oi =⊥∨o′i =
⊥∨oi = o′i whereoandoi denotes theith element ofo, and⊥ is the special symbol denoting termination.3

In this paper, programs are represented by sets of traces, and traces are represented by lists of stores
of programs. More formally,

M(h) is equal too iff σ0;σ1; . . . ;σi ; . . . ∈M
whereσ0(H) = h and∀i ≥ 1.σi(O) = oi (oi denotes the ith element ofo)

Here,σ denotes a store that maps variables to values. Because we restrict all programs to determin-
istic programs, every programM satisfies the following condition: For any trace−→σ ,−→σ ′ ∈ M, we have
σ0(H) = σ ′

0(H)⇒−→
σ =−→

σ ′ whereσ0 andσ ′
0 denote the first elements of−→σ and−→σ ′, respectively. Now,

we are ready to define Shannon-entropy-based quantitative information flow.

Definition 2.2 (Shannon-Entropy-based QIF [13, 8, 21])Let M be a program with a high security in-
put H, and a low security output trace O. Letµ be a distribution over H. Then, the Shannon-entropy-
based quantitative information flow is defined

SE[µ](M) = H [µ](H)−H [µ](H|O)

Intuitively, H [µ](H) denotes the initial uncertainty andH [µ](H|O) denotes the remaining uncertainty
after knowing the low security output trace. (For space, the paper focuses on the low-security-input free
definitions of QIF.)

As an example, consider the programsM1 andM2 from Section 1. For concreteness, assume that
g is the value 01 andH ranges over the space{00,01,10,11}. Let U be the uniform distribution over
{00,01,10,11}, that is,U(h) = 1/4 for all h∈ {00,01,10,11}. The results are as follows.

SE[U](M1) = H [U](H)−H [U](H|O) = log4− 3
4 log3≈ .81128

SE[U](M2) = H [U](H)−H [U](H|O) = log4− log1= 2

Consequently, we have thatSE[U](M1)≤ SE[U](M2), butSE[U](M2) 6≤ SE[U](M1). That is,M1 is more
secure thanM2 (according to the Shannon-entropy based definition with uniformly distributed inputs),
which agrees with our intuition.

Next, we introduce themin entropy, which has recently been suggested as an alternative measure for
quantitative information flow [28].

Definition 2.3 (Min Entropy) Let X and Y be random variables, andµ be an associated probability
distribution. Then, the min entropy of X is defined

H∞[µ](X) = log
1

V [µ](X)

and the conditional min entropy of X given Y is defined

H∞[µ](X|Y) = log
1

V [µ](X|Y)

3Here, we adopt the trace based QIF formalization of [22].

H. Yasuoka & T. Terauchi 5

where
V [µ](X) = maxx∈X µ(X = x)

V [µ](X|Y = y) = maxx∈X µ(X = x|Y = y)
V [µ](X|Y) = ∑y∈Y µ(Y = y)V [µ](X|Y = y)

Intuitively, V [µ](X) represents the highest probability that an attacker guessesX in a single try. We
now define the min-entropy-based definition of QIF.

Definition 2.4 (Min-Entropy-based QIF [28]) Let M be a program with a high security input H, and
a low security output trace O. Letµ be a distribution over H. Then, the min-entropy-based quantitative
information flow is defined

ME[µ](M) = H∞[µ](H)−H∞[µ](H|O)

Computing the min-entropy based quantitative information flow for our running example programs
M1 andM2 from Section 1 with the uniform distribution, we obtain,

ME[U](M1) = H∞[U](H)−H∞[U](H|O) = log4− log2= 1

ME[U](M2) = H∞[U](H)−H∞[U](H|O) = log4− log1= 2

Again, we have thatME[U](M1) ≤ ME[U](M2) andME[U](M2) 6≤ ME[U](M1), and soM2 is deemed
less secure thanM1.

The third definition of quantitative information flow treated in this paper is the one based on the
guessing entropy [23], that has also recently been proposed in literature [17, 3].
Definition 2.5 (Guessing Entropy) Let X and Y be random variables, andµ be an associated proba-
bility distribution. Then, the guessing entropy of X is defined

G [µ](X) = ∑
1≤i≤m

i×µ(X = xi)

where{x1,x2, . . . ,xm}= X and∀i, j.i ≤ j ⇒ µ(X = xi)≥ µ(X = x j).
The conditional guessing entropy of X given Y is defined

G [µ](X|Y) = ∑
y∈Y

µ(Y = y) ∑
1≤i≤m

i×µ(X = xi |Y = y)

where{x1,x2, . . . ,xm}= X and∀i, j.i ≤ j ⇒ µ(X = xi |Y = y)≥ µ(X = x j |Y = y).
Intuitively, G [µ](X) represents the average number of times required for the attacker to guess the

value ofX. We now define the guessing-entropy-based quantitative information flow.

Definition 2.6 (Guessing-Entropy-based QIF [17, 3])Let M be a program with a high security input
H, and a low security output trace O. Letµ be a distribution over H. Then, the guessing-entropy-based
quantitative information flow is defined

GE[µ](M) = G [µ](H)−G [µ](H|O)

We testGEon the running example from Section 1 by calculating the quantities for the programsM1

andM2 with the uniform distribution.

GE[U](M1) = G [U](H)−G [U](H|O) = 5
2−

7
4 = 0.75

GE[U](M2) = G [U](H)−G [U](H|O) = 5
2−1 = 1.5

Therefore, we again have thatGE[U](M1) ≤ GE[U](M2) and GE[U](M2) 6≤ GE[U](M1), and soM2

is considered less secure thanM1, even with the guessing-entropy based definition with the uniform
distribution.

6 Quantitative Information Flow as Safety and Liveness Hyperproperties

2.2 Bounding Problems

We introduce the bounding problems of quantitative information flow that we classify. First, we define
the QIF upper-bounding problems. Upper-bounding problems are defined as follows: Given a program
M and a rational numberq, decide if the information flow ofM is less than or equal toq.

USE= {(M,q) | SE[U](M)≤ q}
UME = {(M,q) |ME[U](M)≤ q}
UGE = {(M,q) |GE[U](M)≤ q}

Recall thatU denotes the uniform distribution.
Next, we define lower-bounding problems. Lower-bounding problems are defined as follows: Given

a programM and a rational numberq, decide if the information flow ofM is greater thanq.

LSE= {(M,q) | SE[U](M) > q}
LME = {(M,q) |ME[U](M) > q}
LGE = {(M,q) |GE[U](M) > q}

2.3 Non Interference

We recall the notion of non-interference, which, intuitively, says that the program leaks no information.
Definition 2.7 (Non-intereference [11, 15])A program M is said to be non-interfering iff for any h,h′ ∈
H, M(h) = M(h′).

Non-interference is known to be a special case of bounding problems that tests against 0.
Theorem 2.8 ([7, 31]) 1.) M is non-interfering iff(M,0) ∈ USE. 2.) M is non-interfering iff(M,0) ∈
UME. 3.) M is non-interfering iff(M,0) ∈UGE.

3 Liveness Hyperproperties

Clarkson and Schneider have proposed the notion of hyperproperties [10].
Definition 3.1 (Hyperproperties [10]) We say that P is a hyperproperty if P⊆P(Ψinf) whereΨinf is
the set of all infinite traces, andP(X) denote the powerset of X.
Note that hyperproperties are sets of trace sets. As such, they are more suitable for classifying informa-
tion properties than the classical trace properties which are sets of traces. For example, non-interference
is not a trace property but a hyperproperty.

Clarkson and Schneider have identified a subclass of hyperproperties, called liveness hyperproperties,
as a generalization of liveness properties. Intuitively, a liveness hyperproperty is a property that can not
be refuted by a finite set of finite traces. That is, ifP is a liveness hyperproperty, then for any finite set of
finite tracesT, there exists a set of traces that containsT and satisfiesP. Formally, letObsbe the set of
finite sets of finite traces, andPropbe the set of sets of infinite traces (i.e., hyperproperties), that is,

Obs = Pfin(Ψfin)
Prop = P(Ψinf)

(Here,Pfin(X) denotes the finite subsets ofX, Ψfin denotes the set of finite traces.) Let≤ be the
relation overObs×Propsuch that

S≤ T iff ∀t ∈ S.∃t ′.t ◦ t ′ ∈ T

wheret ◦ t ′ is the sequential composition oft andt ′. Then,

H. Yasuoka & T. Terauchi 7

Definition 3.2 (Liveness Hyperproperties [10])We say that a hyperproperty P is a liveness hyperprop-
erty if for any set of traces S∈Obs, there exists a set of traces S′ ∈ Prop such that S≤ S′ and S′ ∈ P.

Now, we state the first main result of the paper: the lower-bounding problems are liveness hyper-
properties.4

Theorem 3.3 LSE, LME, andLGE are liveness hyperproperties.5

The proof follows from the fact that, for any programM, there exists a programM′ containing all the
observations ofM and has an arbitrary large information flow.6

We show that the upper-bounding problem for Shannon-entropy based quantitative information flow
is also a liveness hyperproperty.

Theorem 3.4 USE is a liveness hyperproperty.

The theorem follows from the fact that we can lower the amount of the information flow by adding traces
that have the same output trace. Therefore, for any programM, there existsM′ having more observation
thanM such thatSE[U](M′)≤ q.

3.1 Observable Hyperproperties

Clarkson and Schneider [10] have identified a class of hyperproperties, calledobservable hyperproper-
ties, to generalize the notion of observable properties [1] to sets of traces.7

Definition 3.5 (Observable Hyperproperties [10]) We say that P is a observable hyperproperty if for
any set of traces S∈ P, there exists a set of traces T∈ Obs such that T≤ S, and for any set of traces
S′ ∈ Prop, T≤ S′⇒ S′ ∈ P.

We callT in the above definition anevidence.
Intuitively, observable hyperproperty is a property that can be verified by observing a finite set of

finite traces. We prove a relationship between observable hyperproperties and liveness hyperproperties.

Theorem 3.6 Every non-empty observable hyperproperty is a liveness hyperproperty.

Proof: Let P be a non-empty observable hyperproperty. It must be the case that there exists a set of
tracesM ∈ P. Then, there existsT ∈ Obssuch thatT ≤ M and∀M′ ∈ Prop.T ≤ M′ ⇒ M′ ∈ P. For
any set of tracesS∈Obs, there existsM′ ∈ Prop such thatS≤M′. Then, we haveM∪M′ ∈ P, because
T ≤M∪M′. Therefore,P is a liveness hyperproperty.2

We note that the empty set is not a liveness hyperproperty but an observable hyperproperty.
We show that lower-bounding problems for min-entropy and guessing-entropy are observable hyper-

properties.

Theorem 3.7 LME is an observable hyperproperty.

Theorem 3.8 LGE is an observable hyperproperty.

4We implicitly extend the notion of hyperproperties to classify hyperproperties that take programs and rational numbers.
See [31].

5More precisely, we prove that they are liveness hyperproperties for deterministic systems [10], because we restrict all
programs to deterministic programs. For sake of simplicity, we omit such annotations.

6Here, we assume that the input domains are not bounded. Therefore, we can construct a program that leaks more high-
security inputs by enlarging the input domain. Hyperproperty classifications of bounding problems with bounded domains
appear in Section 5.1.

7Roughly, an observable property is a set of traces having a finite evidence prefix such that any trace having the prefix is
also in the set.

8 Quantitative Information Flow as Safety and Liveness Hyperproperties

Theorem 3.7 follows from the fact that, if(M,q) ∈ LME, thenM contains an evidence ofLME. This
follows from the fact that when a programM′ contains at least as much observation asM, ME[U](M)≤
ME[U](M′) (cf. Lemma 3.15). Theorem 3.8 is proven in a similar manner.

We show that neither of the bounding problems for Shannon-entropy are observable hyperproperties.

Theorem 3.9 NeitherUSE nor LSE is an observable hyperproperty.

We give the intuition of the proof forUSE. SupposeSE[U](M) ≤ q. M does not provide an evidence of
SE[U](M) ≤ q, because for any potential evidence, we can raise the amount of the information flow by
adding traces that have disjoint output traces. The result forLSE is shown in a similar manner.

It is interesting to note that the bounding problems ofSEcan only be classified as general liveness
hyperproperties (cf. Theorem 3.3 and 3.4) even thoughSE is often the preferred definition of QIF in
practice [13, 8, 21]. This suggests that approximation techniques may be necessary for checking and
inferring Shannon-entropy-based QIF.

3.2 K-Observable Hyperproperties

We definek-observable hyperproperty that refines the notion of observable hyperproperties. Informally,
ak-observable hyperproperty is a hyperproperty that can be verified by observingk finite traces.
Definition 3.10 (K-Observable Hyperproperties) We say that a hyperproperty P is a k-observable hy-
perproperty if for any set of traces S∈ P, there exists T∈Obs such that T≤ S,|T| ≤ k, and for any set
of traces S′ ∈ Prop, T≤ S′⇒ S′ ∈ P.

Clearly, anyk-observable hyperproperty is an observable hyperproperty.
We note thatk-observable hyperproperties can be reduced to 1-observable hyperproperties by a sim-

ple program transformation calledself composition[4, 12].
Definition 3.11 (Parallel Self Composition [10])Parallel self composition of S is defined as follows.

S×S= {(s[0],s′[0]);(s[1],s′[1]);(s[2],s′[2]); · · · | s,s′ ∈ S}

where s[i] denotes the ith element of s.

Then, ak-product parallel self composition (simply self composition henceforth) is defined asSk.
Theorem 3.12 Every k-observable hyperproperty can be reduced to a1-observable hyperproperty via a
k-product self composition.

As an example, consider the following hyperproperty. The hyperproperty is the set of programs that re-
turn 1 and 2 for some inputs. Intuitively, the hyperproperty expresses two good things happen (programs
return 1 and 2) for programs.

{M | ∃h,h′.M(h) = 1∧M(h′) = 2}
This is a 2-observable hyperproperty as any program containing two traces, one having 1 as the output
and the other having 2 as the output, satisfies it.

We can check the above property by self composition. (Here,|| denotes a parallel composition.)

M′(H,H ′) ≡ O := M(H) ||O′ := M(H ′) || assert(¬(O = 1∧O′ = 2))

Clearly,M satisfies the property iff the assertion failure is reachable in the above program, that is, iff the
predicateO = 1∧O′ = 2 holds for some inputsH,H ′. (Note that, for convenience, we take an assertion
failure to be a “good thing”.)

We show that neither the lower-bounding problem for min-entropy nor the lower-bounding problem
for guessing-entropy is ak-observable hyperproperty for anyk.

H. Yasuoka & T. Terauchi 9

Theorem 3.13 NeitherLME nor LGE is a k-observable property for any k.

However, if we letq be a constant, then we obtain different results. First, we show that the lower-
bounding problem for min-entropy-based quantitative information flow under a constant boundq, is a
b2qc+1-observable hyperproperty.

Theorem 3.14 Let q be a constant. Then,LME is a b2qc+1-observable hyperproperty.

The theorem follows from Lemma 3.15 below which states that min-entropy based quantitative infor-
mation flow under the uniform distribution coincides with the logarithm of the number of output traces.
That is,(M,q) ∈LME iff there is an evidence inM containingb2qc+1 disjoint outputs.

Lemma 3.15 ([28]) ME[U](M) = log|{o | ∃h.M(h) = o}|

Next, we show that the lower-bounding problem for guessing-entropy-based quantitative information

flow under a constant boundq is ab (bqc+1)2

bqc+1−qc+1-observable hyperproperty.

Theorem 3.16 Let q be a constant. Then,LGE is a b (bqc+1)2

bqc+1−qc+1-observable hyperproperty.

The proof of the theorem is similar to that of Theorem 3.14, in that the size of the evidence set can be
computed from the boundq.

3.3 Computational Complexities

We prove computational complexities ofLME andLGE by utilizing their hyperproperty classifications.
Following previous work [32, 31, 6], we focus on boolean programs.

First, we introduce the syntax of boolean programs. The semantics of boolean programs is standard
and is deferred to Appendix (Figure 4). We call boolean programs withoutwhile statementsloop-free
boolean programs.

M ::= x := ψ |M0;M1 | if ψ then M0 else M1 | while ψ do M | skip
φ ,ψ ::= true | x | φ ∧ψ | ¬φ

Figure 1: The syntax of boolean programs

In this paper, we are interested in the computational complexity with respect to the syntactic size
of the input program (i.e., “implicit state complexity”, as opposed to [6] which studies complexity over
programs represented as explicit states).

We show that the lower-bounding problems for min-entropy and guessing-entropy arePP-hard.

Theorem 3.17 LME andLGE for loop-free boolean programs are PP-hard.

The theorem is proven by a reduction from MAJSAT, which is aPP-hard problem.PP is the set of
decision problems solvable by a polynomial-time nondeterministic Turing machine which accepts the
input iff more than half of the computation paths accept. MAJSAT is the problem of deciding, given a
boolean formulaφ over variables−→x , if there are more than 2|

−→x |−1 satisfying assignments toφ .
Next, we show that ifq be a constant, the upper-bounding problems for min-entropy and guessing-

entropy becomeNP-complete.

Theorem 3.18 Let q be a constant. Then,LME andLGE are NP-complete for loop-free boolean pro-
grams.

10 Quantitative Information Flow as Safety and Liveness Hyperproperties

NP-hardness is proven by a reduction from SAT, which is aNP-complete problem. The proof thatLME

andLGE for a constantq are inNP follows from the fact thatLME andLGE arek-observable hyper-
properties for somek. We give the proof intuition forLME. Recall thatk-observable hyperproperties can
be reduced to 1-observable hyperproperties via self composition. Consequently, it is possible to decide
if the information flow of a given programM is greater thanq by checking if the predicate of theassert
statement is violated for some inputs in the following program.

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j))

wheren = b2qc+1. Letφ be the weakest precondition ofO1 := M(H1);O2 := M(H2); . . . ;On := M(Hn)
with respect to the post condition

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j). Then,ME[U](M) > q iff ¬φ is satisfiable.

Because a weakest precondition of a loop-free boolean program is a polynomial size boolean formula
over the boolean variables representing the inputs8, decidingME[U](M) > q is reducible to SAT.

For boolean programs (with loops),LME andLGE arePSPACE-complete, andLSE is PSPACE-hard
(the tight upper-bound is open forLSE).

Theorem 3.19 LME andLGE are PSPACE-complete for boolean programs.

Theorem 3.20 LSE is PSPACE-hard for boolean programs.

4 Safety Hyperproperties

Clarkson and Schneider [10] have proposed safety hyperproperties, a subclass of hyperproperties, as a
generalization of safety properties. Intuitively, a safety hyperproperty is a hyperproperty that can be
refuted by observing a finite set of finite traces.

Definition 4.1 (Safety Hyperproperties [10]) We say that a hyperproperty P is a safety hyperproperty
if for any set of traces S6∈ P, there exists a set of traces T∈ Obs such that T≤ S, and∀S′ ∈ Prop.T ≤
S′⇒ S′ 6∈ P.

We classify some upper-bounding problems as safety hyperproperties.

Theorem 4.2 UME and UGE are safety hyperproperties.

Next, we review the definition ofk-safety hyperproperties [10], which refines the notion of safety hy-
perproperties. Informally, ak-safety hyperproperty is a hyperproperty which can be refuted by observing
k number of finite traces.

Definition 4.3 (K-Safety Hyperproperties [10]) We say that a hyperproperty P is a k-safety property
if for any set of traces S6∈ P, there exists a set of traces T∈ Obs such that T≤ S, |T| ≤ k, and∀S′ ∈
Prop.T ≤ S′⇒ S′ 6∈ P.

Note that 1-safety hyperproperty is just the standard safety property, that is, a property that can be refuted
by observing a finite execution trace. The notion ofk-safety hyperproperties first came into limelight
when it was noticed that non-interference is a 2-safety hyperproperty, but not a 1-safety hyperprop-
erty [29].

A k-safety hyperproperty can be reduced to a 1-safety hyperproperty by self composition [4, 12].

8For loop-free boolean programs, a weakest precondition can be constructed in polynomial time [14, 20].

H. Yasuoka & T. Terauchi 11

Theorem 4.4 ([10]) k-safety hyperproperty can be reduced to1-safety hyperproperty by self composi-
tion.

We have shown in our previous work thatUME andUGE arek-safety hyperproperties when the bound
q is fixed to a constant.

Theorem 4.5 ([31]) Let q be a constant.UME is a b2qc+1-safety property.

Theorem 4.6 ([31]) Let q be a constant.UGE is a b (bqc+1)2

bqc+1−qc+1-safety property.

The only hyperproperty that is both a safety hyperproperty and a liveness hyperproperty isP(Ψinf),
that is, the set of all traces [10]. Consequently, neitherUME norUGE is a liveness hyperproperty.

We have also shown in the previous work that the upper-bounding problem for Shannon-entropy
based quantitative information flow is not ak-safety hyperproperty, even whenq is a constant.

Theorem 4.7 ([31]) Let q be a constant.USE is not a k-safety property for any k> 0.

4.1 Computational Complexities

We prove computational complexities of upper-bounding problems by utilizing their hyperproperty clas-
sifications. As in Section 3.3, we focus on boolean programs.

First, we show that whenq is a constant,UME andUGE arecoNP-complete.

Theorem 4.8 Let q be a constant. Then,UME andUGE are coNP-complete for loop-free boolean pro-
grams.

coNP-hardness follows from the fact that non-interference iscoNP-hard [31]. ThecoNP part of the
proof is similar to theNP part of Theorem 3.18, and uses the fact thatUME is k-safety for a fixedq and
uses self composition. By self composition, the upper-bounding problem can be reduced to a reachability
problem (i.e., an assertion failure is unreachable for any input). To decide ifME[U](M)≤ q, we construct
the following self-composed programM′ from the given programM.

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j))

wheren = b2qc+ 1. Then, the weakest precondition ofO1 := M(H1);O2 := M(H2); . . . ;On := M(Hn)
with respect to the post condition

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j) is valid iff ME[U](M) ≤ q. Because

a weakest precondition of a loop-free boolean program is a polynomial size boolean formula, and the
problem of deciding a given boolean formula is valid is acoNP-complete problem,UME is in coNP.

Like the lower-bounding problemsUME andUGE for boolean programs (with loops) arePSPACE-
complete, andUSE is PSPACE-hard.

Theorem 4.9 UME andUGE are PSPACE-complete for boolean programs.

Theorem 4.10 USE is PSPACE-hard for boolean programs.

12 Quantitative Information Flow as Safety and Liveness Hyperproperties

5 Discussion

5.1 Bounding Domains

The notion of hyperproperty is defined over all programs regardless of their size. (For example, non-
interference is a 2-safety property for all programs and reachability is a safety property for all programs.)
But, it is easy to show that the lower bounding problems would become “k-observable” hyperproperties
if we constrained and bounded the input domains because then the size of the semantics (i.e., the number
of traces) of such programs would be bounded by|H| (and upper bounding problems would become
“k-safety” hyperproperties [31]). In this case, the problems are trivially|H|-observable hyperproperties.
However, these bounds are high for all but very small domains, and are unlikely to lead to a practical
verification method.

5.2 Observable Hyperproperties and Observable Properties

As remarked in [10], observable hyperproperties generalize the notion of observable properties [1]. It
can be shown that there exists a non-empty observable property that is not a liveness property (e.g., the
set of all traces that starts withσ). In contrast, Theorem 3.6 states that every non-empty observable
hyperproperty is also a liveness hyperproperty. Intuitively, this follows because the hyperproperty ex-
tension relation≤ allows the right-hand side to contain traces that does not appear in the left-hand side.
Therefore, for anyT ∈ Obs, there existsT ′ ∈ Prop that containsT and an evidence of the observable
hyperproperty.

5.3 Maximum of QIF over Distribution

Researchers have studied the maximum of QIF over the distribution. For example,channel capacity[24,
22, 26] is the maximum of the Shannon-entropy based quantitative information flow over the distribution
(i.e., maxµ SE[µ]). Smith [28] showed that for any program without low-security inputs, the channel
capacity is equal to the min-entropy-based quantitative information flow, that is, maxµ SE[µ] = ME[U].
Therefore, we obtain the same hyperproperty classifications and complexity results for channel capacity
asME[U].

Min-entropy channel capacityand guessing-entropy channel capacityare respectively the maxi-
mums of min-entropy based and guessing-entropy based QIF over distributions (i.e., maxµ ME[µ] and
maxµ GE[µ]). It has been shown that maxµ ME[µ] = ME[U] [5, 19] and maxµ GE[µ] = GE[U] [33],
that is, they attain their maximums when the distributions are uniform. Therefore, they have the same
hyperproperty classifications and complexities asME[U] andGE[U], which we have already analyzed in
this paper.

6 Related Work

Čerńy et al. [6] have investigated the computational complexity of Shannon-entropy based QIF. For-
mally, they have defined a Shannon-entropy based QIF for interactive boolean programs, and showed
that the explicit-state computational complexity of their lower-bounding problem isPSPACE-complete.
In contrast, this paper’s complexity results are “implicit” complexity results of bounding problems of
boolean programs (i.e., complexity relative to the syntactic size of the input) some of which are obtained
by utilizing their hyperproperties classifications.

H. Yasuoka & T. Terauchi 13

Clarkson and Schneider [10] have classified quantitative information flow problems via hyperprop-
erties. Namely, they have shown that the problem of deciding if the channel capacity of a given program
is q, is a liveness hyperproperty. And, they have shown that an upper-bounding problem for thebelief-
based QIF [9] is a safety hyperproperty. (It is possible to refine their result to show that their problem for
deterministic programs is actually equivalent to non-interference, and therefore, is a 2-safety hyperprop-
erty [33].)

7 Conclusion

We have related the upper and lower bounding problems of quantitative information flow, for various
information theoretic definitions proposed in literature, to Clarkson and Schneider’s hyperproperties.
Hyperproperties generalize the classical trace properties, and are thought to be more suitable for classi-
fying information flow properties as they are relations over sets of program traces. Our results confirm
this by giving a fine-grained classification and showing that it gives insights into the complexity of
the QIF bounding problems. One of the contributions is a new class of hyperproperties:k-observable
hyperproperty. We have shown thatk-observable hyperproperties are amenable to verification via self
composition.

References

[1] Samson Abramsky (1991):Domain Theory in Logical Form. Ann. Pure Appl. Logic 51(1-2), pp. 1–77.
Available athttp://dx.doi.org/10.1016/0168-0072(91)90065-T.

[2] Michael Backes, Matthias Berg & Boris K̈opf (2011):Non-uniform distributions in quantitative information-
flow. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS ’11, ACM, New York, NY, USA, pp. 367–375, doi:http://doi.acm.org/10.1145/1966913.1966960.
Available athttp://doi.acm.org/10.1145/1966913.1966960.

[3] Michael Backes, Boris K̈opf & Andrey Rybalchenko (2009):Automatic Discovery and Quantification of
Information Leaks. In: IEEE Symposium on Security and Privacy, IEEE Computer Society, pp. 141–153.
Available athttp://dx.doi.org/10.1109/SP.2009.18.

[4] Gilles Barthe, Pedro R. D’Argenio & Tamara Rezk (2004):Secure Information Flow by Self-Composition.
In: CSFW, IEEE Computer Society, pp. 100–114. Available athttp://doi.ieeecomputersociety.org/
10.1109/CSFW.2004.17.

[5] Christelle Braun, Konstantinos Chatzikokolakis & Catuscia Palamidessi (2009):Quantitative Notions of
Leakage for One-try Attacks. Electr. Notes Theor. Comput. Sci. 249, pp. 75–91. Available athttp://dx.
doi.org/10.1016/j.entcs.2009.07.085.

[6] Pavol Čerńy, Krishnendu Chatterjee & Thomas A. Henzinger (2011):The Complexity of Quantitative In-
formation Flow Problems. In: CSF, IEEE Computer Society, pp. 205–217. Available athttp://doi.
ieeecomputersociety.org/10.1109/CSF.2011.21.

[7] David Clark, Sebastian Hunt & Pasquale Malacaria (2005):Quantified Interference for a While Language.
Electr. Notes Theor. Comput. Sci. 112, pp. 149–166. Available athttp://dx.doi.org/10.1016/j.
entcs.2004.01.018.

[8] David Clark, Sebastian Hunt & Pasquale Malacaria (2007):A static analysis for quantifying information flow
in a simple imperative language. J. Comput. Secur. 15, pp. 321–371. Available athttp://dl.acm.org/
citation.cfm?id=1370628.1370629.

[9] Michael R. Clarkson, Andrew C. Myers & Fred B. Schneider (2005):Belief in Information Flow. In: CSFW,
IEEE Computer Society, pp. 31–45. Available athttp://dx.doi.org/10.1109/CSFW.2005.10.

http://dx.doi.org/10.1016/0168-0072(91)90065-T
http://dx.doi.org/http://doi.acm.org/10.1145/1966913.1966960
http://doi.acm.org/10.1145/1966913.1966960
http://dx.doi.org/10.1109/SP.2009.18
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dl.acm.org/citation.cfm?id=1370628.1370629
http://dl.acm.org/citation.cfm?id=1370628.1370629
http://dx.doi.org/10.1109/CSFW.2005.10

14 Quantitative Information Flow as Safety and Liveness Hyperproperties

[10] Michael R. Clarkson & Fred B. Schneider (2010):Hyperproperties. Journal of Computer Security 18(6), pp.
1157–1210. Available athttp://dx.doi.org/10.3233/JCS-2009-0393.

[11] Ellis S. Cohen (1977):Information Transmission in Computational Systems. In: SOSP, pp. 133–139. Avail-
able athttp://doi.acm.org/10.1145/800214.806556.

[12] Ádám Darvas, Reiner Ḧahnle & David Sands (2005):A Theorem Proving Approach to Analysis of Secure
Information Flow. In Dieter Hutter & Markus Ullmann, editors:SPC, Lecture Notes in Computer Science
3450, Springer, pp. 193–209. Available athttp://dx.doi.org/10.1007/978-3-540-32004-3_20.

[13] Dorothy Elizabeth Robling Denning (1982):Cryptography and data security. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[14] Cormac Flanagan & James B. Saxe (2001):Avoiding exponential explosion: generating compact verification
conditions. In: POPL, pp. 193–205. Available athttp://doi.acm.org/10.1145/360204.360220.

[15] Joseph A. Goguen & José Meseguer (1982):Security Policies and Security Models. In: IEEE Symposium
on Security and Privacy, pp. 11–20.

[16] Jonathan Heusser & Pasquale Malacaria (2009):Applied Quantitative Information Flow and Statistical
Databases. In Pierpaolo Degano & Joshua D. Guttman, editors:Formal Aspects in Security and Trust,
Lecture Notes in Computer Science 5983, Springer, pp. 96–110. Available athttp://dx.doi.org/10.
1007/978-3-642-12459-4_8.

[17] Boris Köpf & David A. Basin (2007):An information-theoretic model for adaptive side-channel attacks. In
Peng Ning, Sabrina De Capitani di Vimercati & Paul F. Syverson, editors:ACM Conference on Computer and
Communications Security, ACM, pp. 286–296. Available athttp://doi.acm.org/10.1145/1315245.
1315282.

[18] Boris Köpf & Andrey Rybalchenko (2010): Approximation and Randomization for Quantitative
Information-Flow Analysis. In: CSF, IEEE Computer Society, pp. 3–14. Available athttp://doi.
ieeecomputersociety.org/10.1109/CSF.2010.8.

[19] Boris Köpf & Geoffrey Smith (2010):Vulnerability Bounds and Leakage Resilience of Blinded Cryp-
tography under Timing Attacks. In: CSF, IEEE Computer Society, pp. 44–56. Available athttp:
//doi.ieeecomputersociety.org/10.1109/CSF.2010.11.

[20] K. Rustan M. Leino (2005):Efficient weakest preconditions. Inf. Process. Lett. 93(6), pp. 281–288. Available
athttp://dx.doi.org/10.1016/j.ipl.2004.10.015.

[21] Pasquale Malacaria (2007):Assessing security threats of looping constructs. In Martin Hofmann & Matthias
Felleisen, editors:POPL, ACM, pp. 225–235. Available athttp://doi.acm.org/10.1145/1190216.
1190251.

[22] Pasquale Malacaria & Han Chen (2008):Lagrange multipliers and maximum information leakage in different
observational models. In Úlfar Erlingsson & Marco Pistoia, editors:PLAS, ACM, pp. 135–146. Available
athttp://doi.acm.org/10.1145/1375696.1375713.

[23] James L. Massey (1994):Guessing and Entropy. In: ISIT ’94: Proceedings of the 1994 IEEE Interna-
tional Symposium on Information Theory, p. 204. Available athttp://dx.doi.org/10.1109/ISIT.
1994.394764.

[24] Stephen McCamant & Michael D. Ernst (2008):Quantitative information flow as network flow capacity. In
Rajiv Gupta & Saman P. Amarasinghe, editors:PLDI, ACM, pp. 193–205. Available athttp://doi.acm.
org/10.1145/1375581.1375606.

[25] David A. Naumann (2006):From Coupling Relations to Mated Invariants for Checking Information Flow.
In Dieter Gollmann, Jan Meier & Andrei Sabelfeld, editors:ESORICS, Lecture Notes in Computer Science
4189, Springer, pp. 279–296. Available athttp://dx.doi.org/10.1007/11863908_18.

[26] James Newsome, Stephen McCamant & Dawn Song (2009):Measuring channel capacity to distinguish
undue influence. In Stephen Chong & David A. Naumann, editors:PLAS, ACM, pp. 73–85. Available at
http://doi.acm.org/10.1145/1554339.1554349.

http://dx.doi.org/10.3233/JCS-2009-0393
http://doi.acm.org/10.1145/800214.806556
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://doi.acm.org/10.1145/360204.360220
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://doi.acm.org/10.1145/1315245.1315282
http://doi.acm.org/10.1145/1315245.1315282
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://dx.doi.org/10.1016/j.ipl.2004.10.015
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1375696.1375713
http://dx.doi.org/10.1109/ISIT.1994.394764
http://dx.doi.org/10.1109/ISIT.1994.394764
http://doi.acm.org/10.1145/1375581.1375606
http://doi.acm.org/10.1145/1375581.1375606
http://dx.doi.org/10.1007/11863908_18
http://doi.acm.org/10.1145/1554339.1554349

H. Yasuoka & T. Terauchi 15

[27] Claude Shannon (1948):A Mathematical Theory of Communication. Bell System Technical Journal 27, pp.
379–423, 623–656. Available athttp://doi.acm.org/10.1145/584091.584093.

[28] Geoffrey Smith (2009):On the Foundations of Quantitative Information Flow. In Luca de Alfaro, editor:
FOSSACS, Lecture Notes in Computer Science 5504, Springer, pp. 288–302. Available athttp://dx.doi.
org/10.1007/978-3-642-00596-1_21.

[29] Tachio Terauchi & Alexander Aiken (2005):Secure Information Flow as a Safety Problem. In Chris Hankin
& Igor Siveroni, editors:SAS, Lecture Notes in Computer Science 3672, Springer, pp. 352–367. Available
athttp://dx.doi.org/10.1007/11547662_24.

[30] Hiroshi Unno, Naoki Kobayashi & Akinori Yonezawa (2006):Combining type-based analysis and model
checking for finding counterexamples against non-interference. In Vugranam C. Sreedhar & Steve
Zdancewic, editors:PLAS, ACM, pp. 17–26. Available athttp://doi.acm.org/10.1145/1134744.
1134750.

[31] Hirotoshi Yasuoka & Tachio Terauchi (2010):On Bounding Problems of Quantitative Information Flow. In
Dimitris Gritzalis, Bart Preneel & Marianthi Theoharidou, editors:ESORICS, Lecture Notes in Computer
Science 6345, Springer, pp. 357–372. Available athttp://dx.doi.org/10.1007/978-3-642-15497-3_
22.

[32] Hirotoshi Yasuoka & Tachio Terauchi (2010):Quantitative Information Flow - Verification Hard-
ness and Possibilities. In: CSF, IEEE Computer Society, pp. 15–27. Available athttp://doi.
ieeecomputersociety.org/10.1109/CSF.2010.9.

[33] Hirotoshi Yasuoka & Tachio Terauchi (2011):On Bounding Problems of Quantitative Information Flow
(Extended version). Journal of Computer Security 19(6), pp. 1029–1082. Available athttp://dx.doi.
org/10.3233/JCS-2011-0437.

A Appendix

Figure 2: A summary of hyperproperty classifications

Fig 2 shows a summary of hyperproperty classifications.

• LH : the set of all liveness hyperproperties.

• OH: the set of all non-empty observable hyperproperties.

http://doi.acm.org/10.1145/584091.584093
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/11547662_24
http://doi.acm.org/10.1145/1134744.1134750
http://doi.acm.org/10.1145/1134744.1134750
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://dx.doi.org/10.3233/JCS-2011-0437
http://dx.doi.org/10.3233/JCS-2011-0437

16 Quantitative Information Flow as Safety and Liveness Hyperproperties

• 3OH: the set of all non-empty 3-observable hyperproperties.

• 5OH: the set of all non-empty 5-observable hyperproperties.

• SH: the set of all safety hyperproperties.

• 2SH: the set of all 2-safety hyperproperties.

• 3SH: the set of all 3-safety hyperproperties.

• 5SH: the set of all 5-safety hyperproperties.

• LME(1): LME under the constant bound 1.

• LGE(1): LGE under the constant bound 1.

• UME(1): UME under the constant bound 1.

• UGE(1): UGE under the constant bound 1.

• NI: the set of all non-interfering programs.

In general, for a constant boundq, LME(q) is in the classb2qc+ 1-OH and LGE(q) is in the class

b (bqc+1)2

bqc+1−qc+1-OH, and such classes are all contained inOH. Likewise, for a constant boundq, UME(q)

is in the classb2qc+1-SH andUGE(q) is in the classb (bqc+1)2

bqc+1−qc+1-SH, with such classes all contained
in SH.

A.1 Omitted Proof

Definition A.1
In(µ,X,x) = |{x′ ∈ X | µ(x′)≥ µ(x)}|

Intuitively, In(µ,X,x) is the order ofx defined in terms ofµ.

Lemma A.2
G [µ](X) = Σ1≤i≤|X|iµ(xi) = Σx∈XIn(µ,X,x)µ(x)

Proof: Trivial. 2

Theorem 2.8. 1.) M is non-interfering iff(M,0) ∈USE. 2.) M is non-interfering iff(M,0) ∈UME. 3.)
M is non-interfering iff(M,0) ∈UGE.
Proof: Let O = {M(h, `) | h∈H∧ ` ∈ L}.

• SE

(See [7].)

• ME

– ⇒
SupposeM is non-interfering. By definition, it suffices to show that

V [U](H) = V [U](H|O)

That is,
max

h
U(h) = ∑

o
U(o)max

h
U(h|o)

H. Yasuoka & T. Terauchi 17

The fact thatM is non-interfering implies that there existso′ such that for anyh, M(h) = o′,
andU(h,o′) = U(h). Therefore, we have

∑oU(o)maxhU(h|o) = maxh
U(h,o′)
U(o′)

= maxhU(h)

– ⇐
We prove the contraposition. SupposeM is interfering. That is, there existh1 andh2 such
thatM(h1) 6= M(h2). Let o1 = M(h1) ando2 = M(h2). We have

∑oU(o)maxhU(h|o)
= ∑o∈O\{o1,o2}maxhU(h,o)+maxhU(h,o1)+maxhU(h,o2)

And,
max

h
U(h) = max

h
U(h,o1)

Therefore, we haveME[U](M) > 0.

• GE

– ⇒
SupposeM is non-interfering. By definition,

GE[U](M)
= ∑h In(λh′.U(h′),H,h)U(h)
−∑o ∑h In(λh′.U(h′,o),H,h)U(h,o)

= ∑h In(λh′.U(h′),H,h)U(h)
−∑h In(λh′.U(h′),H,h)U(h)

= 0

since for allhx andox such thatU(hx,ox) > 0, for anyh′x ando′ ∈O\{ox}, U(h′x,o
′
x) = 0.

– ⇐
We prove the contraposition. SupposeM is interfering. That is, there existh1 andh2 such
thatM(h1) 6= M(h2). Let o1 = M(h1) ando2 = M(h2). By the definition,

GE[U](M)
= ∑h In(λh′.U(h′),H,h)U(h)
−∑o ∑h In(λh′.U(h′,o),H,h)U(h,o)

= A+∑h In(λh′.U(h′),H,h)U(h)
−B−∑o ∑h In(λh′.U(h′,o),H,h)U(h,o)

where
A = ∑h In(λh′.U(h′),H,h)U(h)
B = ∑o∈O ∑h In(λh′.U(h′,o),H,h)U(h,o)

Trivially, we haveA≥ B and

∑h In(λh′.U(h′),H,h)U(h)
> ∑o ∑h In(λh′.U(h′,o),H,h)U(h,o)

Therefore, we haveGE[U](M) > 0.

18 Quantitative Information Flow as Safety and Liveness Hyperproperties

2

Hereafter, we write sets of pairs of input and output trace to mean programs. That is, we write
(h,o) ∈M iff M(h) = o.

Lemma A.3 For any rational numbers q, for any traces T∈ Obs, there exist M′ and M′′ such that
T ≤M′, T ≤M′′, SE[U](M′)≤ q, and SE[U](M′′) > q.

Proof: Firstly, we prove that there existsM′ such thatT ≤M′ andSE[U](M′)≤ q. Let MT be a program
such that|MT |= |T| andT ≤MT . We construct the following programs.

M′ = MT ∪{(h,o) | h∈H′}
M1 = {(h,oh) | h∈H}∪{(h,o) | h∈H′}

where

• H = dom(M),

• H′∩H = /0,

• for anyh andh′ in H, h 6= h′⇒ oh 6= oh′ ,

• for anyh∈H′, o 6= M(h), and

• for anyh′ ∈H′, o 6= oh.

It follows that
SE[U](M′)≤ SE[U](M1)

And, we have
SE[U](M1) = |H|

|H|+|H′| log(|H|+ |H′|)+ |H′|
|H|+|H′| log |H|+|H′|

|H′|
→ 0 (|H′| → ∞)

Therefore, there existsH′ such thatSE[U](M′)≤ q.
Finally, we prove that there existsM′′ such thatT ≤ M′′ andSE[U](M′′) > q. Let MT be a program

such that|MT |= |T| andT ≤MT . We construct the following programs.

M′′ = MT ∪{(h,oh) | h∈H′}
M1 = {(h,o) | h∈H}∪{(h,oh) | h∈H′}

where

• H = dom(M),

• H′∩H = /0,

• for anyh andh′ in H′, h 6= h′⇒ oh 6= oh′ , and

• for anyh′ ∈H′, for anyh∈H, oh′ 6= M(h)

It follows that
SE[U](M′′)≥ SE[U](M1)

And, we have
SE[U](M1) = |H′|

|H|+|H′| log(|H|+ |H′|)+ |H|
|H|+|H′| log |H|+|H′|

|H|
→ ∞ (|H′| → ∞)

Therefore, there existsH′ such thatSE[U](M′′) > q.
2

H. Yasuoka & T. Terauchi 19

Theorem 3.3. LSE, LME, andLGE are liveness hyperproperties.
Proof: The fact thatLSE is a liveness hyperproperty follows from Lemma A.3. The results forLME and
LGE follow from Theorem 3.7, Theorem 3.8, and Theorem 3.6.2

Theorem 3.4. USE is a liveness hyperproperty.
Proof: Straightforward by Lemma A.3.2

Theorem 3.7. LME is a observable hyperproperty.
Proof: Let M be a program andq be a rational number such that(M,q) ∈LME. By the definition of the
equivalence relation on outputs, there existsT ∈Obssuch thatME[U](T) = ME[U](M). By Lemma 3.15,
for any programsM′, if T ≤M′, thenME[U](M′) > q. Therefore,LME is a observable hyperproperty.2

Lemma A.4 Let M be a program. Then, we have GE[U](M) = n
2−

1
2n ∑o |Ho|2 where n is the number of

inputs, andHo = {h | o = M(h)}.

Proof: By the definition, we have

GE[U](M) = G [U](H)−G [U](H|O)
= ∑h In(U,H,h)U(h)

−∑oU(o)∑h In(λh′.U(h′|o),Ho,h)U(h|o)
= 1

n
1
2n(n+1)−∑o

|Ho|
n

1
2

1
|Ho| |Ho|(|Ho|+1)

= n
2 + 1

2−
1
2n ∑o |Ho|2− 1

2
= n

2−
1
2n ∑o |Ho|2

2

Lemma A.5 Let M and M′ be programs such that[[M′]] = [[M]]∪{(h,o)} and h6∈ dom([[M]]). Then, we
have GE[U](M)≤GE[U](M′).

Proof: We proveGE[U](M′)−GE[U](M) ≥ 0. Let n = |[[M]]|, O = ran([[M]]), H = dom(M), and
Ho = dom(h | o = M(h)).

By Lemma A.4, we have

GE[U](M′)−GE[U](M)
= n+1

2 − 1
2(n+1)(B+(|Ho|+1)2)− n

2 + 1
2n(B+ |Ho|2)

= 1
2 + 1

2n(n+1)(−n(B+(|Ho|+1)2)+(n+1)(B+ |Ho|2))
= 1

2n(n+1)(n(n+1)−n(|Ho|+1)2 +B+(n+1)(|Ho|2))
= 1

2n(n+1)(n
2−2n|Ho|+ |Ho|2 +B)

= 1
2n(n+1)((n−|Ho|)2 +B)

≥ 0

whereB = ∑o′∈O\{o} |Ho′ |2 andHo′ = {h | o′ = M(h)}. 2

Theorem 3.8. LGE is a observable hyperproperty.
Proof: Let M be a program andq be a rational number such that(M,q) ∈LGE. By the definition of the
equivalence relation on outputs, there existsT ∈Obssuch thatGE[U](T) = GE[U](M). By Lemma A.5,
for any programsM′, if T ≤M′, thenGE[U](M′) > q. Therefore,LGE is a observable hyperproperty.2

20 Quantitative Information Flow as Safety and Liveness Hyperproperties

Theorem 3.9. NeitherUSE nor LSE is a observable hyperproperty.
Proof: Straightforward by Lemma A.3.2

Theorem 3.13. NeitherLME nor LGE is a k-observable hyperproperty for any k.
Proof:

• LME

For a contradiction, supposeLME is ak-observable hyperproperty. LetM be a program that has
k+ 1 disjoint output traces. Then, We have(M, log(k+ 1)) ∈ LME. However, for anyT ∈ Obs
such that|T| ≤ k andT ≤M, ME[U](T)≤ logk. This leads to a contradiction.

• LGE

For a contradiction, supposeLGE is ak-observable hyperproperty. LetM be a program that has
k+ 1 disjoint output traces. Then, We have(M, k

2) ∈ LGE. However, for anyT ∈ Obssuch that
|T| ≤ k andT ≤M, GE[U](T)≤ k−1

2 . This leads to a contradiction.

2

Theorem 3.14. Let q be a constant. Then,LME is a b2qc+1-observable hyperproperty.
Proof: Let M be a program such that(M,q)∈LME. By Lemma 3.15, it must be the case that| ran(M)| ≥
b2qc+1 whereran(M) is the range ofM. Then, there existsT ≤M such that|T| ≤ b2qc+1 andran(T)≥
b2qc+ 1. Then, by Lemma 3.15, it follows that for any programM′ such thatT ≤ M′, (M′,q) ∈ LME.
Therefore,LME is ab2qc+1-observable property.2

Lemma A.6 Let M be a program such that GE[U](M) > q, ∀M′.M′ (M ⇒ GE[U](M′) ≤ q, and
∀M′′.(GE[U](M′′) > q∧ (∀M′.M′ (M′′ ⇒ GE[U](M′) ≤ q)) ⇒ |M| ≥ |M′′|. It must be the case that

|M| ≤ b (bqc+1)2

bqc+1−qc+1.

Proof: First, we proveM has exactly two outputs. Letn be an integer such thatn= |M|. If M returns only
one output, we haveGE[U](M) = 0. Therefore,M must have more than 1 output, sinceGE[U](M) > q.
We have for anyo′

GE[U](M) = n
2−

1
2n(B+(n− i)2)

= i− 1
2n(B+ i2)

wherei = ∑o∈O\{o′} |Ho| andB = ∑o∈O\{o′} |Ho|2. BecauseGE[U](M) > q, we havei > q. Then, we
have

GE[U](M) > q iff i− B+i2
2n > q

iff n > B+i2

2(i−q)

By the definition ofM, we have∀M′.M′ (M ⇒GE[U](M′)≤ q. Let M̄ = M \{(h′,o′)} whereM(h′) =
o′. Then, we have

GE[U](M̄)≤ q iff i− B+i2

2(n−1) ≤ q

iff n≤ B+i2

2(i−q) +1

Hence, we have
B+ i2

2(i−q)
< n≤ B+ i2

2(i−q)
+1

H. Yasuoka & T. Terauchi 21

T(ψ)≡
case (H ′,ψ,

−→
H)

when (true, true,) then
−→
O :=

−→
H ;O′ := true;O′′ := true

when (true, false,) then
−→
O :=−−→

true;O′ := true;O′′ := false

when (false, ,
−−→
true) then

−→
O :=−−→

true;O′ := false;O′′ := false
else
if H1

then
−→
O :=

−→
H ;O′ := false;O′′ := true

else
−→
O :=−−→

true;O′ := false;O′′ := false

whereH ′,
−→
H = H1, . . . ,Hn, andO′, O′′,

−→
O are distinct.

Figure 3: The Loop-free Boolean Program for Theorem 3.17.

BecauseB = ∑o∈O\{o′} |Ho|2 and i = ∑o∈O\{o′} |Ho|, the cargestn occurs whenB = i2. That is, when

M has exactly two outputs. Next, we prove|M| ≤ b (bqc+1)2

bqc+1−qc+ 1. Recall thati = ∑o∈O\{o′} |Ho|. Let
j = n− i. We have

GE[U](M) = i− 1
2n(i2 + i2)

= i− i2
n

= (n− j)− (n− j)2

n

= j− j2

n
> q

This means thatj > q. Recall thatM̄ = M \{(h′,o′)} whereM(h′) = o′. Then, we have

GE[U](M̄)≤ q iff i− i2
n−1 ≤ q

iff n≤ i2
i−q +1

Becausen is an integer, we haven≤ b i2
i−qc+ 1 andn≤ b j2

j−qc+ 1. Let f = i2
i−q + 1 = j2

j−q + 1. By
elementary real analysis, it can be shown that for integersi and j such thati > q and j > q, f attains its

maximum value wheni = bqc+1 or j = bqc+1. Therefore, it follows that|M|= n≤ b (bqc+1)2

bqc+1−qc+1. 2

Theorem 3.16. Let q be a constant. Then,LGE is a b (bqc+1)2

bqc+1−qc+1-observable hyperproperty.

Proof: Let M be a program andq be a rational number such that(M,q) ∈LGE. By Lemma A.6, there

existsT such thatT ≤ M and |T| ≤ b (bqc+1)2

bqc+1−qc+ 1. By Lemma A.5, for anyM′ such thatT ≤ M′,
GE[U](M′) > q. 2

Theorem 3.17. LME andLGE are PP-hard for loop-free boolean programs.
Proof:

• LME

We prove by reducing MAJSAT toLME. Let φ be a boolean formula. Letq be the rational number
such that

q = ME[U](T(ψ))
= log(2n−1 +1+2n−1−1)
= n−1

22 Quantitative Information Flow as Safety and Liveness Hyperproperties

wheren is the number of boolean variables inφ , andψ is a boolean formulas such that #SAT(ψ) =
2n−1. We have

ME[U](T(φ)) > q ⇔ME[U](T(φ))≤ME[U](T(ψ))
⇔ #SAT(φ)≥ 2n−1 +1
⇔ #SAT(φ) > 2n−1

⇔ φ ∈MAJSAT

by Lemma 3.15. Therefore, we can decide ifφ ∈ MAJSAT by deciding ifME[U](T(φ)) ≤ q.
Note thatT(φ) andq can be constructed in time polynomial in the size ofφ . Therefore, this is a
reduction from MAJSAT toLME.

• LGE

We prove by reducing MAJSAT, which is aPP-complete problem, toLGE. Let φ be a boolean
formula. Letq be the rational number such that

q = GE(O := ψ ∨H)
= 2n+1

2 − 1
2n+2 (|M−1(true)|2 + |M−1(false)|2)

= 2n− 1
2n+2 ((2n−1)2 +(2n+1−2n−1)2)

wheren is the number of boolean variables inφ , andψ is a boolean formula such that #SAT(ψ) =
2n−1, andH be a boolean variable that does not appear inψ andφ . We have

GE[U](O := φ ∨H) > q ⇔GE[U](O := φ ∨H) > GE[U](O := ψ ∨H)
⇔GE[U](O := φ ∨H) > q
⇔ #SAT(φ) > #SAT(ψ)
⇔ #SAT(φ) > 2n−1

⇔ φ ∈MAJSAT

by Lemma A.5. Therefore, we can decide ifφ ∈MAJSAT by deciding ifGE[U](O := φ ∨H) > q.
Note thatO := φ ∨H andq can be constructed in time polynomial in the size ofφ . Therefore, this
is a reduction from MAJSAT toLGE.

2

Theorem 3.18. Let q be a constant. Then,LME andLGE are NP-complete for loop-free boolean pro-
grams.
Proof:

• LME

LME is NP-hardness follows from the fact thatME[U](O := φ ∧H) > 0 iff φ ∈ SAT whereH is a
boolean variable that does not appear inφ .

Next, we show thatLME ∈ NP. Recall thatk-observable hyperproperties can be reduced to 1-
observable hyperproperties via self composition. We can decide if the information flow of a given
programM is greater thanq by checking if the predicate of theassert statement fails for some
inputs in the following program.

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(

∨
i, j∈{1,...,n}(Oi = O j ∧ i 6= j))

H. Yasuoka & T. Terauchi 23

wheren = b2qc+ 1. That is, if for some inputs, the weakest precondition ofM′ does not hold,
then ME[U](M) > q. Since weakest preconditions of loop-free boolean programs are boolean
formulae over boolean variables representing inputs, we can reduce the problem of deciding if
ME[U](M) > q to SAT.

• LGE

We have thatGE[U](O := φ ∧H) > 0 iff φ ∈ SAT whereH is a variable that does not appear inφ .
It follows thatLGE is NP-hard.

Next, we showLGE ∈ NP

M′(H1,H2, . . . ,Hn)≡
O1 := M(H1);O2 := M(H2); . . . ;On := M(Hn);
assert(∑o |{Oi |Oi = o}|2 < 2n(n

2 +q))

wheren = b (bqc+1)2

bqc+1−qc+ 1.9 That is, if for some inputs, the weakest precondition ofM′ does not
hold, thenGE[U](M) > q. Since weakest preconditions of loop-free boolean programs are boolean
formulae over boolean variables representing inputs, we can reduce the problem of deciding if
GE[U](M) > q to SAT.

2

Theorem A.7 Checking non-interference is PSPACE-complete for boolean programs.

Proof: Straightforward from the fact that the reachability for boolean programs is PSPACE-complete.2

Theorem 3.19. LME andLGE are PSPACE-complete for boolean programs.
Proof: PSPACE-hardness follows from Theorem 2.8 and Theorem A.7.

Next, we show thatLME ∈ PSPACE. To prove thatME[U](M) > q, it suffices to show that the
number of outputs is greater thanb2qc+ 1. Let n be the number of inputs. The number of outputs can
be enumerated in polynomial space, because the number of outputs is less than or equal to 2n, and the
problem of deciding if a program has a particular output can be solved in polynomial space. Therefore,
we haveLME ∈ PSPACE.

Finally, we show thatLGE∈PSPACE. By Lemma A.4, we have∑o |Ho|2 < 2n(n
2 +q) iff GE[U](M)>

q. Because∑o |Ho|2 can be calculated in polynomial space, it follows the result.2

Theorem 4.2. UME and UGE are safety hyperproperties.
Proof: Straightforward by Lemma 3.15 and Lemma A.5.2

Theorem 4.8. Let q be a constant. Then,UME andUGE are coNP-complete for loop-free boolean pro-
grams.
Proof: By the similar manner to Theorem 3.19, we obtain the results.2

Theorem 4.9. UME andUGE are PSPACE-complete for boolean programs.
Proof: This theorem is proven in the similar manner to Theorem 3.19.2

9Technically, the predicate of theassert statement is represented by a DNF of equalities overOi . Therefore, the self-
composed program can be constructed in time linear in the size of the original program.

24 Quantitative Information Flow as Safety and Liveness Hyperproperties

ev(e,σ) = v

(x := e,σ)→ σ [x 7→ v]

ev(e,σ) = true (M0,σ)→ σ ′

(if ethen M0 else M1,σ)→ σ ′

ev(e,σ) = false (M1,σ)→ σ ′

(if ethen M0 else M1,σ)→ σ ′

ev(e,σ) = false

(while edo M,σ)→ σ

ev(e,σ) = true (M,σ)→ σ ′′ (while e do M,σ ′′)→ σ ′

(while edo M,σ)→ σ ′

(skip,σ)→ σ

(M,σ)→ σ ′′ (M′,σ ′′)→ σ ′

(M;M′,σ)→ σ ′

Figure 4: The semantics of boolean programs

	Introduction
	Preliminaries
	Quantitative Information Flow
	Bounding Problems
	Non Interference

	Liveness Hyperproperties
	Observable Hyperproperties
	K-Observable Hyperproperties
	Computational Complexities

	Safety Hyperproperties
	Computational Complexities

	Discussion
	Bounding Domains
	Observable Hyperproperties and Observable Properties
	Maximum of QIF over Distribution

	Related Work
	Conclusion
	Appendix
	Omitted Proof

