Quantitative Information Flow as Safety and Liveness

1 *
Hyperproperties
Hirotoshi Yasuoka Tachio Terauchi
Tohoku University Nagoya University
Sendai, Japan Nagoya, Japan
yasuoka@kb.ecei.tohoku.ac. jp terauchi@is.nagoya-u.ac. jp

We employ Clarkson and Schneider’s “hyperproperties” to classify various verification problems
of quantitative information flow. The results of this paper unify and extend the previous results
on the hardness of checking and inferring quantitative information flow. In particular, we identify
a subclass of liveness hyperproperties, which we dabliservable hyperproperties”, that can be
checked relative to a reachability oracle via self composition.

1 Introduction

We consider programs containing high security inputs and low security outputs. Informally, the quan-
titative information flow problem concerns the amount of information that an attacker can learn about
the high security input by executing the program and observing the low security output. The problem
is motivated by applications in information security. We refer to the classic by Denning [13] for an
overview.

In essence, quantitative information flow measinmes secure, or insecure, a program (or a part of a
program —e.g., a variable-) is. Thus, unlike non-interference [11, 15], that only tells whether a program
is completely secure or not completely secure, a definition of quantitative information flow must be able
to distinguish two programs that are both interfering but have different levels of security.

For example, consider the programig = if H =g then O :=0else O :=1andM; =0 :=H.

In both programsH is a high security input an@® is a low security output. Viewingil as a password,

M; is a prototypical login program that checks if the gugssatches the password. By executivig,

an attacker only learns whethiris equal tog, whereas she would be able to learn the entire content
of H by executingM,. Hence, a reasonable definition of quantitative information flow should assign a
higher quantity tdM» than toM1, whereas non-interference would merely say MatandM; are both
interfering, assuming that there are more than one possible valde of

Researchers have attempted to formalize the definition of quantitative information flow by appealing
to information theory. This has resulted in definitions based on the Shannon entrbpy [13, 8, 21], the min
entropy [28], and the guessing entropy![17, 3]. All of these definitions map a program (or a part of a
program) onto a non-negative real number, that s, they define a fungtisach that given a program,

2" (M) is a non-negative real number. (Concretely,is SHu| for the Shannon-entropy-based definition
with the distributionu, ME[u] for the min-entropy-based definition with the distributipnandGE[u]
for the guessing-entropy-based definition with the distribution

In a previous work[[32, 31], we have proved a number of hardness results on checking and infer-

ring quantitative information flow (QIF) according to these definitions. A key concept used to connect

*This work was supported by MEXT KAKENHI 23700026, 22300005, 23220001, and Global COE Program “CERIES.”

To appear in EPTCS.

2 Quantitative Information Flow as Safety and Liveness Hyperproperties

the hardness results to QIF verification problems was the notidrsafety, which is an instance in a
collection of the class of program properties callggberpropertieq10]. In this paper, we make the
connection explicit by providing a fine-grained classification of QIF problems, utilizing the full range of
hyperproperties. This has a number of benefits, summarized below.

1.) A unified view on the hardness results of QIF problems.
2.) New insights into hyperproperties themselves.
3.) A straightforward derivation of some complexity theoretic results.

Regarding 1.), we focus on two types of QIF problems, an upper-bounding problem that checks if QIF
of a program is bounded above by the given number, and a lower-bounding problem that checks if QIF is
bounded below by the given number. Then, for each QIF definiS®#&E, ME, we classify whether or

not they are safety hyperproperkysafety hyperproperty, liveness hyperpropertyk-abservable hyper-
property (and give a bound dofor k-safek-observable). Safety hyperpropettysafety hyperproperty,
liveness hyperproperty, and observable hyperproperty are classes of hyperproperties defined by Clarkson
and Schneider [10]. In this paper, we identify new classes of hyperpropéetbservable hyperprop-

erty, that is useful for classifying QIF problemsobservable hyperproperty is a subclass of observable
hyperproperties, and observable hyperproperty is a subclass of liveness hyperp@p&ﬂié&cus on

the case the input distribution is uniform, that jis= U, as showing the hardness for a specific case
amounts to showing the hardness for the general case. Also, checking and inferring QIF under the uni-
formly distributed inputs has received much attention [16, 3/ 18,17,/121, 8], and so, the hardness for the
uniform case is itself of research interst.

Regarding 2.), we show that ttkeobservable subset of the observable hyperproperties is amenable
to verification via self composition [4, 12, 29,125, 30], much likeafety hyperproperties, and identify
which QIF problems belong to that family. We also show that the hardest of the QIF problems (but nev-
ertheless one of the most popular) can only be classified as a general liveness hyperproperty, suggesting
that liveness hyperproperty is a quite permissive class of hyperproperties.

Regarding 3.), we show that many complexity theoretic results for QIF problems of loop-free boolean
programs can be derived from their hyperproperties classifications [32, 31]. We also prove new com-
plexity theoretic results, including the (implicit state) complexity results for loop-ful boolean programs,
complementing the recently proved explicit state complexity results [6].

Table[] and Table|2 summarize the hyperproperties classifications and computational complexities
of upper/lower-bounding problems. We abbreviate lower-bounding problem, upper-bounding problem,
and boolean programs to LBP, UBP, and BP, respectively. The “constant bound” rows correspond to
bounding problems with a constant bound (whereas the plain bounding problems take the bound as an
input).

The proofs omitted from the main body of the paper appear in the Appendix.

2 Preliminaries

2.1 Quantitative Information Flow

We introduce the information theoretic definitions of QIF that have been proposed in literature. First,
we review the notion of th&hannon entropf27], ¢ [u|(X), which is the average of the information

1Technically, only non-empty observable hyperproperties are liveness hyperproperties.
2|n fact, computing QIF under other input distributions can sometimes be reduced to this|case [2]. See als@ection 5.3.

H. Yasuoka & T. Terauchi 3

SHU] ME[U] GEV]
LBP Liveness| Liveness Liveness
UBP Safety Safety Safety

LBP constant bound Liveness| k-observable k-observable
UBP constant bound Safety | k-safety [31]| k-safety [31]

Table 1: A summary of hyperproperty classifications

SHU] ME([U] GEU]
LBP for BP PSPACEhard | PSPACEcomplete| PSPACEcomplete
UBP for BP PSPACEhard | PSPACEcomplete| PSPACEcomplete
LBP for loop-free BP PP-hard PP-hard PP-hard
UBP for loop-free BP PP-hard [31] PP-hard [31] PP-hard [31]
LBP for loop-free BP, constant bound Unknown NP-complete NP-complete
UBP for loop-free BP, constant bound Unknown coNPcomplete coNPcomplete

Table 2: A summary of computational complexities

content, and intuitively, denotes the uncertainty of the random varkabhknd, we review the notion of
the conditional entropy.>#’[u](Y|Z), which denotes the uncertainty ¥fafter knowingZ.

Definition 2.1 (Shannon Entropy and Conditional Entropy) Let X be a random variable with sample
spaceX and u be a probability distribution associated with X (we wrteexplicitly for clarity). The
Shannon entropy of X is defined as

u(X=x)log———
V=2, A(X =)

LetY and Z be random variables with sample space Y and Z, respectively, &eda probability
distribution associated with Y and Z. Then, the conditional entropy of Y given Z is defined as

ul(Y|2) =Y n(z u)(Y|Z=2)

el

where L
H(Y|Z=2) = Jyey u(Y =Y|Z = Z)I09 57

_ _ _ [J,(YZ)QZ:Z)
Y =ylZ=2 = =75

(The logarithm is in base 2.)

Let M be a program that takes a high security inplytand gives the low security output traCe
For simplicity, we restrict to programs with just one variable of each kind, but it is trivial to extend the
formalism to multiple variables (e.g., by letting the variables range over tuples or lists). Also, for the
purpose of the paper, unobservable (i.e., high security) output traces are irrelevant, and so we assume
that the only program output is the low security output trace.iLbe a probability distribution over the
values ofH. Then, the semantics ™ can be defined by the following probability equation. (We restrict
to deterministic programs in this paper.)

pO=0= Y uH=h)
heH
M(h)=o0

4 Quantitative Information Flow as Safety and Liveness Hyperproperties

Here,M(h) denotes the infinite low security output trace of the progkdugiven a inpuh, andM(h) = o
denotes the output trace bf givenh that is equivalent t@. In this paper, we adopt the termination-
insensitive security observation model, and let the outparsdo’ be equivalent ifffi € w.0; = L Vo =
1 vo; = of whereo ando; denotes théh element ob, and_L is the special symbol denoting terminatﬁn.

In this paper, programs are represented by sets of traces, and traces are represented by lists of stores
of programs. More formally,

M(h)is equaltoo iff o©p;01;...;0i;... €M
wherecy(H) = handvi > 1.6;(O) = o; (0; denotes the ith element of

Here, o denotes a store that maps variables to values. Because we restrict all programs to determin-
istic programs, every prograi satisfies the following condition: For any tra@é, ¢’ € M, we have

oo(H) = 6j(H) = & = &' whereoy andac}, denote the first elements af and'c”, respectively. Now,

we are ready to define Shannon-entropy-based quantitative information flow.

Definition 2.2 (Shannon-Entropy-based QIF[[13, 8, 21])Let M be a program with a high security in-
put H, and a low security output trace O. Lgtbe a distribution over H. Then, the Shannon-entropy-
based quantitative information flow is defined

SEuJ(M) = A [u](H) — A [u](H|O)

Intuitively, 7 [u](H) denotes the initial uncertainty ao@’ 1| (H|O) denotes the remaining uncertainty
after knowing the low security output trace. (For space, the paper focuses on the low-security-input free
definitions of QIF.)

As an example, consider the prograMs andM; from Sectior{ L. For concreteness, assume that
g is the value 01 andH ranges over the spad®0,01,10,11}. LetU be the uniform distribution over
{00,01,10,11}, thatis,U (h) = 1/4 for allh € {00,01,10,11}. The results are as follows.

SEUJ(My) = J#[U)(H)—.#[U](H|O) =log4— 2log3~ 81128
SHU](M2) = 2£[UJ(H)— [U](H|O) =log4—logl=2

Consequently, we have thaEU|(M1) < SHU](Mz), butSHU](M2) £ SHU](M1). That is,M; is more
secure thamM, (according to the Shannon-entropy based definition with uniformly distributed inputs),
which agrees with our intuition.

Next, we introduce thenin entropy which has recently been suggested as an alternative measure for
quantitative information flow [28].

Definition 2.3 (Min Entropy) Let X and Y be random variables, apdbe an associated probability
distribution. Then, the min entropy of X is defined

Heo|t](X) = log [,u]j(X)

and the conditional min entropy of X givenY is defined

Aol (X[Y) = Iogm

SHere, we adopt the trace based QIF formalizatior of [22].

H. Yasuoka & T. Terauchi 5

where
Vp](X) = maxexu(X=X)
Vp](X[Y =y) = maxexu(X=xY=y)
VII(X[Y) = Syeyu(Y =y)7u](X]Y =y)
Intuitively, #'[u](X) represents the highest probability that an attacker guésgea single try. We
now define the min-entropy-based definition of QIF.
Definition 2.4 (Min-Entropy-based QIF [28]) Let M be a program with a high security input H, and
a low security output trace O. Let be a distribution over H. Then, the min-entropy-based quantitative
information flow is defined

ME[u](M) = & [u](H) — (1] (H[O)
Computing the min-entropy based quantitative information flow for our running example programs
M; andM from Sectiorj [l with the uniform distribution, we obtain,
MEU](M1) = J#[U](H)—#,U](H|O) =log4—log2=1

MEU](M2) = J#[U](H)—#,[U]J(H|O) =log4—logl=2

Again, we have thaME[U](M1) < ME[U](M2) andME[U](M2) £ ME[U](M1), and soM; is deemed
less secure tha;.

The third definition of quantitative information flow treated in this paper is the one based on the
guessing entropy [23], that has also recently been proposed in litefature [17, 3].
Definition 2.5 (Guessing Entropy) Let X and Y be random variables, apdbe an associated proba-
bility distribution. Then, the guessing entropy of X is defined

X)) =Y ixuX=x)
1<i<m

where{xy,Xo,... . Xm} = XandVi, j.i < j = u(X=x) > u(X =xj).

The conditional guessing entropy of X givenY is defined

GuIXY) =S ulY=y) > ixuX=x[Y=y)
yeyY 1<i<m

where{xy,Xo,.... Xm} =X andVi, j.i < j = u(X=x]Y =y) > u(X =x;]Y =Yy).

Intuitively, ¢[u](X) represents the average number of times required for the attacker to guess the
value ofX. We now define the guessing-entropy-based quantitative information flow.
Definition 2.6 (Guessing-Entropy-based QIF[17,13])Let M be a program with a high security input
H, and a low security output trace O. Lgtbe a distribution over H. Then, the guessing-entropy-based
guantitative information flow is defined

GE[u](M) =Z[u](H) —[u](H|O)

We testGE on the running example from Sectioh 1 by calculating the quantities for the prodiams
andM, with the uniform distribution.

GEU](M) = %[U](H)-¥[U](H|O)=3-7=0.75

GEU](Mp) = %[U](H)-¥[U](H|O)=3-1=15

Therefore, we again have th&E[U]|(M;) < GE[U](M2) and GE[U]|(M;) £ GE[U]|(M;), and soM;
is considered less secure thieh, even with the guessing-entropy based definition with the uniform
distribution.

6 Quantitative Information Flow as Safety and Liveness Hyperproperties

2.2 Bounding Problems

We introduce the bounding problems of quantitative information flow that we classify. First, we define
the QIF upper-bounding problems. Upper-bounding problems are defined as follows: Given a program
M and a rational numbaey, decide if the information flow o is less than or equal tm

Use={(M,q) | SEU](M) <q}
e = {(M,q) [MEU](M) < qa}
e ={(M,q) | GEU](M) < a}

Recall thaU denotes the uniform distribution.
Next, we define lower-bounding problems. Lower-bounding problems are defined as follows: Given
a progranmM and a rational numbae, decide if the information flow o is greater thaj.

Zse={(M,q) | SHU](M) > q}
Zve = {(M,q) | ME[U](M) > g}
Zee={(M,q) | GEU](M) > q}

2.3 Non Interference

We recall the notion of non-interference, which, intuitively, says that the program leaks no information.
Definition 2.7 (Non-intereference[11, 15])A program M is said to be non-interfering iff for anyth €
H, M(h) = M(K).

Non-interference is known to be a special case of bounding problems that tests against 0.
Theorem 2.8 ([7/31])1.) M is non-interfering iff(M,0) € %sg. 2.) M is non-interfering iffM,0)
\ve- 3.) M is non-interfering ifiM,0) € ZaE.

3 Liveness Hyperproperties

Clarkson and Schneider have proposed the notion of hyperproperties [10].

Definition 3.1 (Hyperproperties [10]) We say that P is a hyperproperty if® 22 (Wi s) whereW; ¢ is

the set of all infinite traces, ang”(X) denote the powerset of X.

Note that hyperproperties are sets of trace sets. As such, they are more suitable for classifying informa-
tion properties than the classical trace properties which are sets of traces. For example, non-interference
is not a trace property but a hyperproperty.

Clarkson and Schneider have identified a subclass of hyperproperties, called liveness hyperproperties,
as a generalization of liveness properties. Intuitively, a liveness hyperproperty is a property that can not
be refuted by a finite set of finite traces. That iR 16 a liveness hyperproperty, then for any finite set of
finite tracesT, there exists a set of traces that contdinend satisfie®. Formally, letObsbe the set of
finite sets of finite traces, arférop be the set of sets of infinite traces (i.e., hyperproperties), that is,

Obs = 2n(Y;,)
Prop = Z(Wint)

(Here, 2#f12(X) denotes the finite subsets ¥f Wi, denotes the set of finite traces.) Letbe the
relation overObsx Prop such that

S<T iff vteS3t'tot'eT

wheret ot’ is the sequential composition bandt’. Then,

H. Yasuoka & T. Terauchi 7

Definition 3.2 (Liveness Hyperproperties|[10]) We say that a hyperproperty P is a liveness hyperprop-
erty if for any set of traces § Obs, there exists a set of tracéss3Prop such that X S and S < P.

Now, we state the first main result of the paper: the lower-bounding problems are liveness hyper-
propertie$]
Theorem 3.3 Zsg, Aue, and Zce are liveness hyperpropertiE}s.

The proof follows from the fact that, for any progravh there exists a prograi’ containing all the
observations oM and has an arbitrary large information flﬁw.

We show that the upper-bounding problem for Shannon-entropy based quantitative information flow
is also a liveness hyperproperty.

Theorem 3.4 Zsgis a liveness hyperproperty.

The theorem follows from the fact that we can lower the amount of the information flow by adding traces
that have the same output trace. Therefore, for any profathere existdM’ having more observation
thanM such thaSEU|(M’) < q.

3.1 Observable Hyperproperties

Clarkson and Schneider [10] have identified a class of hyperproperties, obedvable hyperproper-
ties to generalize the notion of observable propertfiés [1] to sets of tlﬂaces.

Definition 3.5 (Observable Hyperproperties [10]) We say that P is a observable hyperproperty if for
any set of traces § P, there exists a set of tracesd Obs such that T< S, and for any set of traces
SecProp, T<S=ScP.

We callT in the above definition aavidence
Intuitively, observable hyperproperty is a property that can be verified by observing a finite set of
finite traces. We prove a relationship between observable hyperproperties and liveness hyperproperties.

Theorem 3.6 Every non-empty observable hyperproperty is a liveness hyperproperty.

Proof: Let P be a non-empty observable hyperproperty. It must be the case that there exists a set of
tracesM € P. Then, there exist$ € Obssuch thatT <M andVM’ € Prop.T <M’ = M’ € P. For
any set of traceS € Obs there existd’ € Prop such thaS< M’. Then, we havéM UM’ € P, because
T <MUM'. ThereforeP is a liveness hyperpropertyl
We note that the empty set is not a liveness hyperproperty but an observable hyperproperty.

We show that lower-bounding problems for min-entropy and guessing-entropy are observable hyper-
properties.

Theorem 3.7 Aue is an observable hyperproperty.

Theorem 3.8 %z is an observable hyperproperty.

4We implicitly extend the notion of hyperproperties to classify hyperproperties that take programs and rational numbers.
Seel([31].

5More precisely, we prove that they are liveness hyperproperties for deterministic systéms [10], because we restrict all
programs to deterministic programs. For sake of simplicity, we omit such annotations.

6Here, we assume that the input domains are not bounded. Therefore, we can construct a program that leaks more high-
security inputs by enlarging the input domain. Hyperproperty classifications of bounding problems with bounded domains
appear in Sectiq@.l.

"Roughly, an observable property is a set of traces having a finite evidence prefix such that any trace having the prefix is
also in the set.

8 Quantitative Information Flow as Safety and Liveness Hyperproperties

Theore follows from the fact that, (M,q) € -%ue, thenM contains an evidence dfje. This
follows from the fact that when a prograli contains at least as much observatiodVMgME[U (M) <
ME[U](M’) (cf. Lemmd 3.1F). Theorem 3.8 is proven in a similar manner.

We show that neither of the bounding problems for Shannon-entropy are observable hyperproperties.

Theorem 3.9 Neither%se nor Zse is an observable hyperproperty.

We give the intuition of the proof fot/se. SupposeSEHU|(M) < g. M does not provide an evidence of
SHU](M) < g, because for any potential evidence, we can raise the amount of the information flow by
adding traces that have disjoint output traces. The resul#fgris shown in a similar manner.

It is interesting to note that the bounding problemsS&fcan only be classified as general liveness
hyperproperties (cf. Theorein B.3 gnd]3.4) even thoBBlis often the preferred definition of QIF in
practice [13/ 8] 21]. This suggests that approximation techniques may be necessary for checking and
inferring Shannon-entropy-based QIF.

3.2 K-Observable Hyperproperties

We definek-observable hyperproperty that refines the notion of observable hyperproperties. Informally,
ak-observable hyperproperty is a hyperproperty that can be verified by obs&riiig traces.
Definition 3.10 (K-Observable Hyperproperties) We say that a hyperproperty P is a k-observable hy-
perproperty if for any set of traces<SP, there exists E Obs such that K S, |T| <k, and for any set
of traces Se Prop, T< S =S e P.
Clearly, anyk-observable hyperproperty is an observable hyperproperty.

We note thak-observable hyperproperties can be reduced to 1-observable hyperproperties by a sim-
ple program transformation calleelf compositioifi4, [12].
Definition 3.11 (Parallel Self Composition|[10]) Parallel self composition of S is defined as follows.

Sx S={(s[0],5[0]); (s[1],s[1)); (s[2,8[2]);--- | 8,8 € S}

where] denotes the ith element of s.
Then, ak-product parallel self composition (simply self composition henceforth) is defin&l as
Theorem 3.12 Every k-observable hyperproperty can be reducedleshservable hyperproperty via a
k-product self composition.
As an example, consider the following hyperproperty. The hyperproperty is the set of programs that re-
turn 1 and 2 for some inputs. Intuitively, the hyperproperty expresses two good things happen (programs
return 1 and 2) for programs.
{M | 3h,h".M(h) =1AM(h) =2}

This is a 2-observable hyperproperty as any program containing two traces, one having 1 as the output
and the other having 2 as the output, satisfies it.

We can check the above property by self composition. (Hedenotes a parallel composition.)

M'(H,H) = O:=M(H)| O :=M(H') || assert(=(0=1A0"=2))

Clearly,M satisfies the property iff the assertion failure is reachable in the above program, that is, iff the
predicateO = 1A O = 2 holds for some inputlsl,H’. (Note that, for convenience, we take an assertion
failure to be a “good thing”.)

We show that neither the lower-bounding problem for min-entropy nor the lower-bounding problem
for guessing-entropy islaobservable hyperproperty for aky

H. Yasuoka & T. Terauchi 9

Theorem 3.13 Neither %ye nor %k is a k-observable property for any k.

However, if we letq be a constant, then we obtain different results. First, we show that the lower-
bounding problem for min-entropy-based quantitative information flow under a constant Qoisnal
| 29| 4+ 1-observable hyperproperty.

Theorem 3.14 Let q be a constant. Ther¥e is a | 29| + 1-observable hyperproperty.

The theorem follows from Lemmnja 315 below which states that min-entropy based quantitative infor-
mation flow under the uniform distribution coincides with the logarithm of the number of output traces.
Thatis,(M,q) € Aue iff there is an evidence iM containing| 29| + 1 disjoint outputs.

Lemma 3.15 ([28]) ME[U](M) = log|{o | 3h.M(h) = o}|

Next, we show that the lower-bounding problem for guessing-entropy-based quantitative information

flow under a constant bourtis a | (Léj‘ﬂlf;J + 1-observable hyperproperty.

Theorem 3.16 Let g be a constant. Ther¥se is a L%ﬂj + 1-observable hyperproperty.

The proof of the theorem is similar to that of Theorem B.14, in that the size of the evidence set can be
computed from the boungl

3.3 Computational Complexities

We prove computational complexities 6fye and.%ce by utilizing their hyperproperty classifications.
Following previous work([32, 31,/6], we focus on boolean programs.

First, we introduce the syntax of boolean programs. The semantics of boolean programs is standard
and is deferred to Appendix (Figuré 4). We call boolean programs withbilé statementsoop-free
boolean programs.

M = Xx:=y | MMy |if ythen Mg else M1 | while y do M | skip
¢,y true [X[¢ Ay | -9

Figure 1: The syntax of boolean programs

In this paper, we are interested in the computational complexity with respect to the syntactic size
of the input program (i.e., “implicit state complexity”, as opposed io [6] which studies complexity over
programs represented as explicit states).

We show that the lower-bounding problems for min-entropy and guessing-entropiP-duard.

Theorem 3.17 %ve and Zcg for loop-free boolean programs are PP-hard.

The theorem is proven by a reduction from MAJSAT, which iBRthard problem.PP is the set of
decision problems solvable by a polynomial-time nondeterministic Turing machine which accepts the
input iff more than half of the computation paths accept. MAJSAT is the problem of deciding, given a
boolean formulap over variablesx , if there are more than/ /-1 satisfying assignments to

Next, we show that ifj be a constant, the upper-bounding problems for min-entropy and guessing-
entropy becomé&lP-complete.

Theorem 3.18 Let q be a constant. Thet¥ e and Zce are NP-complete for loop-free boolean pro-
grams.

10 Quantitative Information Flow as Safety and Liveness Hyperproperties

NP-hardness is proven by a reduction frolTS which is aNP-complete problem. The proof th&fye

and % for a constant) are inNP follows from the fact that%ye and %cg arek-observable hyper-
properties for somk. We give the proof intuition for/ye. Recall thak-observable hyperproperties can

be reduced to 1-observable hyperproperties via self composition. Consequently, it is possible to decide
if the information flow of a given prograrl is greater tham by checking if the predicate of thasert
statement is violated for some inputs in the following program.

M'(H1,Hz,...,Hn) =
01 :=M(H1);02:=M(Hy);...;0n := M(Hp);

7777

wheren= |29| + 1. Let¢ be the weakest precondition ©f := M(Hj); Oz :=M(H2);...;On:=M(Hy)
with respect to the post conditiof) ;<1 m (Oi = Oj Ai # j). ThenME[U](M) > qiff —¢ is satisfiable.
Because a weakest precondition of a loop-free boolean program is a polynomial size boolean formula
over the boolean variables representing the irﬂmiecidingME[U](M) > qis reducible to SAT.

For boolean programs (with loops¥ie and_-%se arePSPACEcomplete, andZsg is PSPACEhard
(the tight upper-bound is open f¢#sg).

Theorem 3.19 %ye and %cg are PSPACE-complete for boolean programs.

Theorem 3.20 %sgis PSPACE-hard for boolean programs.

4 Safety Hyperproperties

Clarkson and Schneider [10] have proposed safety hyperproperties, a subclass of hyperproperties, as a
generalization of safety properties. Intuitively, a safety hyperproperty is a hyperproperty that can be
refuted by observing a finite set of finite traces.

Definition 4.1 (Safety Hyperproperties [10]) We say that a hyperproperty P is a safety hyperproperty
if for any set of traces 8 P, there exists a set of tracesdObs such that K S, andvS € Prop.T <
S=S¢P.

We classify some upper-bounding problems as safety hyperproperties.
Theorem 4.2 Uye and Usg are safety hyperproperties.

Next, we review the definition df-safety hyperproperties [10], which refines the notion of safety hy-
perproperties. Informally, ksafety hyperproperty is a hyperproperty which can be refuted by observing
k number of finite traces.

Definition 4.3 (K-Safety Hyperproperties [10]) We say that a hyperproperty P is a k-safety property
if for any set of traces & P, there exists a set of tracesdObs such that K S, |T| <k, andVS €
PropT <S =S ¢P.

Note that 1-safety hyperproperty is just the standard safety property, that is, a property that can be refuted
by observing a finite execution trace. The notiorkefafety hyperproperties first came into limelight
when it was noticed that non-interference is a 2-safety hyperproperty, but not a 1-safety hyperprop-
erty [29].

A k-safety hyperproperty can be reduced to a 1-safety hyperproperty by self compaosition [4, 12].

8For loop-free boolean programs, a weakest precondition can be constructed in polynomialtimé [14, 20].

H. Yasuoka & T. Terauchi 11

Theorem 4.4 ([10]) k-safety hyperproperty can be reducedltsafety hyperproperty by self composi-
tion.

We have shown in our previous work thizg,e and%e arek-safety hyperproperties when the bound
g is fixed to a constant.

Theorem 4.5 ([31]) Let q be a constantye is a | 2%] + 1-safety property.

Theorem 4.6 ([31]) Let g be a constantze is a LEngll_):J + 1-safety property.

The only hyperproperty that is both a safety hyperproperty and a liveness hyperpropé(tiss),
that is, the set of all traces [10]. Consequently, neithige nor e is a liveness hyperproperty.

We have also shown in the previous work that the upper-bounding problem for Shannon-entropy
based quantitative information flow is nokaafety hyperproperty, even wheris a constant.

Theorem 4.7 ([31]) Let q be a constantZsg is not a k-safety property for anyx 0.

4.1 Computational Complexities

We prove computational complexities of upper-bounding problems by utilizing their hyperproperty clas-
sifications. As in Section 3.3, we focus on boolean programs.
First, we show that wheqis a constantJye andUgg arecoNRcomplete.

Theorem 4.8 Let g be a constant. Theje and %se are coNP-complete for loop-free boolean pro-
grams.

coNPRhardness follows from the fact that non-interferenceadlP-hard [31]. ThecoNP part of the

proof is similar to theNP part of Theoremh 3.18, and uses the fact thai is k-safety for a fixedy and

uses self composition. By self composition, the upper-bounding problem can be reduced to a reachability
problem (i.e., an assertion failure is unreachable for any input). To dedte]dJ |(M) < g, we construct

the following self-composed prograkt’ from the given progranvl.

M/(Hl,HZ,...7Hn) =
Op :=M(H1); Oz := M(Hy);...; On := M(H);
assert(Vi jer,..n (Ci = Oj AT #)

wheren = [29] + 1. Then, the weakest precondition©f := M(H1); Oz := M(H2);...;On := M(Hy)
with respect to the post conditioy; jc(1,..m (Oi = Oj A # j) is valid iff ME[U](M) < q. Because
a weakest precondition of a loop-free boolean program is a polynomial size boolean formula, and the
problem of deciding a given boolean formula is valid isc@NP-complete problentve is in coNP.

Like the lower-bounding problem&je and % for boolean programs (with loops) aRSPACE
complete, and/sg is PSPACEhard.

Theorem 4.9 Ze and %e are PSPACE-complete for boolean programs.

Theorem 4.10 %sgis PSPACE-hard for boolean programs.

12 Quantitative Information Flow as Safety and Liveness Hyperproperties

5 Discussion

5.1 Bounding Domains

The notion of hyperproperty is defined over all programs regardless of their size. (For example, non-
interference is a 2-safety property for all programs and reachability is a safety property for all programs.)
But, it is easy to show that the lower bounding problems would becdnudServable” hyperproperties

if we constrained and bounded the input domains because then the size of the semantics (i.e., the number
of traces) of such programs would be bounded iy (and upper bounding problems would become
“k-safety” hyperproperties [31]). In this case, the problems are trivjél|yobservable hyperproperties.
However, these bounds are high for all but very small domains, and are unlikely to lead to a practical
verification method.

5.2 Observable Hyperproperties and Observable Properties

As remarked in[[10], observable hyperproperties generalize the notion of observable properties [1]. It
can be shown that there exists a non-empty observable property that is not a liveness property (e.g., the
set of all traces that starts with). In contrast, Theorein 3.6 states that every non-empty observable
hyperproperty is also a liveness hyperproperty. Intuitively, this follows because the hyperproperty ex-
tension relatior< allows the right-hand side to contain traces that does not appear in the left-hand side.
Therefore, for anyT € Obs there existsI’ € Prop that containsT and an evidence of the observable

hyperproperty.

5.3 Maximum of QIF over Distribution

Researchers have studied the maximum of QIF over the distribution. For exaimuheel capacity24,
22,[26] is the maximum of the Shannon-entropy based quantitative information flow over the distribution
(i.e., max, SHu]). Smith [28] showed that for any program without low-security inputs, the channel
capacity is equal to the min-entropy-based quantitative information flow, that is, 8] = ME[U].
Therefore, we obtain the same hyperproperty classifications and complexity results for channel capacity
asME[U].

Min-entropy channel capacitgnd guessing-entropy channel capactye respectively the maxi-
mums of min-entropy based and guessing-entropy based QIF over distributions (i.e ME{g} and
max, GE[u]). It has been shown that makE[u] = ME[U] [5] [1S] and may GE[u] = GE[U] [33],
that is, they attain their maximums when the distributions are uniform. Therefore, they have the same
hyperproperty classifications and complexitied/H§U| andGE[U |, which we have already analyzed in
this paper.

6 Related Work

éerry et al. [6] have investigated the computational complexity of Shannon-entropy based QIF. For-
mally, they have defined a Shannon-entropy based QIF for interactive boolean programs, and showed
that the explicit-state computational complexity of their lower-bounding problér$RACEcomplete.

In contrast, this paper's complexity results are “implicit” complexity results of bounding problems of
boolean programs (i.e., complexity relative to the syntactic size of the input) some of which are obtained
by utilizing their hyperproperties classifications.

H. Yasuoka & T. Terauchi 13

Clarkson and Schneider [10] have classified quantitative information flow problems via hyperprop-
erties. Namely, they have shown that the problem of deciding if the channel capacity of a given program
is g, is a liveness hyperproperty. And, they have shown that an upper-bounding problem befigfe
based QIF[Q] is a safety hyperproperty. (It is possible to refine their result to show that their problem for
deterministic programs is actually equivalent to non-interference, and therefore, is a 2-safety hyperprop-
erty [33].)

7 Conclusion

We have related the upper and lower bounding problems of quantitative information flow, for various
information theoretic definitions proposed in literature, to Clarkson and Schneider’'s hyperproperties.
Hyperproperties generalize the classical trace properties, and are thought to be more suitable for classi-
fying information flow properties as they are relations over sets of program traces. Our results confirm
this by giving a fine-grained classification and showing that it gives insights into the complexity of
the QIF bounding problems. One of the contributions is a new class of hyperprop&rbeservable
hyperproperty. We have shown thHabbservable hyperproperties are amenable to verification via self
composition.

References

[1] Samson Abramsky (1991)Domain Theory in Logical Form Ann. Pure Appl. Logic 51(1-2), pp. 1-77.
Available athttp://dx.doi.org/10.1016/0168-0072(91)90065-T.

[2] Michael Backes, Matthias Berg & Borisdpf (2011):Non-uniform distributions in quantitative information-
flow. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security,
ASIACCS '11, ACM, New York, NY, USA, pp. 367-375, doi:http://doi.acm.org/10.1145/1966913.1956960.
Available athttp://doi.acm.org/10.1145/1966913.1966960.

[3] Michael Backes, Boris Kpf & Andrey Rybalchenko (2009)Automatic Discovery and Quantification of
Information Leaks In: IEEE Symposium on Security and Privacy, IEEE Computer Society, pp. 141-153.
Available athttp://dx.doi.org/10.1109/SP.2009.18|

[4] Gilles Barthe, Pedro R. D’Argenio & Tamara Rezk (200%ecure Information Flow by Self-Composition
In: CSFW, IEEE Computer Society, pp. 100-114. Availabla&tp: //doi.ieeecomputersociety.org/
10.1109/CSFW.2004.17.

[5] Christelle Braun, Konstantinos Chatzikokolakis & Catuscia Palamidessi (2@@antitative Notions of
Leakage for One-try AttacksElectr. Notes Theor. Comput. Sci. 249, pp. 75-91. Available atttp://dx.
doi.org/10.1016/j.entcs.2009.07.085.

[6] Pavol Cerry, Krishnendu Chatterjee & Thomas A. Henzinger (201Tie Complexity of Quantitative In-
formation Flow Problems In: CSF, IEEE Computer Society, pp. 205-217. Availablehatp://doi.
ieeecomputersociety.org/10.1109/CSF.2011.21,

[7] David Clark, Sebastian Hunt & Pasquale Malacaria (20@)antified Interference for a While Language
Electr. Notes Theor. Comput. Sci. 112, pp. 149-166. Available atttp://dx.doi.org/10.1016/7.
entcs.2004.01.018l

[8] David Clark, Sebastian Hunt & Pasquale Malacaria (208/tatic analysis for quantifying information flow
in a simple imperative languagd. Comput. Secur. 15, pp. 321-371. Available afttp://dl.acm.org/
citation.cfm?id=1370628.1370629.

[9] Michael R. Clarkson, Andrew C. Myers & Fred B. Schneider (20@stief in Information Flow In: CSFW,
IEEE Computer Society, pp. 31-45. Availablénatp://dx.doi.org/10.1109/CSFW.2005. 10.

http://dx.doi.org/10.1016/0168-0072(91)90065-T
http://dx.doi.org/http://doi.acm.org/10.1145/1966913.1966960
http://doi.acm.org/10.1145/1966913.1966960
http://dx.doi.org/10.1109/SP.2009.18
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://doi.ieeecomputersociety.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://dx.doi.org/10.1016/j.entcs.2009.07.085
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://doi.ieeecomputersociety.org/10.1109/CSF.2011.21
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dx.doi.org/10.1016/j.entcs.2004.01.018
http://dl.acm.org/citation.cfm?id=1370628.1370629
http://dl.acm.org/citation.cfm?id=1370628.1370629
http://dx.doi.org/10.1109/CSFW.2005.10

14

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

Quantitative Information Flow as Safety and Liveness Hyperproperties

Michael R. Clarkson & Fred B. Schneider (2018)yperproperties Journal of Computer Security 18(6), pp.
1157-1210. Available &tttp://dx.doi.org/10.3233/JCS-2009-0393

Ellis S. Cohen (1977)information Transmission in Computational Systeins SOSP, pp. 133—-139. Avail-
able ahttp://doi.acm.org/10.1145/800214.806556

Adam Darvas, Reiner &hnle & David Sands (2005)A Theorem Proving Approach to Analysis of Secure
Information Flow In Dieter Hutter & Markus Ullmann, editorsSPC, Lecture Notes in Computer Science
3450, Springer, pp. 193-209. Availablebattp://dx.doi.org/10.1007/978-3-540-32004-3_20.

Dorothy Elizabeth Robling Denning (1982Lryptography and data securityAddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Cormac Flanagan & James B. Saxe (20@%oiding exponential explosion: generating compact verification
conditions In: POPL, pp. 193-205. Available atttp://doi.acm.org/10.1145/360204.360220.

Joseph A. Goguen & JésMeseguer (1982)Security Policies and Security Modelg: IEEE Symposium
on Security and Privacy, pp. 11-20.

Jonathan Heusser & Pasquale Malacaria (200®)plied Quantitative Information Flow and Statistical
Databases In Pierpaolo Degano & Joshua D. Guttman, editafermal Aspects in Security and Trust,
Lecture Notes in Computer Science 5983, Springer, pp. 96—-110. Availableltitp://dx.doi.org/10.
1007/978-3-642-12459-4_8.

Boris Kopf & David A. Basin (2007):An information-theoretic model for adaptive side-channel attatks
Peng Ning, Sabrina De Capitani di Vimercati & Paul F. Syverson, editoa@®4 Conference on Computer and
Communications Security, ACM, pp. 286—296. Available &ttp://doi.acm.org/10.1145/1315245.
1315282l

Boris Kopf & Andrey Rybalchenko (2010): Approximation and Randomization for Quantitative
Information-Flow Analysis In: CSF, IEEE Computer Society, pp. 3—14. Availablelattp://doi.
ieeecomputersociety.org/10.1109/CSF.2010.8|

Boris Kopf & Geoffrey Smith (2010): Vulnerability Bounds and Leakage Resilience of Blinded Cryp-
tography under Timing Attacks In: CSF, IEEE Computer Society, pp. 44-56. Availablettp:
//doi.ieeecomputersociety.org/10.1109/CSF.2010.11,

K. Rustan M. Leino (2005)Efficient weakest preconditionBif. Process. Lett. 93(6), pp. 281-288. Available
athttp://dx.doi.org/10.1016/j.1pl.2004.10.015.

Pasquale Malacaria (200Assessing security threats of looping construtidMartin Hofmann & Matthias
Felleisen, editorsPOPL, ACM, pp. 225-235. Available éittp://doi.acm.org/10.1145/1190216.
1190251l

Pasquale Malacaria & Han Chen (200Bggrange multipliers and maximum information leakage in different
observational modelsin Ulfar Erlingsson & Marco Pistoia, editor®?LAS, ACM, pp. 135-146. Available
athttp://doi.acm.org/10.1145/1375696.1375713.

James L. Massey (1994)Guessing and Entropy In: ISIT °94: Proceedings of the 1994 IEEE Interna-
tional Symposium on Information Theory, p. 204. Available abttp://dx.doi.org/10.1109/ISIT.
1994 .394764.

Stephen McCamant & Michael D. Ernst (2008)uantitative information flow as network flow capacity
Rajiv Gupta & Saman P. Amarasinghe, editdP&DI, ACM, pp. 193—-205. Available atttp://doi.acm.
org/10.1145/1375581.1375606

David A. Naumann (2006)From Coupling Relations to Mated Invariants for Checking Information Flow
In Dieter Gollmann, Jan Meier & Andrei Sabelfeld, editoBSORICS, Lecture Notes in Computer Science
4189, Springer, pp. 279-296. Availablematp://dx.doi.org/10.1007/11863908_18|

James Newsome, Stephen McCamant & Dawn Song (20@@asuring channel capacity to distinguish
undue influenceln Stephen Chong & David A. Naumann, editoRLAS, ACM, pp. 73—-85. Available at
http://doi.acm.org/10.1145/1554339.1554349

http://dx.doi.org/10.3233/JCS-2009-0393
http://doi.acm.org/10.1145/800214.806556
http://dx.doi.org/10.1007/978-3-540-32004-3_20
http://doi.acm.org/10.1145/360204.360220
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://dx.doi.org/10.1007/978-3-642-12459-4_8
http://doi.acm.org/10.1145/1315245.1315282
http://doi.acm.org/10.1145/1315245.1315282
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.8
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.11
http://dx.doi.org/10.1016/j.ipl.2004.10.015
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1190216.1190251
http://doi.acm.org/10.1145/1375696.1375713
http://dx.doi.org/10.1109/ISIT.1994.394764
http://dx.doi.org/10.1109/ISIT.1994.394764
http://doi.acm.org/10.1145/1375581.1375606
http://doi.acm.org/10.1145/1375581.1375606
http://dx.doi.org/10.1007/11863908_18
http://doi.acm.org/10.1145/1554339.1554349

H. Yasuoka & T. Terauchi 15

[27] Claude Shannon (1948% Mathematical Theory of CommunicatioBell System Technical Journal 27, pp.
379-423, 623-656. AvailableBttp://doi.acm.org/10.1145/584091.584093

[28] Geoffrey Smith (2009)0On the Foundations of Quantitative Information Flown Luca de Alfaro, editor:
FOSSACS, Lecture Notes in Computer Science 5504, Springer, pp. 288-302. Availabléhatp: //dx.doi.
org/10.1007/978-3-642-00596-1_21/.

[29] Tachio Terauchi & Alexander Aiken (2005%ecure Information Flow as a Safety Probleim Chris Hankin
& lgor Siveroni, editors:SAS, Lecture Notes in Computer Science 3672, Springer, pp. 352-367. Available
athttp://dx.doi.org/10.1007/115647662_24.

[30] Hiroshi Unno, Naoki Kobayashi & Akinori Yonezawa (20068Fombining type-based analysis and model
checking for finding counterexamples against non-interference Vugranam C. Sreedhar & Steve
Zdancewic, editors:PLAS, ACM, pp. 17-26. Available ehttp://doi.acm.org/10.1145/1134744.
1134750

[31] Hirotoshi Yasuoka & Tachio Terauchi (201@n Bounding Problems of Quantitative Information Flokw
Dimitris Gritzalis, Bart Preneel & Marianthi Theoharidou, editoFSSORICS, Lecture Notes in Computer
Science 6345, Springer, pp. 357-372. Availabléhatp: //dx.doi.org/10.1007/978-3-642-15497-3_
22,

[32] Hirotoshi Yasuoka & Tachio Terauchi (2010)Quantitative Information Flow - Verification Hard-
ness and Possibilities In: CSF, IEEE Computer Society, pp. 15-27. Available attp://doi.
ieeecomputersociety.org/10.1109/CSF.2010.9

[33] Hirotoshi Yasuoka & Tachio Terauchi (2011Pn Bounding Problems of Quantitative Information Flow
(Extended version) Journal of Computer Security 19(6), pp. 1029-1082. Available attp://dx.doi.
org/10.3233/JCS-2011-0437.

A Appendix

Figure 2: A summary of hyperproperty classifications

Fig[2 shows a summary of hyperproperty classifications.
e LH: the set of all liveness hyperproperties.

e OH: the set of all non-empty observable hyperproperties.

http://doi.acm.org/10.1145/584091.584093
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/11547662_24
http://doi.acm.org/10.1145/1134744.1134750
http://doi.acm.org/10.1145/1134744.1134750
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://dx.doi.org/10.1007/978-3-642-15497-3_22
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://doi.ieeecomputersociety.org/10.1109/CSF.2010.9
http://dx.doi.org/10.3233/JCS-2011-0437
http://dx.doi.org/10.3233/JCS-2011-0437

16 Quantitative Information Flow as Safety and Liveness Hyperproperties

e 30H: the set of all non-empty 3-observable hyperproperties.
e 50H: the set of all non-empty 5-observable hyperproperties.
e SH: the set of all safety hyperproperties.
e 2SH: the set of all 2-safety hyperproperties.
e 3SH: the set of all 3-safety hyperproperties.
e 5SH: the set of all 5-safety hyperproperties.
ZAve(1): Zue under the constant bound 1.
o %ce(1): Zse under the constant bound 1.
e Ywe(1): Zwe under the constant bound 1.
e %ce(1): %se under the constant bound 1.
¢ NI: the set of all non-interfering programs.

In general, for a constant bourl %ue(q) is in the class|29] + 1-OH and %ze(q) is in the class

L(Lg}ﬁlf:j +1-OH, and such classes are all containe®ir. Likewise, for a constant bourq) Zve(q)

is in the clasg 29| + 1-SH and%e(q) is in the clasg (ng‘flljgj + 1-SH, with such classes all contained
in SH.

A.1 Omitted Proof

Definition A.1
In(u, X, %) = {X € X | u(xX) = u(x)}|
Intuitively, In(u, X, X) is the order ok defined in terms oft.
Lemma A.2
Gu)(X) = Zy<i<x|it (%) = ZxexIn(u, X, X) 1 (X)
Proof: Trivial. O
Theorem[2.8. 1.) M is non-interfering iffM,0) € %sg. 2.) M is non-interfering ifiM,0) € Zue. 3.)

M is non-interfering ifflM,0) € ZcE.
Proof: LetO = {M(h,¢/) |[he HA? € L}.

e SE
(SeelT].)

e ME
- =
SupposeM is non-interfering. By definition, it suffices to show that

7 U](H) = 7[U](H[O)

That is,
mr?xU (h) = ZU (0) mr?xU (hlo)

]

H. Yasuoka & T. Terauchi 17

The fact thaiM is non-interfering implies that there exisfssuch that for anj, M(h) = o/,
andU (h,0') = U (h). Therefore, we have
U(h,0')

YoU(0)max,U(hjo) =max, o)

= max,U (h)
-«
We prove the contraposition. Suppddeis interfering. That is, there exist andh, such
thatM(h;) # M(hy). Leto; = M(h;) ando, = M(hy). We have

30U (0)max,U (h|o)
=3 0c0\{0y.0,) M U (h,0) + max,U (h,01) + max,U (h,02)

And,
mr?xU (h) = mhaxU (h,01)

Therefore, we havME[U|(M) > 0.
e GE
-=
SupposeM is non-interfering. By definition,

GE[U](M)
= YhIn(AN.U(R),H,h)U (h)
—SoSnIn(AN .U(N,0),H,h)U(h,o)
= YhIn(Ah.U(K),H, h)U (h)
—ShIn(Ah.U (W), H, h)U (h)
=0

since for allh, andoy such that) (hy,0,) > 0, for anyh{ ando’ € O\ {ox}, U (K, 0}) = 0.
-«

We prove the contraposition. Suppddeis interfering. That is, there exist andh, such

thatM(hy) # M(hy). Leto; = M(hy) andoz, = M(hy). By the definition,

GE[U](M)
= YhIn(Ah.U (), H,h)U (h)
—SoSnIn(AN.U(N,0),H, h)U(h,o)
= A+ ShIn(AN.U(K),H, h)U (h)
—B—3S,>nIn(AN.U(K,0),H,h)U(h,o0)
where
A= YhIn(ANW.U(N),H,h)U (h)
B= 206@ Zh I n(lh’U (h,a 0), Ha h)U (ha 0)
Trivially, we haveA > B and

S hIN(AN U (), H, h)U (h)
> o ShIN(AN.U (K, 0),H,h)U (h,0)

Therefore, we hav&E[U](M) > 0.

18 Quantitative Information Flow as Safety and Liveness Hyperproperties

O
Hereafter, we write sets of pairs of input and output trace to mean programs. That is, we write

(h,0) € M iff M(h) =o.

Lemma A.3 For any rational numbers g, for any traces 4 Obs, there exist Mand M’ such that

T<M,T<M" SEU](M') <q, and SEU](M") > q.

Proof: Firstly, we prove that there exisk4’ such thaff <M’ andSEHU](M’) < q. LetMy be a program
such thatMr| = |T| andT < Mr. We construct the following programs.

M’ =MruU{(h,0) |he H'}
M1 = {(h,0) |he H}U{(h,0) |he H'}

where
e H =domM),
e 'NH =0,

for anyh andh’ in H, h # W = oy, # oy,
foranyh € H', 0 £ M(h), and

e foranyh' € H', 0 # op.
It follows that

SHUJ(M') < SEU](My)

And, we have
SEUI(M _ || | H | |E| [|| + B
BU](M1) = T H og(|H| + [H'[) + E+mE] '°9 @

- 0 (|H]—)

Therefore, there existd’ such thaSEHU](M') < q.
Finally, we prove that there exisk8” such thaff <M” andSHU](M”) > g. Let Mt be a program
such thatMr| = |T| andT < Mr. We construct the following programs.

M” =My U{(h,on) |he H'}
My = {(h,0) | h € H}U{(h,on) | h € '}

where
e H=domM),
e HNH =0,

for anyh andh’ in H', h# i = o, # oy, and
e foranyh’ € ', for anyh € H, oy # M(h)
It follows that

SHUJ(M") > SHU](My)

And, we have

SEU)(M1) = b log([H] + [H]) + g/ her log M
— (‘H” — oo)
Therefore, there existd’ such thaSEU](M") > q.
O

H. Yasuoka & T. Terauchi 19

Theorem[3.3. %sg, Yue, and Zce are liveness hyperproperties.
Proof: The fact thatZseis a liveness hyperproperty follows from LemmaA.3. The resultsfe and
% follow from Theorenj 3.7, Theorem 3.8, and Theofen) 816.

Theorem[3.4. %sgis a liveness hyperproperty.
Proof: Straightforward by Lemmja Al 3]

Theorem[3.7. Ak is a observable hyperproperty.

Proof: Let M be a program and be a rational number such th@l,q) € -Zue. By the definition of the
equivalence relation on outputs, there exists Obssuch thaME[U](T) = ME[U](M). By Lemm4 3.15,
for any program®/’, if T <M’, thenME[U](M’) > q. Therefore, %k is a observable hyperproperty.

Lemma A.4 Let M be a program. Then, we have (BE(M)
inputs, andH, = {h| o= M(h)}.

5 — 25, |Ho|? where n is the number of

Proof: By the definition, we have

|
QQ

GEU](M) []) =4[U](H|O)

(H
In(U, H, h)U (h)
U (o)

1) -

Il
M
5

— Shin(Ah.U(K|o),Ho, h)U (h|o)
S0} f&d [Hol ([Ho| + 1)

2n ZO‘H0|2
S o Hol?

=]

Il
| + NI

NISNIS Sl

20
(n+
1
2
1
2n
O

Lemma A.5 Let M and M be programs such thdM’]] = [M]Ju{(h,0)} and h¢ dom([[M]]). Then, we
have GEU](M) < GE[U](M’).

Proof: We proveGE[U](M’) — GEU](M) > 0. Letn= |[M]|, O = ran([M])), H = domM), and
Ho = domh| o= M(h)).
By LemmdgA.4, we have

= 21— gy (B4 (|Ho| +2)?) — § + 51 (B+ [Ho[?)
= 3+ sy (—N(B+ ([Ho| + 1)%) + (n+1)(B+ [Ho)
n(n+1)—n(|Ho|+1) +B+(n+1)(|Ho|)

n
2n(n+ 1)(

- 2n(ri+1) (n* — 2n[Ho| + ‘Ho|2+ B)

= Zn(n)((n_ ’HOD

>0

whereB = 5 50\ (o} |Ho|? andHy = {h| o = M(h)}. O

Theorem[3.8. Z:e is a observable hyperproperty.

Proof: Let M be a program and be a rational number such th@, q) € Zce. By the definition of the
equivalence relation on outputs, there exists Obssuch thaGE[U](T) = GE[U](M). By Lemmd A5,
for any programd/’, if T <M’, thenGE[U](M’) > q. Therefore, %z is a observable hyperproperty.

20 Quantitative Information Flow as Safety and Liveness Hyperproperties

Theorem[3.9. NeitherZsg nor Zsgis a observable hyperproperty.
Proof: Straightforward by Lemmia Al 3]

Theorem[3.13. Neither Ay nor Zce is a k-observable hyperproperty for any k.
Proof:

o LvE

For a contradiction, suppos&ye is ak-observable hyperproperty. Lt be a program that has
k+ 1 disjoint output traces. Then, We haiM,log(k+ 1)) € “ue. However, for anyT € Obs
such thatT| < kandT <M, ME[U](T) < logk. This leads to a contradiction.

o ZGE

For a contradiction, suppos&se is ak-observable hyperproperty. Lt be a program that has
k+ 1 disjoint output traces. Then, We hajid, 2) € %ce. However, for anyT € Obssuch that
IT| <kandT <M, GE[U](T) < " 1 This leads to a contradiction.

a

Theorem[3.14. Let q be a constant. Ther¥e is a 29| + 1-observable hyperproperty.

Proof: LetM be a program such théltl, q) € %ye. By Lemmd 3.1p, it must be the case than(M)| >
| 29| +1 whereran(M) is the range oM. Then, there exist6 <M such thatT| < |29|+1 andran(T) >
|29] +1. Then, by Lemm 3.5, it follows that for any prograh such thaff < M’, (M’,q) € L.
Therefore, %k is a|2%] + 1-observable propertyd

LemmaA.6 Let M be a program such that G&](M) > q, YM'.M’ C M = GE[U|(M’) < q, and
vM”. (GE[U]("y >agA (VM .M C M" = GEU](M') <q)) = M| > |[M”|. It must be the case that
‘M| < LLq +1— qJ +1
Proof: First, we proveM has exactly two outputs. Letbe an integer such that= |[M|. If M returns only
one output, we haveE[U](M) = 0. ThereforeM must have more than 1 output, sirG&U]|(M) > .
We have for any/

wherei = ¥ 5co)\ (o} [Ho| andB = ¥ oco)\ (0} |Ho|?. BecauseSE[U](M) > g, we havei > g. Then, we
have
GEUJ(M) >q iffi—BH >q

B+|2
iff n > 20-9)

By the definition ofM, we havevM’.M’ ¢ M = GE[U](M’) < q. LetM = M\ {(I,0')} whereM(h') =
o'. Then, we have

GEU](M)<q iffi— (B+' <q

iff n< 5(5+')+1

Hence, we have
B+i2 B+i2
<n<

200 " S26-g

H. Yasuoka & T. Terauchi 21

T(y) =
_
case (H, v, H)
— —
when (true,true,) then O := H ;0 :=true; 0" := true
=g —
when (true,false, _) then O :=true; O ;= true; 0" := false
— =g —
when (false, _,true) then O :=true; O := false; 0" := false

else
if Hy
— —
then O := H ;O :=false; 0" := true
—
else O :=true: O := false; 0" := false

whereH’, H= Hi,...,Hn, andQ’, O/, O are distinct.

Figure 3: The Loop-free Boolean Program for Theofem|3.17.

BecauseB = ¥ oc0)\ (o} |Hol? andi = S oc0) (o} [Hol|, the cargesh occurs wherB = i2. That is, when

M has exactly two outputs. Next, we projd| < | qJlel] +1. Recall thal = § ocg)\ (o} [Hol. Let
j =n—i. We have

GEU|(M) =i- é(+i2)
In
=(0-0)- it
= J — =
>q

This means that > g. Recall thaM = M\ {(',0')} whereM(h) = d'. Then, we have

GEU](M) <q iffi—:5<q
iff ng%—i—l

Becausen is an integer, we have < L J—|—1 andn < L, |+1. Letf = —+1_ '2q+1. By
elementary real analysis, it can be shown that for mtegam;zlj such that > g andj > g, f attains its

maximum value when= |q] +1 or j = |q] + 1. Therefore, it follows thafM| =n < Li(LcLuJH >qJ +1.0

Theorem[3.16. Let g be a constant. Therg is a L(LLJJH)qj + 1-observable hyperproperty.
Proof: Let M be a program and be a ratlonal number such th@l, q) € Zce. By Lemmd A, there
existsT such thatT <M and|T| < L J +1. By Lemm , for anyM’ such thatT <M,

GEU](M') >q. O

lal +1 q

Theorem[3.17T. Aue and % are PP-hard for loop-free boolean programs.
Proof:
o AvE
We prove by reducing MAJSAT t&e. Let ¢ be a boolean formula. Letbe the rational number

such that
q =MEU|(T(y))
—=log(2™ 141421 1)
=n-1

22 Quantitative Information Flow as Safety and Liveness Hyperproperties

wherenis the number of boolean variablesdinandy is a boolean formulas such th&8AT(y) =
21 We have
ME[U](T(¢)) >q <« ME[UJ(T(¢)) < MEU](T(y))
S #SAT(9) > 20141
< #SAT(¢) > 201
< ¢ € MAJSAT

by Lemmag 3.1p. Therefore, we can decidgit MAJSAT by deciding ifME[U](T(¢)) < a.
Note thatT (¢) andg can be constructed in time polynomial in the sizepofTherefore, this is a
reduction from MAJSAT taZ4ue.

o ZGE

We prove by reducing MAJSAT, which isRP-complete problem, tdZge. Let ¢ be a boolean
formula. Letq be the rational number such that

qg =GEO:=yVH)
2n+l

2 L (IM~L(true) >+ |M~2(false)|?)
2n+2<(2n 1) 2n+1 on— 1)2)

wheren is the number of boolean variablesgnandy is a boolean formula such thaSAT(y) =
2"-1 andH be a boolean variable that does not appear end¢. We have

GEU](O:=¢VH)>q < GEU|(O:=¢VH)>GEU](O:=yVH)
< GEU](O:=¢VH)>q
< #SAT(¢) > #SAT(y)

& #SAT(9) > 201

& ¢ € MAJSAT

by Lemmd A5. Therefore, we can decidgif MAJSAT by deciding ifGE[U](O:=¢ VH) > q.
Note thatO := ¢ VV H andq can be constructed in time polynomial in the siz@ofTherefore, this
is a reduction from MAJSAT t&Ge.

a

Theorem[3.18. Let q be a constant. The¥jye and.%se are NP-complete for loop-free boolean pro-
grams.
Proof:

o AvE
Zume is NP-hardness follows from the fact thetE[U (O := ¢ AH) > 0 iff ¢ € SAT whereH is a
boolean variable that does not appeagin
Next, we show that4ue € NP. Recall thatk-observable hyperproperties can be reduced to 1-
observable hyperproperties via self composition. We can decide if the information flow of a given
programM is greater tharmg by checking if the predicate of thessert statement fails for some
inputs in the following program.

M/<H1’H2,...,Hn) =
Op :=M(H1); Oz := M(Hy);...; On := M(Hn);
assert(V jeqr,..n (Ci = Oj AT #)

H. Yasuoka & T. Terauchi 23

wheren = |29] + 1. That is, if for some inputs, the weakest preconditiolMdfdoes not hold,

then ME[U](M) > g. Since weakest preconditions of loop-free boolean programs are boolean
formulae over boolean variables representing inputs, we can reduce the problem of deciding if
ME[U](M) > qto SAT.

o ZGE

We have thaGE[U]|(O:= ¢ AH) > 0iff ¢ € SAT whereH is a variable that does not appeagin
It follows that %sE is NP-hard.

Next, we showZse € NP

M/<H1’H2,...,Hn) =
O1:=M(H1); 02 :=M(Hz);...;On = M(Hn);
assert(3,[{0i | O =0} < 2n(5+q))

wheren = L&Tfll_);j + 1H That is, if for some inputs, the weakest preconditiorvfdoes not
hold, thenGE[U|(M) > g. Since weakest preconditions of loop-free boolean programs are boolean
formulae over boolean variables representing inputs, we can reduce the problem of deciding if
GE[U](M) > qto SAT.

a

Theorem A.7 Checking non-interference is PSPACE-complete for boolean programs.

Proof: Straightforward from the fact that the reachability for boolean programs is PSPACE-conplete.

Theorem[3.19. Aue and %ce are PSPACE-complete for boolean programs.
Proof: PSPACEhardness follows from Theorém 2.8 and Theotem A.7.

Next, we show thatzye € PSPACE To prove thatME[U](M) > q, it suffices to show that the
number of outputs is greater tha®?| + 1. Letn be the number of inputs. The number of outputs can
be enumerated in polynomial space, because the number of outputs is less than or €tuatdatie
problem of deciding if a program has a particular output can be solved in polynomial space. Therefore,
we have%ue € PSPACE

Finally, we show thatZge € PSPACE By Lemmd A.4, we havg , [Ho|? < 2n(5 +q) iff GE[U](M) >
0. Because , |H,|2 can be calculated in polynomial space, it follows the resuit.

Theorem[4.2. Uye and Usg are safety hyperproperties.
Proof: Straightforward by Lemmfa 3.1L5 and Lemma JATS.

Theorem[4.8. Let q be a constant. Thefje and % are coNP-complete for loop-free boolean pro-
grams.
Proof: By the similar manner to Theorgm 3|19, we obtain the restits.

Theorem[4.9. e and % are PSPACE-complete for boolean programs.
Proof: This theorem is proven in the similar manner to Thedrem|319.

9Technically, the predicate of thessert statement is represented by a DNF of equalities @er Therefore, the self-
composed program can be constructed in time linear in the size of the original program.

24

Quantitative Information Flow as Safety and Liveness Hyperproperties

evVeo)=V

(X:=€,0)— O[X+— V]|

ev(e o) = true (Mg,0) — o’

(if ethen Mg else M1,0) — o’

eve o) = false (My,0) — o'

(if ethen Mg else M3,0) — o’

eve o) = false

(vhileedoM,0) — 0o

eve o) = true (M,0) — o” (while edo M,0”) — o’

(whileedoM,0) — o'

(skip,0) — ©

(M,G) — o (M/,GH) N
(M;M',0) — o’

Figure 4: The semantics of boolean programs

	Introduction
	Preliminaries
	Quantitative Information Flow
	Bounding Problems
	Non Interference

	Liveness Hyperproperties
	Observable Hyperproperties
	K-Observable Hyperproperties
	Computational Complexities

	Safety Hyperproperties
	Computational Complexities

	Discussion
	Bounding Domains
	Observable Hyperproperties and Observable Properties
	Maximum of QIF over Distribution

	Related Work
	Conclusion
	Appendix
	Omitted Proof

