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Abstract—Researchers have proposed formal definitions of
quantitative information flow based on information theoretic
notions such as the Shannon entropy, the min entropy, the
guessing entropy, and channel capacity. This paper investigates
the hardness and possibilities of precisely checking and infer-
ring quantitative information flow according to such definitions.

We prove that, even for just comparing two programs on
which has the larger flow, none of the definitions is ak-
safety property for any k, and therefore is not amenable
to the self-composition technique that has been successfully
applied to precisely checking non-interference. We also show
a complexity theoretic gap with non-interference by proving
that, for loop-free boolean programs whose non-interference is
coNP-complete, the comparison problem is #P-hard for all of
the definitions.

For positive results, we show that universally quantifying the
distribution in the comparison problem, that is, comparing two
programs according to the entropy based definitions on which
has the larger flow for all distributions, is a 2-safety problem
in general and is coNP-complete when restricted for loop-free
boolean programs. We prove this by showing that the problem
is equivalent to a simple relation naturally expressing the fact
that one program is more secure than the other. We prove that
the relation also refines the channel-capacity based definition,
and that it can be precisely checked via the self-composition
as well as the “interleaved” self-composition technique.

I. I NTRODUCTION

We consider programs containing high security inputs and
low security outputs. Informally, the quantitative information
flow problem concerns the amount of information that an
attacker can learn about the high security input by executing
the program and observing the low security output. The
problem is motivated by applications in information security.
We refer to the classic by Denning [12] for an overview.

In essence, quantitative information flow measureshow
secure, or insecure, a program is. Thus, unlike non-
interference [14], that only tells whether a program is
completely secure or not completely secure, a definition of
quantitative information flow must be able to distinguish two
programs that are both interferent but have different degrees
of “secureness.”

For example, consider the following two programs:

M1 ≡ if H = g then O := 0 else O := 1
M2 ≡ O := H

In both programs,H is a high security input andO is
a low security output. ViewingH as a password,M1 is
a prototypical login program that checks if the guessg
matches the password.1 By executingM1, an attacker only
learns whetherH is equal tog, whereas she would be able
to learn the entire content ofH by executingM2. Hence, a
reasonable definition of quantitative information flow should
assign a higher quantity toM2 than toM1, whereas non-
interference would merely say thatM1 and M2 are both
interferent, assuming that there are more than one possible
value ofH.

Researchers have attempted to formalize the definition of
quantitative information flow by appealing to information
theory. This has resulted in definitions based on the Shannon
entropy [12], [7], [19], the min entropy [29], the guessing
entropy [16], [1], and channel capacity [22], [20], [26].
Much of the previous research has focused on information
theoretic properties of the definitions and approximate (i.e.,
incomplete and/or unsound) algorithms for checking and
inferring quantitative information flow according to such
definitions.

In this paper, we give a verification theoretic and com-
plexity theoretic analysis of quantitative information flow
and investigate precise methods for checking quantitative
information flow. In particular, we study the followingcom-
parison problem: Given two programsM1 andM2, decide
if X (M1) ≤ X (M2). HereX (M) denotes the information
flow quantity of the programM according to the quantitative
information flow definitionX where X is either SE [µ]
(Shannon-entropy based with distributionµ), ME [µ] (min-
entropy based with distributionµ), GE [µ] (guessing-entropy
based with distributionµ), or CC (channel-capacity based).
Note that, obviously, the comparison problem is no harder
than actually computing the quantitative information flow as
we can compare the two numbers once we have computed
X (M1) andX (M2).

Concretely, we show the following negative results, where
X is CC , SE [µ], ME [µ], or GE [µ] with µ uniform.

• Checking if X (M1) ≤ X (M2) is not a k-safety

1Here, for simplicity, we assume thatg is a program constant. See
Section II for modeling attacker/user (i.e., low security) inputs.



property [30], [9] for anyk.
• Restricted to loop-free boolean programs, checking if
X (M1) ≤ X (M2) is #P-hard.

The results are in stark contrast to non-interference which
is known to be a2-safety property in general [3], [11]
(technically, for the termination-insensitive case2) and can be
shown to be coNP-complete for loop-free boolean programs
(proved in Section III-C). (#P is known to be as hard as the
entire polynomial hierarchy [31].) The results suggest that
precisely inferring (i.e., computing) quantitative information
flow according to these definitions would be harder than
checking non-interference and may require a very different
approach (i.e., not self composition [3], [11], [30]).

We also give the following positive results which show
that checking if the quantitative information flow of one pro-
gram is larger than the other for all distributions according
to the entropy-based definitions is easier. Below,Y is SE ,
ME , or GE .

• Checking if ∀µ.Y[µ](M1) ≤ Y[µ](M2) is a 2-safety
property.

• Restricted to loop-free boolean programs, checking if
∀µ.Y[µ](M1) ≤ Y[µ](M2) is coNP-complete.

These results are proven by showing that the prob-
lems ∀µ.SE [µ](M1) ≤ SE [µ](M2), ∀µ.ME [µ](M1) ≤
ME [µ](M2), and ∀µ.GE [µ](M1) ≤ GE [µ](M2) are all
actually equivalent to a simple2-safety relationR(M1,M2).
We also show that this relation refines the channel-capacity
based quantitative information flow, that is, ifR(M1,M2)
thenCC (M1) ≤ CC (M2).

The fact thatR(M1,M2) is a 2-safety property implies
that it can be reduced to a safety problem via self compo-
sition. This leads to a new approach to precisely checking
quantitative information flow that leverages recent advances
in automated software verification [2], [15], [24], [4]. Briefly,
given M1 andM2, R(M1,M2) means thatM1 is at least
as secure asM2 for all distributions while¬R(M1,M2)
means that there must be a distribution in whichM1 is less
secure thanM2, according to the entropy-based definitions
of quantitative information flow. Therefore, by deciding
R(M1,M2), we can measure the security of the program
M1 relative to anotherspecificationprogramM2. Note that
this is useful even whenM1 andM2 are “incomparable”
by R, that is, when¬R(M1,M2) and ¬R(M2,M1). See
Section IV-B for the details.

The rest of the paper is organized as follows. Section II
reviews the existing information-theoretic definitions of
quantitative information flow. Section III proves the hardness
of their comparison problems and thus shows the hardness of
precisely inferring quantitative information flow according
to these definitions. Section IV introduces the relationR

2We restrict to terminating programs in this paper. (The termination
assumption is nonrestrictive because we assume safety verification as a
blackbox routine.)

and proves it equivalent to the comparison problems for
the entropy-based definitions with their distributions uni-
versally quantified. The section also shows that this is a
2-safety property and is easier to decide than the non-
universally-quantified comparison problems, and suggests
a self-composition based method for precisely checking
quantitative information flow. Section V discusses related
work, and Section VI concludes. Appendix A contains the
supporting lemmas and definitions for the proofs appearing
in the main text. The omitted proofs appear in Appendix B.

II. PRELIMINARIES

We introduce the information theoretic definitions of
quantitative information flow that have been proposed in
literature. First, we review the notion of theShannon en-
tropy [28], H[µ](X), which is the average of the informa-
tion content, and intuitively, denotes the uncertainty of the
random variableX.

Definition 2.1 (Shannon Entropy): LetX be a random
variable with sample spaceX and µ be a probability
distribution associated withX (we write µ explicitly for
clarity). The Shannon entropy ofX is defined as

H[µ](X) =
∑
x∈X

µ(X = x) log
1

µ(X = x)

(The logarithm is in base 2.)
Next, we defineconditional entropy. Informally, the condi-
tional entropy ofX given Y denotes the uncertainty ofX
after knowingY .

Definition 2.2 (Conditional Entropy): LetX andY be
random variables with sample spacesX andY, respectively,
and µ be a probability distribution associated withX and
Y . Then, the conditional entropy ofX given Y , written
H[µ](X|Y ) is defined as

H[µ](X|Y ) =
∑
y∈Y

µ(Y = y)H[µ](X|Y = y)

where

H[µ](X|Y = y)

=
∑
x∈X

µ(X = x|Y = y) log
1

µ(X = x|Y = y)

µ(X = x|Y = y) =
µ(X = x, Y = y)

µ(Y = y)

Next, we define (conditional) mutual information. Intu-
itively, the conditional mutual information ofX and Y
givenZ represents the mutual dependence ofX andY after
knowingZ.

Definition 2.3 (Mutual Information): Let X,Y and Z
be random variables andµ be an associated probability
distribution.3 Then, the conditional mutual information of

3We abbreviate sample spaces of random variables when they are clear
from the context.



X and Y givenZ is defined as

I[µ](X;Y |Z) = H[µ](X|Z)−H[µ](X|Y, Z)
= H[µ](Y |Z)−H[µ](Y |X,Z)

LetM be a program that takes a high security inputH and
a low security inputL, and gives the low security outputO.
For simplicity, we restrict to programs with just one variable
of each kind, but it is trivial to extend the formalism to
multiple variables (e.g., by letting the variables range over
tuples). Also, for the purpose of the paper, unobservable
(i.e., high security) outputs are irrelevant, and so we assume
that the only program output is the low security output.
Let µ be a probability distribution over the values ofH
and L. Then, the semantics ofM can be defined by the
following probability equation. (We restrict to terminating
deterministic programs in this paper.)

µ(O = o) =
∑

h, ` ∈ H, L
M(h, `) = o

µ(H = h, L = `)

Note that we writeM(h, `) to denote the low security output
of the programM given inputsh and `. Now, we are
ready to introduce the Shannon-entropy based definition of
quantitative information flow (QIF) [12], [7], [19].

Definition 2.4 (Shannon-Entropy-based QIF): Let M
be a program with a high security inputH, a low security
inputL, and a low security outputO. Letµ be a distribution
overH and L. Then, the Shannon-entropy-based quantita-
tive information flow is defined

SE [µ](M) = I[µ](O;H|L)
= H[µ](H|L)−H[µ](H|O,L)

Intuitively, H[µ](H|L) denotes the initial uncertainty know-
ing the low security input andH[µ](H|O,L) denotes the
remaining uncertainty after knowing the low security output.

As an example, consider the programsM1 andM2 from
Section I. For concreteness, assume thatg is the value01
andH ranges over the space{00, 01, 10, 11}. Let U be the
uniform distribution over{00, 01, 10, 11}, that is,U(h) =
1/4 for all h ∈ {00, 01, 10, 11}. The results are as follows.

SE [U ](M1) = H[U ](H)−H[U ](H|O)
= log 4− 3

4 log 3
≈ .81128

SE [U ](M2) = H[U ](H)−H[U ](H|O)
= log 4− log 1
= 2

Consequently, we have thatSE [U ](M1) ≤ SE [U ](M2), but
SE [U ](M2) 6≤ SE [U ](M1). That is,M1 is more secure
thanM2 (according to the Shannon-entropy based definition
with uniformly distributed inputs), which agrees with our
intuition.

Let us recall the notion of non-interference [10], [14].

Definition 2.5 (Non-intereference): A program M is
said to be non-interferent iff for anyh, h′ ∈ H and ` ∈ L,
M(h, `) = M(h′, `).

It is worth noting that non-interference can be formalized
as a special case of the Shannon-entropy based quantitative
information flow where the flow quantity is zero.

Theorem 2.6: Let M be a program that takes high-
security inputH, low-security inputL, and returns low-
security outputO. Then,M is non-interferent if and only if
∀µ.SE [µ](M) = 0.

The above theorem is complementary to the one proven by
Clark et al. [5] which states that for anyµ such thatµ(H =
h, L = `) > 0 for all h ∈ H and ` ∈ L, SE [µ](M) = 0 iff
M is non-interferent.

Next, we introduce themin entropy, which Smith [29]
recently suggested as an alternative measure for quantitative
information flow.

Definition 2.7 (Min Entropy): LetX andY be random
variables, andµ be an associated probability distribution.
Then, the min entropy ofX is defined

H∞[µ](X) = log
1

V[µ](X)

and the conditional min entropy ofX givenY is defined

H∞[µ](X|Y ) = log
1

V[µ](X|Y )

where

V[µ](X) = maxx∈X µ(X = x)
V[µ](X|Y = y) = maxx∈X µ(X = x|Y = y)

V[µ](X|Y ) =
∑

y∈Y µ(Y = y)V[µ](X|Y = y)

Intuitively, V[µ](X) represents the highest probability that
an attacker guessesX in a single try. We now define the min-
entropy-based definition of quantitative information flow.

Definition 2.8 (Min-Entropy-based QIF): Let M be a
program with a high security inputH, a low security input
L, and a low security outputO. Let µ be a distribution
over H and L. Then, the min-entropy-based quantitative
information flow is defined

ME [µ](M) = H∞[µ](H|L)−H∞[µ](H|O,L)

Whereas Smith [29] focused on programs lacking low
security inputs, we extend the definition to programs with
low security inputs in the definition above. It is easy to
see that our definition coincides with Smith’s for programs
without low security inputs. Also, the extension is arguably
natural in the sense that we simply take the conditional
entropy with respect to the distribution over the low security
inputs.

Computing the min-entropy based quantitative informa-
tion flow for our running example programsM1 andM2



from Section I with the uniform distribution, we obtain,

ME [U ](M1) = H∞[U ](H)−H∞[U ](H|O)
= log 4− log 2
= 1

ME [U ](M2) = H∞[U ](H)−H∞[U ](H|O)
= log 4− log 1
= 2

Again, we have thatME [U ](M1) ≤ ME [U ](M2) and
ME [U ](M2) 6≤ ME [U ](M1), and soM2 is deemed less
secure thanM1.

The third definition of quantitative information flow
treated in this paper is the one based on the guessing
entropy [21], that is also recently proposed in literature [16],
[1].

Definition 2.9 (Guessing Entropy): Let X and Y be
random variables, andµ be an associated probability dis-
tribution. Then, the guessing entropy ofX is defined

G[µ](X) =
∑

1≤i≤m

i× µ(X = xi)

where {x1, x2, . . . , xm} = X and ∀i, j.i ≤ j ⇒ µ(X =
xi) ≥ µ(X = xj).

The conditional guessing entropy ofX givenY is defined

G[µ](X|Y ) =
∑
y∈Y

µ(Y = y)
∑

1≤i≤m

i× µ(X = xi|Y = y)

where {x1, x2, . . . , xm} = X and ∀i, j.i ≤ j ⇒ µ(X =
xi|Y = y) ≥ µ(X = xj |Y = y).

Intuitively, G[µ](X) represents the average number of
times required for the attacker to guess the value ofX. We
now define the guessing-entropy-based quantitative informa-
tion flow.

Definition 2.10 (Guessing-Entropy-based QIF):Let
M be a program with a high security inputH, a low
security inputL, and a low security outputO. Let µ be
a distribution overH and L. Then, the guessing-entropy-
based quantitative information flow is defined

GE [µ](M) = G[µ](H|L)− G[µ](H|O,L)

Like with the min-entropy-based definition, the previous
research on guessing-entropy-based quantitative information
flow only considered programs without low security in-
puts [16], [1]. But, it is easy to see that our definition with
low security inputs coincides with the previous definitions
for programs without low security inputs. Also, as with
the extension for the min-entropy-based definition, it simply
takes the conditional entropy over the low security inputs.

We testGE on the running example from Section I by
calculating the quantities for the programsM1 andM2 with

the uniform distribution.

GE [U ](M1) = G[U ](H)− G[U ](H|O)
= 5

2 −
7
4

= 0.75

GE [U ](M2) = G[U ](H)− G[U ](H|O)
= 5

2 − 1
= 1.5

Therefore, we again have thatGE [U ](M1) ≤ GE [U ](M2)
andGE [U ](M2) 6≤ GE [U ](M1), and soM2 is considered
less secure thanM1, even with the guessing-entropy based
definition with the uniform distribution.

The fourth and the final existing definition of quantitative
information flow that we introduce in this paper is the one
based onchannel capacity[22], [20], [26], which is simply
defined to be the maximum of the Shannon-entropy based
quantitative information flow over the distribution.

Definition 2.11 (Channel-Capacity-based QIF):Let
M be a program with a high security inputH, a low
security inputL, and a low security outputO. Then, the
channel-capacity-based quantitative information flow is
defined

CC (M) = max
µ
I[µ](O;H|L)

Unlike the Shannon-entropy based, the min-entropy
based, and the guessing-entropy based definitions, the
channel-capacity based definition of quantitative information
flow is not parameterized by a distribution over the inputs.
As with the other definitions, let us test the definition on the
running example from Section I by calculating the quantities
for the programsM1 andM2:

CC (M1) = maxµ I[µ](O;H)
= 1

CC (M2) = maxµ I[µ](O;H)
= 2

As with the entropy-based definitions (with the uniform
distribution), we have thatCC (M1) ≤ CC (M2) and
CC (M2) 6≤ CC (M1), that is, the channel-capacity based
quantitative information flow also says thatM2 is less secure
thanM1.

III. H ARDNESS OFCOMPARISONPROBLEMS

We investigate the hardness of deciding the following
comparison problemCSE [µ]: Given programsM1 andM2

having the same input domain, decide ifSE [µ](M1) ≤
SE [µ](M2). Because we are interested in hardness, we focus
on the case whereµ is the uniform distributionU . That
is, the results we prove for the specific case applies to the
general case. Also note that the comparison problem is no
harder than actually computing the quantitative information
flow because we can compareSE [µ](M1) andSE [µ](M2)
if we know their actual values.



Likewise, we study the hardness of the compar-
ison problem CME [µ], defined to be the problem
ME [µ](M1) ≤ ME [µ](M2), CGE [µ], defined to be the
problemGE [µ](M1) ≤ GE [µ](M2), andCCC , defined to
be the problemCC (M1) ≤ CC (M2). As with CSE [µ], we
require the two programs to share the same input domain
for these problems.

We show that none of these comparison problems arek-
safety problems for anyk. Informally, a program property is
said to be ak-safetyproperty [30], [9] if it can be refuted by
observingk number of (finite) execution traces. Ak-safety
problem is the problem of checking ak-safety property.
Note that the standard safety property is a1-safety property.
An important property of ak-safety problem is that it can
be reduced to a standard safety (i.e.,1-safety) problem,
such as the unreachability problem, via a simple program
transformation calledself composition[3], [11].

It is well-known that non-interference is a2-safety prop-
erty,4 and this has enabled its precise checking via a
reduction to a safety problem via self composition and
piggybacking on advances in automated safety verification
methods [30], [25], [32]. Unfortunately, the results in this
section imply that quantitative information flow inference
problem is unlikely to receive the same benefits.

Because we are concerned with properties about pairs of
programs (i.e., comparison problems), we extend the notion
of k-safety to properties refutable by observingk traces from
each of the two programs. More formally, we say that the
comparison problemC is ak-safety property if(M1,M2) 6∈
C implies that there existsT1 ⊆ [[M1]] andT2 ⊆ [[M2]] such
that
(1) |T1| ≤ k
(2) |T2| ≤ k
(3) ∀M ′

1,M
′
2.T1 ⊆ [[M ′

1]] ∧ T2 ⊆ [[M ′
2]] ⇒ (M ′

1,M
′
2) 6∈ C

In the above, [[M ]] denotes the semantics (i.e., traces)
of M , represented by the set of input/output pairs
{((h, `), o) | h ∈ H, ` ∈ L, o = M(h, `)}.

We now state the main results of the section. (Recall that
U denotes the uniform distribution.) We sketch the main
idea of the proofs. All proofs are by contradiction. LetC
be the comparison problem in the statement and supposeC
is k-safety. Let(M1,M2) 6∈ C. Then, we haveT1 ⊆ [[M1]]
and T2 ⊆ [[M2]] satisfying the properties (1), (2), and (3)
above. From this, we construct̄M1 andM̄2 such thatT1 ⊆
[[M̄1]] and T2 ⊆ [[M̄2]] and (M̄1, M̄2) ∈ C to obtain the
contradiction.

Theorem 3.1: CSE [U ] is not ak-safety property for any
k > 0.

Theorem 3.2: CME [U ] is not ak-safety property for any
k > 0.

Theorem 3.3: CGE [U ] is not ak-safety property for any
k > 0.

4It is also well known that it is not a1-safety property [23].

Theorem 3.4: CCC is not a k-safety property for any
k > 0.

A. Bounding the Domains

The notion ofk-safety property, like the notion of safety
property from where it extends, is defined over all programs
regardless of their size. (For example, non-interference is a
2-safety property for all programs and unreachability is a
safety property for all programs.) But, it is easy to show
that the comparison problems would become “k-safety”
properties if we constrained and bounded the input domains
because then the size of the semantics (i.e., the input/output
pairs) of such programs would be bounded by|H|×|L|. In
this case, the problems are at most|H|×|L|-safety.5 However,
these bounds are high for all but very small domains, and
are unlikely to lead to a practical verification method.

B. Proof of Theorem 3.1

We discuss the details of the proof of Theorem 3.1. The
proofs of Theorems 3.2, 3.3, 3.4 are deferred to Appendix B.

For contradiction, supposeCSE [U ] is ak-safety property.
Let M andM ′ be programs having the same input domain
such that(M,M ′) 6∈ CSE [U ]. Then, it must be the case
that there existT ⊆ [[M ]] andT ′ ⊆ [[M ′]] such that|T | ≤
k, |T ′| ≤ k, and ∀Mc,M

′
c.T ⊆ [[Mc]] ∧ T ′ ⊆ [[M ′

c]] ⇒
(Mc,M

′
c) 6∈ CSE [U ].

Let

T = {(h1, o1), (h2, o2), . . . , (hi, oi)}
T ′ = {(h′1, o′1), (h′2, o′2), . . . , (h′j , o′j)}

where i, j ≤ k. Now, we construct new programs̄M and
M̄ ′ as follows.

M̄(h1) = o1 M̄ ′(h′1) = o′1
M̄(h2) = o2 M̄ ′(h′2) = o′2

. . . . . .
M̄(hi) = oi M̄ ′(h′j) = o′j

M̄(hi+1) = o M̄ ′(h′j+1) = o′j+1

M̄(hi+2) = o M̄ ′(h′j+2) = o′j+2

. . . . . .
M̄(hi+j) = o M̄ ′(h′j+i) = o′j+i

M̄(hi+j+1) = or M̄ ′(h′j+i+1) = o′r
. . . . . .

M̄(hn) = or M̄ ′(h′n) = o′r

where

• o 6= or,
• {o1, o2, . . . , oi} ∩ {o, or} = ∅,
• o′j+1, o′j+2, . . . , o′j+i, ando′r are distinct,
• {o′1, o′2, . . . , o′j} ∩ {o′j+1, . . . , o

′
j+i, o

′
r} = ∅,

• {h1, . . . , hn} = {h′1, . . . , h′n}, and
• n = 2k.

5It is possible to get a tighter bound for the channel-capacity based
definition by also bounding the size of the output domain.



M ::= x := ψ | if ψ then M else M |M0;M1

φ, ψ ::= true | x | φ ∧ ψ | ¬φ

Figure 1. The syntax of loop-free boolean programs

wp(x := ψ, φ) = φ[ψ/x]
wp(if ψ then M0 else M1, φ)

= (ψ ⇒ wp(M0, φ)) ∧ (¬ψ ⇒ wp(M1, φ))
wp(M0;M1, φ) = wp(M0,wp(M1, φ))

Figure 2. The weakest precondition for loop-free boolean programs

Then, comparing the Shannon-entropy-based quantitative
information flow ofM̄ andM̄ ′, we have,

SE [U ](M̄ ′)− SE [U ](M̄)
=

∑
o′

x∈{o′
1,...,o′

i}
U(o′x) log 1

U(o′
x)

+ U(o′) log 1
U(o′) + U(o′r) log 1

U(o′
r)

− (
∑

ox∈{o1,...,oj} U(ox) log 1
U(ox)

+
∑

oy∈{oj+1,...,oj+i} U(oy) log 1
U(oy)

+ U(or) log 1
U(or) )

(Note the abbreviations from Appendix A.) By lemma A.5,
we have∑

ox∈{o1,...,oi} U(ox) log 1
U(ox)

≤
∑

o′
y∈{o′

j+1,...,o′
j+i}

U(o′y) log 1
U(o′

y)

and

U(o) log 1
U(o) ≤

∑
o′

x∈{o′
1,...,o′

j}
U(o′x) log 1

U(o′
x)

Trivially, we have

U(o′r) log
1

U(o′r)
= U(or) log

1
U(or)

As a result, we have

SE [U ](M̄ ′)− SE [U ](M̄) ≥ 0

Note thatM̄ andM̄ ′ have the same counterexamplesT and
T ′, that is,T ⊆ [[M̄ ]] and T ′ ⊆ [[M̄ ′]]. However, we have
(M̄, M̄ ′) ∈ CSE [U ]. This leads to a contradiction.

C. Complexities for Loop-free Boolean Programs

The purpose of this section is to show a complexity
theoretic gap between non-interference and quantitative in-
formation flow. The results strengthen the hypothesis that
quantitative information flow is quite hard to compute pre-
cisely, and also suggest an interesting connection to counting
problems.

We focus on loop-free boolean programs whose syntax is
given in Figure 1. We assume the usual derived formulas
φ⇒ ψ, φ = ψ, φ∨ψ, andfalse. We give the usual weakest
precondition semantics in Figure 2.

To adapt the information flow framework to boolean pro-
grams, we make each information flow variableH, L, andO

range over functions mapping boolean variables of its kind to
boolean values. So, for example, ifx andy are low security
boolean variables andz is a high security boolean variable,
thenL ranges over the functions{x, y} → {false, true}, and
H andO range over{z} → {false, true}.6 (Every boolean
variable is either a low security boolean variable or a high
security boolean variable.) We writeM(h, `) = o for an
input (h, `) and an outputo if (h, `) |= wp(M,φ) for a
boolean formulaφ such thato |= φ ando′ 6|= φ for all output
o′ 6= o. Here, |= is the usual logical satisfaction relation,
using h, `, o, etc. to look up the values of the boolean
variables. (Note that this incurs two levels of lookup.)

As an example, consider the following program.

M ≡
z := x;w := y;
if x ∧ y then z := ¬z else w := ¬w

Let x, y be high security variables andz, w be low security
variables. Then,

SE [U ](M) = 1.5
ME [U ](M) = log 3

≈ 1.5849625
GE [U ](M) = 1.25

CC (M) = log 3
≈ 1.5849625

We prove the following hardness results. These results
are proven by a reduction from #SAT, which is the prob-
lem of counting the number of solutions to a quantifier-
free boolean formula. #SAT is known to be #P-complete.
Because #SAT is a function problem and the comparison
problems are decision problems, a step in the proofs makes
binary search queries to the comparison problem oracle a
polynomial number of times. (Recall that the notation FPA

means the complexity class of function problems solvable
in polynomial time with an oracle for the problemA.)

Theorem 3.5: #P⊆ FPCSE [U ]

Theorem 3.6: #P⊆ FPCME [U ]

Theorem 3.7: #P⊆ FPCGE [U ]

Theorem 3.8: #P⊆ FPCCC

We remind that the above results apply (even) when the
comparison problemsCSE [U ], CME [U ], CGE [U ], andCCC

are restricted to loop-free boolean programs.
In summary, each comparison problemCSE [U ], CME [U ],

CGE [U ], and CCC can be used a polynomial number of
times to solve a #P-complete problem. Because Toda’s
theorem [31] implies that the entire polynomial hierarchy
can be solved by using a #P-complete oracle a polynomial
number of times, our results show that the comparison
problems for quantitative information flow can also be used

6We do not distinguish input boolean variables from output boolean
variables. But, a boolean variable can be made output-only by assigning a
constant to the variable at the start of the program and made input-only by
assigning a constant at the end.



a polynomial number of times to solve the entire polynomial
hierarchy, for the case of loop-free boolean programs.

As shown below, this presents a gap from non-
interference, which is only coNP-complete for loop-free
boolean programs.

Theorem 3.9: Checking non-interference is coNP-
complete for loop-free boolean programs.

The above is an instance of the general observation that,
by solving quantitative information flow problems, one is
able to solve the class of problems known ascounting
problems,7 which coincides with #SAT for the case of loop-
free boolean programs.

D. Proof of Theorem 3.5

We discuss the details of the proof of Theorem 3.5. The
proofs of Theorems 3.6, 3.7, 3.8 are deferred to Appendix B.

First, we prove the following lemma which states that we
can compare the number of solutions to boolean formulas
by computingSE [U ]. (For convenience, we use large letters
H, L, O, etc. to range over boolean variables as well as
generic random variables.)

Lemma 3.10: Let
−→
H andH ′ be distinct boolean random

variables. Leti andj be any non-negative integers such that
i ≤ 2|

−→
H | and j ≤ 2|

−→
H |. Let ψi (resp. ψj) be a formula

over
−→
H having i (resp. j) assignments. Then,j ≤ i iff

SE [U ](Mj) ≤ SE [U ](Mi) whereMj ≡ O := ψj ∧ H ′

andMi ≡ O := ψi ∧H ′.
Proof: Let p = i

2|H|+1 andq = j
2|H|+1 . We have

SE [U ](Mj) = j
2|H|+1 log 2|H|+1

j + 2|H|+1−j
2|H|+1 log 2|H|+1

2|H|+1−j

= p log p+ (1− p) log 1
1−p

SE [U ](Mi) = i
2|H|+1 log 2|H|+1

i + 2|H|+1−i
2|H|+1 log 2|H|+1

2|H|+1−i

= q log q + (1− q) log 1
1−q

• Only If
Supposej ≤ i. Then,

SE [U ](Mi)− SE [U ](Mj)
= p log 1

p + (1− p) log 1
1−p

−q log 1
q − (1− q) log 1

1−q

= log( 1−p
p )p 1−q

1−p ( q
1−q )q

Then, from 1−q
1−p ≥ 1 andp ≥ q ≥ 0, we have

SE [U ](Mi)− SE [U ](Mj) ≥ log(1−p
p )p( q

1−q )q

≥ log(1−p
p )q( q

1−q )q

= log( (1−p)q
p(1−q) )

q

= log( q−pq
p−pq )q

= log( pq−q
pq−p )q

= log(
1− 1

p

1− 1
q

)q

≥ 0

7Formally, a counting problem is the problem of counting the number of
solutions to a decision problem. For instance, #P is the class of counting
problems associated with NP.

The last line follows from
1− 1

p

1− 1
q

≥ 1.

• If
We prove the contraposition. Supposej > i. Then,

SE [U ](Mj)− SE [U ](Mi)
= q log 1

q + (1− q) log 1
1−q

−p log 1
p − (1− p) log 1

1−p

> 0

The last line follows from the fact that0 ≤ p < q ≤ 1
2 .

Therefore,SE [U ](Mj) 6≤ SE [U ](Mi).

Then, using Lemma 3.10, we prove the following lemma
which is crucial to proving Theorem 3.5.

Lemma 3.11: Let
−→
H be distinct variables andφ be a

boolean formula over
−→
H . Then, the number of assignments

for φ can be computed by executing an oracle that decides
whether programs are inCSE [U ] at most3× (|

−→
H |+1)+2

times.
Proof: First, we define a procedure that returns the

number of solutions ofφ.
Let F (j) ≡ O := ψ ∧H ′ whereψ is a formula over

−→
H

having j assignments andH ′ be a boolean variable such
thatH ′ 6∈ {

−→
H}. Note that, by Lemma A.4, suchψ can be

generated in linear time.
Then, we invoke the following procedure whereM ′ ≡

O′ := φ ∧H ′.

l = 0;
r = 2|

−→
H |;

n = (`+ r)/2;
while ¬CSE [U ](F (n),M ′) ∨ ¬CSE [U ](M ′, F (n))

if CSE [U ](F (n),M ′)
then {` = n;n = (`+ r)/2; }
else {r = n;n = (`+ r)/2; }

return n

Note that when the procedure terminates, we have
SE [U ](F (n)) = SE [U ](M ′), and so by Lemma 3.10,n
is the number of satisfying assignments toφ.

We show that the procedure iterates at most|
−→
H |+1 times.

To see this, every iteration in the procedure narrows the
range betweenr and` by one half. Becauser−` is bounded
by 2|

−→
H |, it follows that the procedure iterates at most|

−→
H |+1

times. Hence, the oracleCSE [U ] is accessed3×(|
−→
H |+1)+2

times, and this proves the lemma.
Finally, Theorem 3.5 follows from Lemma 3.11 and the

fact that #SAT, the problem of counting the number of
solutions to a boolean formula, is #P-complete.

IV. U NIVERSALLY QUANTIFYING DISTRIBUTIONS

As proved in Section III, precisely computing quantitative
information flow is quite difficult. Indeed, we have shown
that even just comparing two programs on which has the
larger flow is difficult (i.e.,CSE , CME , CGE , andCCC ).



In this section, we show that universally quantifying
the Shannon-entropy based comparison problemCSE [µ],
the min-entropy based problemCME [µ], or the guessing-
entropy based problemCGE [µ] over the distributionµ is
equivalent to a simple relationR enjoying the following
properties.
(1) R is a 2-safety property.
(2) R is coNP-complete for loop-free boolean programs.
Note that (1) implies that we can actually check if
(M1,M2) ∈ CSE [µ] for all µ via self composition (and
likewise for CME [µ] and CGE [µ]). We actually show in
Section IV-B that we can even use the security-type-based
approach suggested by Terauchi and Aiken [30] to minimize
code duplication during self composition (i.e., dointerleaved
self composition).

We remind that except for the coNP-completeness result
(Theorem 4.8), the results in this section apply to any
(deterministic and terminating) programs and not just to
loop-free boolean programs.

Definition 4.1: We defineR to be the relation such that
R(M1,M2) iff for all ` ∈ L and h, h′ ∈ H, if M1(h, `) 6=
M1(h′, `) thenM2(h, `) 6= M2(h′, `).

Note thatR(M1,M2) essentially says that if an attacker
can distinguish a pair of high security inputs by executing
M1, then she could do the same by executingM2. Hence,
R naturally expresses thatM1 is at least as secure asM2. 8

It may be somewhat surprising that this simple relation
is actually equivalent to the rather complex entropy-based
quantitative information flow definitions when they are cast
as comparison problems and the distributions are universally
quantified, as stated in the following theorems. First, we
show thatR coincides exactly withCSE with its distribution
universally quantified.

Theorem 4.2: R = {(M1,M2) | ∀µ.CSE [µ](M1,M2)}
The proof is detailed in Section IV-A. The next two theorems
show thatR also coincides withCME andCGE with their
distribution universally quantified.

Theorem 4.3: R = {(M1,M2) | ∀µ.CME [µ](M1,M2)}
Theorem 4.4: R = {(M1,M2) | ∀µ.CGE [µ](M1,M2)}

The first half of the⊆ direction of the proofs of the theorems
above is much like the that of Theorem 4.2, that is, it makes
the observation thatM2 disambiguates the high security
inputs at least as fine as doesM1. Then, the proof concludes
by utilizing the particular mathematical properties relevant
to the respective definitions. The proof for the⊇ direction
is also similar to the argument used in Theorem 4.2. The
details of the proofs appear in Appendix B.

Next, we show thatR refinesCCC in the sense that if
R(M1,M2) thenCCC (M1,M2). This follows immediately

8We note that notions similar toR have appeared in literature (often in
somewhat different representations) [27], [18], [6]. In particular, Clark et
al. [6] have shown a result analogous to the⊆ direction of Theorem 4.2
below. But,R’s properties have not been fully investigated.

from Theorem 4.2 and the definition of the channel-capacity
based quantitative information flow.

Theorem 4.5: R ⊆ CCC

Note that, the other direction,R ⊇ CCC , does not hold
as R is not always a total order, whereasCCC is. It is
also immediate from Theorem 4.2 and the property of non-
interference (Theorem 2.6) thatR is compatible with the
notion of non-interference in the following sense.

Theorem 4.6: Let M2 be a non-interferent program.
Then,R(M1,M2) iff M1 is also non-interferent andM1

has the same input domain asM2.

Next, we show thatR is easier to decide than the non-
universally-quantified versions of the comparison problems.
First, it is trivial to see from Definition 4.1 thatR is a 2-
safety property.

Theorem 4.7: R is a 2-safety property.

It can be shown that, restricted to loop-free boolean
programs,R is coNP-complete. This follows directly from
the observation that we can decideR by self composition
thanks to its2-safety property and the fact that, for loop-free
boolean programs, self composition reduces the problem to
an UNSAT instance.9

Theorem 4.8: Restricted to loop-free boolean programs,
R is coNP-complete.

A. Proof of Theorem 4.2

We discuss the details of the proof of Theorem 4.2. The
proofs of Theorems 4.3 and 4.4 are deferred to Appendix B.

First, we prove the following lemma which says that,
if R(M,M ′) then SE [U ](M ′) is at least as large as
SE [U ](M) per each low security input̀∈ L.

Lemma 4.9: SupposeR(M,M ′), that is, for all h1, h2

in H and ` in L, M ′(h1, `) = M ′(h2, `) ⇒ M(h1, `) =
M(h2, `). Let O be the set of the outputs ofM , and
O′ be the set of the outputs ofM ′. Then, for any`, we
have

∑
o∈O µ(o, `) log µ(`)

µ(o,`) ≤
∑

o′∈O′ µ(o′, `) log µ(`)
µ(o′,`) .

(Recall the notational convention from Definition A.1.)

Proof: First, we prove for any outputo of M , there
exist corresponding outputsOo = {o′0, o′1, . . . , o′n} of M ′

such that

µ(o, `) log µ(`)
µ(o,`)

≤
∑

o′
r∈Oo

µ(o′r, `) log µ(`)
µ(o′

r,`)

Let Ho be the set such thatHo = {h |M(h, `) = o}.
Let {h0, h1, . . . , hn} = Ho. Let o′0 = M ′(h0, `),. . . and,
o′n = M ′(hn, `). For any h′ such that o′r =
M ′(h′, `) and o′r ∈ {o′0, o′1, . . . , o′n}, we have h′ ∈

9To construct a polynomial size boolean formula from a loop-free
boolean program, we use the well-known efficient weakest precondition
construction technique [13], [17] instead of the naive rules given in Figure 2.



{h1, . . . , hn} sinceR(M,M ′). Then, we haveµ(o, `) =∑
o′

r∈{o′
1,...,o′

n}
µ(o′r, `). By Lemma A.5, we have

µ(o, `) log µ(`)
µ(o,`)

≤
∑

o′
r∈{o′

0,o′
1,...,o′

n}
µ(o′r, `) log µ(`)

µ(o′
r,`)

Now to prove the lemma, it suffices to show that eachOo

constructed above are disjoint. That is, foro1 ando2 outputs
of M such thato1 6= o2, Oo1 ∩Oo2 = ∅. For contradiction,
supposeo′ ∈ Oo1 ∩ Oo2 . Then, there existh1 andh2 such
that o1 = M(h1, `), o′ = M ′(h1, `), o2 = M(h2, `), and
o′ = M ′(h2, `). SinceR(M,M ′), we haveo1 = o2, and it
leads to a contradiction. Hence, we have∑

o

µ(o, `) log
µ(`)
µ(o, `)

≤
∑
o′

µ(o′, `) log
µ(`)
µ(o′, `)

We now prove Theorem 4.2.
Proof:

• ⊆
Suppose(M,M ′) ∈ R. By Lemma A.3,

SE [µ](M) = H[µ](O|L)
=

∑
`

∑
o µ(o, `) log µ(`)

µ(o,`)

and
SE [µ](M ′) = H[µ](O′|L)

=
∑

`

∑
o′ µ(o′, `) log µ(`)

µ(o′,`)

By Lemma 4.9 and the fact that(M,M ′) ∈ R, we
obtain for any`∑

o

µ(o, `) log
µ(`)
µ(o, `)

≤
∑
o′

µ(o′, `) log
µ(`)
µ(o′, `)

Hence, ∑
`

∑
o µ(o, `) log µ(`)

µ(o,`)

≤
∑

`

∑
o′ µ(o′, `) log µ(`)

µ(o′,`)

• ⊇
We prove the contraposition. Suppose(M,M ′) 6∈
R. Then, there existo′, h0, h1, `

′ such that o′ =
M ′(h0, `

′) = M ′(h1, `
′) andM(h0, `

′) 6= M(h1, `
′).

Pick a probability functionµ such thatµ(h0, `
′) =

µ(h1, `
′) = 1

2 .
Then, we have

H[µ](O′|L) =
∑

`

∑
o µ(o, `) log µ(`)

µ(o,`)

= µ(o′, `′) log µ(`′)
µ(o′,`′)

= 1 log 1
1

= 0

Let o0 and o1 be output variables such thato0 =
M(h0, `

′), o1 = M(h1, `
′), ando0 6= o1.

H[µ](O|L) =
∑

o∈{o0,o1} µ(o, `′) log µ(`′)
µ(o,`′)

= 1
2 log 1

1
2

+ 1
2 log 1

1
2

= 1

Therefore, SE [µ](M) 6≤ SE [µ](M ′), that is,
(M,M ′) 6∈ {(M1,M2) | ∀µ.(M1,M2) ∈ CSE [µ]}.

B. Quantitative Information Flow via Self Composition

Theorems 4.2, 4.3, 4.4, and 4.7 imply that we can check if
the entropy-based quantitative information flow of a program
(i.e., SE, ME, and GE) is bounded by that of another
for all distributions via self composition [3], [11]. This
suggests a novel approach to precisely checking quantitative
information flow.

That is, given atarget program M1, the user would
construct aspecificationprogramM2 with the same input
domain asM1 having the desired level of security. Then, she
would checkR(M1,M2) via self composition. If so, then
M1 is guaranteed to be at least as secure asM2 according to
the Shannon-entropy based, the min-entropy based, and the
guessing-entropy based definition of quantitative information
flow for all distributions (and also channel-capacity based
definition), and otherwise, there must be a distribution in
whichM1 is less secure thanM2 according to the entropy-
based definitions.

Note that decidingR(M1,M2) is useful even when
M1 and M2 are R-incomparable, that is, when neither
R(M1,M2) nor R(M2,M1). This is because¬R(M1,M2)
implies thatM1 is less secure thanM2 on some distribution.

For example, supposeM1 is some complex login program
with the high security inputH and the low security input
L. And we would like to verify thatM1 is at least as secure
as the prototypical login programM2 below.

M2 ≡ if H = L then O := 0 else O := 1

Then, using this framework, it suffices to just query if
R(M1,M2) is true. (Note that the output domains ofM1

andM2 need not to match.)
We now describe how to actually checkR(M1,M2) via

self composition. FromM1 andM2, we construct the self-
composed programM ′ shown below.

M ′(H,H ′, L) ≡
O1 := M1(H,L);O′1 := M1(H ′, L); // L1
O2 := M2(H,L);O′2 := M2(H ′, L); // L2
assert(O1 6= O′1 ⇒ O2 6= O′2)

Note thatR(M1,M2) is true iff M ′ does not cause an
assertion failure. The latter can be checked via a software
safety verifier such as SLAM and BLAST [2], [15], [24], [4].
As an aside, we note that this kind of construction could
be easily generalized to reduce anyk-safety problem (cf.
Section III) to a safety problem, as shown by Clarkson and
Schneider [9].

Note that the lineL1 (resp.L2) of the pseudo code above
is M1 (resp.M2) sequentially composed with a copy of
itself, which is from where the name “self composition”



M1 ≡ O := H

M2 ≡ if H = L then O := 0 else O := H&1

M3 ≡ O := 1; i := 0;
while i < 32 {
m := 1 << i;
if H&m 6= L&m then
O := 0; break;

else
i++;

}

M4 ≡ O := 1; i := 0;
while i < 64 {
m := 1 << i;
if H&m 6= L&m then
O := 0; break;

else
i++;

}

Figure 3. Example programs.

comes. Therefore, technically,M ′ is a composition of two
self compositions.
L1 (andL2) are actually exactly the original self compo-

sition proposed for non-interference [3], [11]. Terauchi and
Aiken [30] noted that only the parts ofM1 (andM2) that
depend on the high security inputsH andH ′ need to be
duplicated and self composed, with the rest of the program
left intact and “interleaved” with the self-composed parts.
The resulting program tends to be verified easier than the
naive self composition by modern software safety verifiers.

They proposed a set of transformation rules that translates
a WHILE program annotated with security types [33] (or
dependency analysis results) to an interleaved self-composed
program. This was subsequently improved by a number
of researchers to support a richer set of language features
and transformation patterns [32], [25]. These transformation
methods can be used in place of the naive self compositions
at L1 and L2 in building M ′. That is, we apply a security
type inference (or a dependency analysis) toM1 andM2 to
infer program parts that depend on the high security inputs
H andH ′ so as to only duplicate and self compose those
parts ofM1 andM2.

C. Example

We recall the ideal login program below.

Mspec ≡ if H = L then O := 0 else O := 1

We check the four programs shown in Figure 3 using the
above as the specification.

Here,H andL are 64-bit values,& is the bit-wise and
operator, and<< is the left shift operator.M1 leaks the entire
password.M2 checks the password against the user guess
but then leaks the first bit when the check fails.M3 only
checks the first 32 bits of the password. And,M4 implements
password checking correctly via a while loop.

We verify that onlyM4 satisfies the specification, that is,
R(M4,Mspec). To see that¬R(M1,Mspec), note that for
any`, h, h′ such thath 6= `, h′ 6= ` andh 6= h′, we have that
M1(h, `) 6= M1(h′, `) but Mspec(h, `) = Mspec(h′, `) = 1.
To see that¬R(M2,Mspec), note that for̀ , h, h′ such that
h 6= `, h′ 6= `, h&1 = 1 and h′&1 = 0, we have
that 1 = M2(h, `) 6= M2(h′, `) = 0 but Mspec(h, `) =
Mspec(h′, `) = 1. To see that¬R(M3,Mspec), let `, h, h′

be such thath|32 = `|32, h′|32 6= `|32, and h 6= `,
then, 1 = M3(h, `) 6= M3(h′, `) = 0 but Mspec(h, `) =
Mspec(h′, `) = 1.10 (Here,x|32 denotesxmod232, i.e., the
first 32 bits ofx.)

The results imply that forM1, M2, andM3, there must be
a distribution where the program is less secure thanMspec

according to each of the entropy-based definition of quantita-
tive information flow. For instance, for the Shannon-entropy
based definition, we have for the uniform distributionU ,

SE [U ](Mspec) = 1
258 + 264−1

264 log 264

264−1

≈ 3.46944695× 10−18

SE [U ](M1) = 64
SE [U ](M2) = 1

2 + 1+263

265 log 264

1+263 + 263−1
265 log 264

263−1

≈ 1.0
SE [U ](M3) = 1

227 + 264−232

264 log 264

264−232

≈ 7.78648× 10−9

That is, SE [U ](M1) 6≤ SE [U ](Mspec), SE [U ](M2) 6≤
SE [U ](Mspec), andSE [U ](M3) 6≤ SE [U ](Mspec).

Finally, we have thatR(M4,Mspec), and soM4 is at least
as secure asMspec according to all of the definitions of
quantitative information flow considered in this paper. In
fact, it can be also shown thatR(Mspec ,M4). (However,
note thatM4 and Mspec are not semantically equivalent,
i.e., their outputs are reversed.)

V. RELATED WORK

This work builds on previous work that proposed informa-
tion theoretic notions of quantitative information flow [12],
[7], [19], [29], [16], [1], [22], [20], [26]. The previous
research has mostly focused on information theoretic proper-
ties of the definitions and proposed approximate (i.e., incom-
plete and/or unsound) methods for checking and inferring
them. In contrast, this paper investigates the verification
theoretic and complexity theoretic hardness of precisely
inferring quantitative information flow according to the

10It can be also shown that¬R(Mspec , M2) and¬R(Mspec , M3), that
is, M2 andM3 areR-incomparable withMspec .



definitions and also proposes a precise method for check-
ing quantitative information flow. Our method checks the
quantitative information flow of a program against that of
a specification program having the desired level of security
via self composition for all distributions according to the
entropy-based definitions.

It is quite interesting that the relationR unifies the
different proposals for the definition of quantitative informa-
tion flow when they are cast as comparison problems and
their distributions are universally quantified. As remarked in
Section IV,R naturally expresses the fact that one program
is more secure than the other, and it could be argued that it
is the essence of quantitative information flow.

Researchers have also proposed definitions of quantitative
information flow that are not detailed in the main body
of the paper. These includes the definition based on the
notion of belief [8], and the ones that take the maximum
over the low security inputs [19], [16]. It can be shown
that R refines the comparison problems for these notions
in the same sense as in Theorem 4.5 (for the belief-based
definition, we universally quantify over the beliefs and the
experiments). In fact, it can be shown that, for the belief-
based definition, the equivalence result holds much like those
for the entropy-based definitions.11

Despite the staggering complexity made apparent in this
paper, recent attempts have been made to (more) precisely
infer quantitative information flow (without universally
quantifying over the distribution as in our approach). These
methods are based on the idea ofcounting. As remarked in
Section III-C, quantitative information flow is closely related
to counting problems, and several attempts have been made
to reduce quantitative information flow problems to them.12

For instance, Newsome et al. [26] reduce the inference
problem to the #SAT problem and apply off-the-shelf #SAT
solvers. To achieve scalability, they sacrifice both soundness
and completeness by only computing information flow from
one execution path. Backes et al. [1] also propose a counting-
based approach that involves self composition. However,
unlike our method, they use self composition repeatedly to
find a new solution (i.e., more than a bounded number of
times), and so their results do not contradict the negative
results of this paper.

VI. CONCLUSION

We have investigated the hardness and possibilities of pre-
cisely checking and inferring quantitative information flow
according to the various definitions proposed in literature.
Specifically, we have considered the definitions based on

11The other direction does not hold for the maximum-over-low-security-
inputs definitions.

12Note that our results only show that,restricted to loop-free boolean
programs, the comparison problems can bereduced from#SAT, and they
do not show how to reduce them (or more general cases)to #SAT or other
counting problems.

the Shannon entropy, the min entropy, the guessing entropy,
and channel capacity.

We have shown that comparing two programs on which
has the larger flow according to these definitions is not
a k-safety problem for anyk, and therefore that it is
not possible to reduce the problem to a safety problem
via self composition. The result is in contrast to non-
interference which is a2-safety problem. We have also
shown a complexity theoretic gap with non-interference by
proving the #P-hardness of the comparison problems and
coNP-completeness of non-interference, when restricted to
loop-free boolean programs.

We have also shown a positive result that checking if the
entropy-based quantitative information flow of one program
is larger than that of another for all distributions is a2-safety
problem, and that it is also coNP-complete when restricted
to loop-free boolean programs.

We have done this by proving a surprising result that
universally quantifying the distribution in the comparison
problem for the entropy-based definitions is equivalent to
a simple2-safety relation. Motivated by the result, we have
proposed a novel approach to precisely checking quantitative
information flow that reduces the problem to a safety prob-
lem via self composition. Our method checks the quantitative
information flow of a program for all distributions against
that of a specification program having the desired level of
security.
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APPENDIX A.
SUPPORTINGDEFINITIONS AND LEMMAS

We define some abbreviations.
Definition A.1: µ(x) , µ(X = x)

We use this notation whenever the correspondences between
random variables and their values are clear.

For convenience, we sometimes use large lettersH, L,
O, etc. to range over boolean variables as well as generic
random variables.



For simplicity, we often compute the Shannon-entropy
based quantitative information flow for programs that do not
have low security inputs. For such programs, the equation
SE from Definition 2.4 can be simplified as follows.

Lemma A.2:

SE [µ](M) = I[µ](O;H)
= H[µ](O)

We note the following property of deterministic pro-
grams [5].

Lemma A.3: For M deterministic,

SE [µ](M) = I[µ](O;H|L) = H[µ](O|L)

The following lemma is used to show that we can generate
a boolean formula that has exactly the desired number of
solutions in polynomial (actually, linear) time.

Lemma A.4: Let k be an integer such that0 ≤ k ≤
2|
−→x | − 1. Then, a boolean formula that has exactlyk

assignments over the variables−→x can be computed in time
linear in |−→x |.

Proof: We define a procedure iter that returns the
boolean formula. Below,−→x = x1, x2, . . . , i.e., xi is the
ith variable.

iter(ε, 0) = false
iter(0`, i) = xi ∧ (iter(`, i− 1))
iter(1`, i) = xi ∨ (iter(`, i− 1))

Here, ε is an empty string. Let̀ k be a |−→x |-bit binary
representation ofk. We prove that iter(`k, |−→x |) returns a
boolean formula that has exactly k assignments by induction
on the number of variables, that is,|−→x |.
• |−→x | = 1

– k = 0
iter(0, 1) returnsx1 ∧ false, that is,false. false has
no satisfying assignment.

– k = 1
iter(1, 1) returnsx1∨ false, that is,x1. x1 has only
one satisfying assignment.

• |−→x , x′|
– k < 2|

−→x ,x′|−1

Let 0` be a binary representation ofk.
iter(0`, |−→x , x′|) returns x′ ∧ iter(`, |−→x |). By
induction hypothesis, iter(`, |−→x |) hask satisfying
assignments for−→x . It follows thatx′∧ iter(`, |−→x |)
has just k satisfying assignments, because
false ∧ iter(`, |−→x |) has no assignment and
true ∧ iter(`, |−→x |) has justk assignments.

– k ≥ 2|
−→x |

Let 1` be a binary representation ofk.
iter(1`, |−→x , x′|) returns x′ ∨ iter(`, |−→x |). ` is
a binary representation ofk − 2|

−→x |. By induction
hypothesis, iter(`, |−→x |) has k − 2|

−→x | satisfying
assignments for−→x . It follows thatx′∨ iter(`, |−→x |)

has just k satisfying assignments, because
false ∨ iter(`, |−→x |) has justk − 2|

−→x | assignments
and whenx′ = true, x′ ∨ iter(`, |−→x |) has just2|

−→x |

assignments.

We frequent the following property of logarithmic arith-
metic when proving statements concerning the Shannon
entropy.

Lemma A.5: Let p and q be numbers such thatp, q ∈
[0, 1]. Then, we havep log 1

p + q log 1
q ≥ (p+ q) log 1

p+q .

Proof: Becausep+q
p ≥ 1 and p+q

q ≥ 1, it follows that,

p log 1
p + q log 1

q − (p+ q) log 1
p+q

= p log 1
p − p log 1

p+q + q log 1
q − q log 1

p+q

= p log p+q
p + q log p+q

q

≥ 0

APPENDIX B.
OMITTED PROOFS

Theorem 2.6: Let M be a program that takes high-
security inputH, low-security inputL, and returns low-
security outputO. Then,M is non-interferent if and only if
∀µ.SE [µ](M) = 0.

Proof: Recall thatM is non-interferent iff for any
h, h′ ∈ H and ` ∈ L, M(h, `) = M(h′, `).
• (⇒) Suppose thatM is non-interferent. Then, by

Lemma A.3,

SE [µ](M) = I[µ](O;H|L)
= H[µ](O|L)
=

∑
o

∑
` µ(o, `) log µ(`)

µ(o,`)

=
∑

o

∑
` µ(o, `) log µ(`)

µ(`)

= 0

The last step follows from the fact that non-interference
implies µ(`) = µ(o, `).

• (⇐) Suppose thatM is interferent. Then, there must be
h0 andh1 such thatM(h0, `

′) = o0, M(h1, `
′) = o1,

and o0 6= o1. Pick a probability functionµ such that
µ(h0, `

′) = µ(h1, `
′) = 1

2 . Then, by Lemma A.3,

SE [µ](M) = I[µ](O;H|L)
= H[µ](O|L)
=

∑
o

∑
` µ(o, `) log µ(`)

µ(o,`)

= µ(o0, `′) log µ(`′)
µ(o0,`′)

+µ(o1, `′) log µ(`′)
µ(o1,`′)

= 1
2 log 2 + 1

2 log 2
= 1

Therefore, there existsµ such thatSE [µ](M) 6= 0, and
we have the conclusion.



We note the following equivalence ofCC andME[U] for
programs without low security inputs [29].

Lemma B.1: Let M be a program without low security
input. Then,ME [U ](M) = CC (M).

The min-entropy-based quantitative information flow with
uniformly distributed high security input has the following
property [29].

Lemma B.2: Let M be a program without low security
input and O be the output ofM . Then, ME [U ](M) =
log(|O|).

Theorem 3.2: CME [U ] is not ak-safety property for any
k > 0.

Proof: For contradiction, supposeCME [U ] is ak-safety
property. LetM andM ′ be programs having same input
domain such that(M,M ′) 6∈ CME [U ]. Then, it must be the
case that there existT ⊆ [[M ]] and T ′ ⊆ [[M ′]] such that
|T | ≤ k, |T ′| ≤ k, and∀Mc,M

′
c.T ⊆ [[Mc]]∧T ′ ⊆ [[M ′

c]] ⇒
(Mc,M

′
c) 6∈ CME [U ].

Let

T = {(h1, o1), (h2, o2), . . . , (hi, oi)}
T ′ = {(h′1, o′1), (h′2, o′2), . . . , (h′j , o′j)}

where i, j ≤ k. Now, we construct new programs̄M and
M̄ ′ as follows.

M̄(h1) = o1 M̄ ′(h′1) = o′1
M̄(h2) = o2 M̄ ′(h′2) = o′2

. . . . . .
M̄(hi) = oi M̄ ′(h′j) = o′j

M̄(hi+1) = o M̄ ′(h′j+1) = o′j+1

M̄(hi+2) = o M̄ ′(h′j+2) = o′j+2

. . . . . .
M̄(hn) = o M̄ ′(h′n) = o′n

where

• o′j+1, o′j+2, . . . , ando′n are distinct,
• {o′1, o′2, . . . , o′j} ∩ {o′j+1, . . . , o

′
n} = ∅,

• {h1, . . . , hn} = {h′1, . . . , h′n}, and
• n = 2k.

The number of outputs of the program̄M ′ is greater than
or equal to the number of the outputs of the program̄M .
Hence, by Lemma B.2, we have(M̄, M̄ ′) ∈ CME [U ]. But,
T ⊆ [[M̄ ]] andT ′ ⊆ [[M̄ ′]]. This leads to a contradiction.

Definition B.3:

In(µ,X, x) = |{x′ ∈ X | µ(x′) ≥ µ(x)}|

Intuitively, In(µ,X, x) is the order ofx defined in terms of
µ.

Lemma B.4:

G[µ](X) = Σ1≤i≤|X|iµ(xi)
= Σx∈XIn(µ,X, x)µ(x)

Proof: Trivial.

Lemma B.5: Let µ be a function such thatµ : D →
[0, 1]. Let P and Q be sets such thatP ∪ Q = D and
P ∩ Q = ∅. Then, we have

∑
x∈D In(µ,D, x)µ(x) ≥∑

p∈P In(µ, P, p)µ(p) +
∑

q∈Q In(µ,Q, q)µ(q).

Proof: Trivial.

Definition B.6: LetM be a function such thatM : A →
B. For any o ∈ B, we defineM−1(o) to mean

M−1(o) = {i ∈ A | o = M(i)}

Theorem 3.3: CGE [U ] is not a k-safety property for any
k > 0

Proof: For contradiction, supposeCGE [U ] is ak-safety
property. LetM andM ′ be programs having the same input
domain such that(M,M ′) 6∈ CGE [U ]. Then, it must be the
case that there existT ⊆ [[M ]] and T ′ ⊆ [[M ′]] such that
|T | ≤ k, |T ′| ≤ k, and∀Mc,M

′
c.T ⊆ [[Mc]]∧T ′ ⊆ [[M ′

c]] ⇒
(Mc,M

′
c) 6∈ CGE [U ].

Let

T = {(h1, o1), (h2, o2), . . . , (hi, oi)}
T ′ = {(h′1, o′1), (h′2, o′2), . . . , (h′j , o′j)}

where i, j ≤ k. Now, we construct new programs̄M and
M̄ ′ as follows.

M̄(h1) = o1 M̄ ′(h′1) = o′1
M̄(h2) = o2 M̄ ′(h′2) = o′2

. . . . . .
M̄(hi) = oi M̄ ′(h′j) = o′j

M̄(hi+1) = o M̄ ′(h′j+1) = o′j+1

M̄(hi+2) = o M̄ ′(h′j+2) = o′j+2

. . . . . .
M̄(hi+j) = o M̄ ′(h′j+i) = o′j+i

M̄(hi+j+1) = or M̄ ′(h′j+i+1) = o′r
. . . . . .

M̄(hn) = or M̄ ′(h′n) = o′r

where

• o 6= or,
• {o1, o2, . . . , oi} ∩ {o, or} = ∅,
• o′j+1, o′j+2, . . . , o′j+i, ando′r are distinct,
• {o′1, o′2, . . . , o′j} ∩ {o′j+1, . . . , o

′
j+i, o

′
r} = ∅,

• {h1, . . . , hn} = {h′1, . . . , h′n}, and
• n = 2k.



T (φ) =
if φ

then Of := true;
−→
O :=

−→
H

else Of := false;
−→
O :=

−−→
false

whereOf and
−→
O are distinct.

Figure 4. Boolean formula encoding by boolean program

We compare the guessing-entropy-based quantitative infor-
mation flow of the two programs.

GE [U ](M̄ ′)−GE [U ](M̄)
= |H|

2 − 1
2|H|

∑
o′∈M ′(H) |M ′−1(o′)|2

− |H|
2 + 1

2|H|
∑

o∈M(H) |M−1(o)|2

= 1
2|H|

∑
o∈M(H) |M−1(o)|2

− 1
2|H|

∑
o′∈M ′(H) |M ′−1(o′)|2

= 1
2|H| (

∑
ox∈{o1,...,oi} |M

−1(ox)|2

+|M−1(o)|2 + |M−1(or)|2)
− 1

2|H| (
∑

o′
x∈{o′

1,...,o′
j}
|M ′−1(o′x)|2

+
∑

o′
y∈{o′

j+1,...,o′
j+i}

|M ′−1(o′y)|2

+|M ′−1(o′r)|2)

By lemma B.5, we have∑
ox∈{o1,...,oi} |M

−1(ox)|2
≤

∑
o′

y∈{o′
j+1,...,o′

j+i}
|M ′−1(o′x)|2

and
|M−1(o)|2 ≤

∑
o′

x∈{o′
1,...,o′

j}
|M ′−1(o′x)|2

Trivially, we have

|M ′−1(o′r)|2 = |M−1(or)|2

As a result, we have

GE [U ](M̄ ′)−GE [U ](M̄) ≥ 0

Recall thatM̄ and M̄ ′ have the same counterexamplesT
and T ′, that is,T ⊆ [[M̄ ]] and T ′ ⊆ [[M̄ ′]]. However, we
have(M̄, M̄ ′) ∈ CGE [U ]. This leads to a contradiction.

Theorem 3.4: CCC is not a k-safety property for any
k > 0.

Proof: Straightforward from Lemma B.1 and Theo-
rem 3.2.

Lemma B.7: Let
−→
H be distinct boolean variables,φ be a

boolean formula over
−→
H , andn be the number of satisfying

assignments forφ. If n is less than2|
−→
H |, then the number of

the outputs of the boolean programT (φ) defined in Figure 4
is equal ton+ 1.

Proof: Trivial.

Lemma B.8: Let
−→
H be distinct variables andφ be a

boolean formula over
−→
H . Then, the number of assignments

for φ can be computed by executing an oracle that decides

whether programs are inCME [U ] at most3× (|
−→
H |+1)+2

times.

Proof: First, we define a procedure that returns the
number of solutions forφ.

Let B(j) = ψ ∧H ′ whereψ is a formula over
−→
H having

j assignments andH ′ is a boolean variable such thatH ′ 6∈
{
−→
H}. Note that by Lemma A.4, suchψ can be generated in

linear time.
Then, we invoke the following procedure whereT is

defined in Figure 4.

` = 0;
r = 2|

−→
H |;

n = (`+ r)/2;
while ¬((T (φ ∧H ′), T (B(n))) ∈ CME [U ]

and (T (B(n)), T (φ ∧H ′)) ∈ CME [U ])
if (T (φ ∧H ′), T (B(n))) ∈ CME [U ]

then {` = n;n = (`+ r)/2; }
else {r = n;n = (`+ r)/2; }

return n

Note that when the procedure terminates, we have
ME [U ](T (B(n)) = ME [U ](T (φ ∧ H ′)), and so by
Lemma B.2 and Lemma B.7,n is the number of satisfying
assignments toφ.

We show that the procedure iterates at most|
−→
H |+1 times.

To see this, note that every iteration in the procedure narrows
the range betweenr and ` by one half. Becauser − ` is
bounded by2|

−→
H |, it follows that the procedure iterates at

most |
−→
H |+ 1 times. Hence, the oracleCME [U ] is accessed

3× (|
−→
H |+ 1) + 2 times, and this proves the lemma.

Theorem 3.6: #P⊆ FPCME [U ]

Proof: Straightforward by Lemma B.8 and the fact that
#SAT, the problem of counting the number of solutions to a
boolean formula, is #P-complete.

Lemma B.9: Let
−→
H andH ′ be distinct variables andφ

andφ′ be boolean formulas over
−→
H . LetM ≡ O := φ∧H ′

and M ′ ≡ O := φ′ ∧ H ′. Then, we have#SAT (φ) ≤
#SAT (φ′) iff GE [U ](M) ≤ GE [U ](M ′).

Proof: By the definition,

GE [U ](M) = G(H)− G(H|O)
= 1

2 (|
−→
H |) + 1

2 −
∑

o

∑
1≤i≤|

−→
H | iU(hi, o)

= |
−→
H |
2
− 1

2|
−→
H |

(|M−1(true)|2 + |M−1(false)|2)

Therefore,

GE [U ](M) ≤ GE [U ](M ′)

iff
|M−1(true)|2 + |M−1(false)|2
≥ |M ′−1(true)|2 + |M ′−1(false)|2



But, trivially, the latter holds iff

#SAT (φ) ≤ #SAT (φ′)

Lemma B.10: Let
−→
H and H ′ be distinct variables and

φ be a boolean formula over
−→
H . Then, the number of

assignments forφ can be computed by executing an oracle
that decides whether programs are inCGE [U ] at most
3× (|

−→
H |+ 1) + 2 times.

Proof: First, we define a procedure that returns the
number of solutions forφ.

Let B(j) = ψ ∧H ′ whereψ is a formula over
−→
H having

j assignments andH ′ is a boolean variable such thatH ′ 6∈
{
−→
H}. Note that by Lemma A.4, suchψ can be generated in

linear time.

` = 0;
r = 2|

−→
H |;

n = (`+ r)/2;
while ¬(O := φ ∧H ′, O := B(n)) ∈ CGE [U ]

and (O := B(n), O := φ ∧H ′) ∈ CGE [U ])
if (O := φ ∧H ′, O := B(n)) ∈ CGE [U ]

then {` = n;n = (`+ r)/2; }
else {r = n;n = (`+ r)/2; }

return n

Note that when this procedure terminates, we have
GE [U ](O := B(n)) = GE [U ](O := φ ∧ H ′), and so by
Lemma B.9,n is the number of satisfying assignments to
φ.

We show that the procedure iterates at most|
−→
H |+1 times.

To see this, every iteration in the procedure narrows the
range betweenr and` by one half. Becauser−` is bounded
by 2|

−→
H |, it follows that the procedure iterates at most|

−→
H |+1

times. Hence, the oracleCGE [U ] is accessed3×(|
−→
H |+1)+2

times, and this proves the lemma.

Theorem 3.7: #P⊆ FPCGE [U ]

Proof: Straightforward by Lemma B.10 and the fact
that #SAT, the problem of counting the number of solutions
to a boolean formula, is #P-complete.

Theorem 3.8: #P⊆ FPCCC

Proof: Straightforward from Lemma B.1 and Theo-
rem 3.6.

Theorem 3.9: Checking non-interference is coNP-
complete for loop-free boolean programs.

Proof: We write NI for the decision problem of check-
ing non-interference of loop-free boolean programs. We
prove by reducing NI to and from UNSAT, which is coNP-
complete.

• NI ⊆ UNSAT

We reduce via self composition [3], [11]. LetM be
a boolean program that we want to know if it is non-
interferent. First, we make a copy ofM , with each
variablex in M replaced by a fresh (primed) variable
x′. Call this copyM ′. Let φ = wp(M ;M ′,

−→
O =

−→
O ′),

where
−→
O =

−→
O ′ is the boolean formula encoding the

conjunction of equalitiesO1 = O′1, O2 = O′2, . . . ,
On = O′n, whereO1, . . . , On are the low security
output variables ofM . Note thatφ can be obtained
in time polynomial in the size ofM . Here, instead of
the rules in Figure 2, we use the optimized weakest
precondition generation technique [13], [17] that gen-
erates a formula quadratic in the size ofM ;M ′. Then,
M is non-interferent if and only ifφ is valid, that is,
if and only if ¬φ is unsatisfiable.

• UNSAT⊆ NI
Let φ be a formula that we want to know if it is
unsatisfiable. We prove that the following programs is
non-interferent iffφ is unsatisfiable. Here, all variables
that appear inφ are high security input variables and
H is a high security input variable that is distinct from
variables appearing inφ, and O is the low security
output variable.

if φ ∧H then O := true else O := false

Trivially, if φ is unsatisfiable, then this program returns
only false, that is, this program is non-interferent. If this
program is non-interferent, then this program returns
only true for any input, or returns onlyfalse for any
input. However, this program can not return onlytrue,
because ifH = false then φ ∧ H = false. Therefore,
this program only returnsfalse, when this program is
non-interferent. That meansφ is unsatisfiable when the
program is non-interferent.

Definition B.11: LetM be a function such thatM : A →
B. Then, we define the image ofM on X ⊆ A, M [X], as
follows.

M [X] = {o | o = M(x) ∧ x ∈ X}

Lemma B.12: Let H be a set, andM and M ′ be
functions whose domains containH. Suppose that we
have M ′(h0, l) = M ′(h1, l) ⇒ M(h0, l) = M(h1, l),
for all h0, h1 in H. Then, for all h′ ∈ H, we have
{h |M ′(h, l) = M ′(h′, l)} ⊆ {h |M(h, l) = M(h′, l)}.

Proof: Trivial.

Lemma B.13: Let H, O, O′, and L be distinct ran-
dom variables. LetM and M ′ be programs. We have
(M,M ′) ∈ R iff for any distributionµ, H∞[µ](H|O′, L) ≤
H∞[µ](H|O,L) whereO′ = M ′(H,L) andO = M(H,L).

Proof:

• (⇒)



SupposeR(M,M ′). We have

H∞[µ](H|O′, L) ≤ H∞[µ](H|O,L)
iff V[µ](H|O,L) ≤ V[µ](H|O′, L)

by the definition of min entropy, and

V[µ](H|O,L)
=

∑
o∈O,`∈L µ(o, `) maxh∈H µ(h|o, `)

=
∑

o∈O,`∈L µ(o, `) maxh∈H
µ(h,o,`)
µ(o,`)

=
∑

o∈O,`∈L maxh∈H µ(o, `)µ(h,o,`)
µ(o,`)

=
∑

o∈O,`∈L maxh∈H µ(h, o, `)
=

∑
o∈O,`∈L maxh∈{h′|o=M(h′,`)} µ(h, `)

whereO = M [{(h, `) ∈ H× L | µ(h, l) > 0}], andL
and H are sample spaces of low-security input and
high-security input, respectively. Therefore, it suffices
to show that

V[µ](H|O′, L)− V[µ](H|O,L)
=

∑
o′∈O′,`∈L maxh∈{h′|o′=M ′(h′,`)} µ(h, `)

−
∑

o∈O,`∈L maxh∈{h′|o=M(h′,`)} µ(h, `)
≥ 0

whereO′ = M ′[{(h, `) ∈ H× L | µ(h, `) > 0}].
For any o ∈ O and ` ∈ L, there existshm such
that µ(hm, `) = maxh∈{h′|o=M(h′,`)} µ(h, `). Because
R(M,M ′), by Lemma B.12, we have

{h |M ′(h, `) = M ′(hm, `)}
⊆ {h |M(h, `) = M(hm, `)}

Therefore,

µ(hm, `) = max
h∈{h′|o′=M ′(h′,`)}

µ(h, `)

for some o′ ∈ O′. Hence, each summand in∑
o∈O,`∈L maxh∈{h′|o=M(h′,`)} µ(h, `) also appears

in
∑

o′∈O′,`∈L maxh∈{h′|o′=M ′(h′,`)} µ(h, `). And, we
have the above proposition.

• (⇐)
We prove the contraposition. Suppose(M,M ′) 6∈ R.
Then, there existh0, h1, `, o0, o1 such thatM ′(h0, `) =
M ′(h1, `), o0 = M(h0, `), o1 = M(h1, `), and
o0 6= o1. Pick a probability distributionµ such that
µ(h0, `) = µ(h1, `) = 1

2 . Then, we have

V[µ](H|O′, L)
=

∑
o′∈O′,`∈L maxh∈{h′|o′=M(h′,`)} µ(h, `)

= 1
2

and

V[µ](H|O,L)
=

∑
o∈O,`∈L maxh∈{h′|o=M(h′,`)} µ(h, `)

= 1
2 + 1

2
= 1

Therefore,H∞[µ](H|O′, L) 6≤ H∞[µ](H|O,L).

Theorem 4.3: R = {(M1,M2) | ∀µ.CME [µ](M1,M2)}

Proof: Straightforward from Lemma B.13 and the fact
that H∞[µ](H|L) − H∞[µ](H|O,L) ≤ H∞[µ](H|L) −
H∞[µ](H|O′, L) iff H∞[µ](H|O,L) ≥ H∞[µ](H|O′, L).

Theorem 4.4: R = {(M1,M2) | ∀µ.CGE [µ](M1,M2)}

Proof:

• ⊆
Suppose(M,M ′) ∈ R. By the definition,

GE [µ](M) =∑
`∈L,h∈H In(λh′.µ(h′, `),H, h)µ(h, `)

−
∑

o∈O,`∈L,h∈H In(λh′.µ(h′, o, `),H, h)µ(h, o, `)

and

GE [µ](M ′) =∑
`∈L,h∈H In(λh′.µ(h′, `),H, h)µ(h, `)

−
∑

o′∈O′,`∈L,h∈H In(λh′.µ(h′, o′, `),H, h)µ(h, o′, `)

where O = M [{(h, `) ∈ H× L | µ(h, `) > 0}] and
O′ = M ′[{(h, `) ∈ H× L | µ(h, `) > 0}].
It suffices to show that∑

o′∈O′,`∈L,h∈H In(λh′.µ(h′, o′, `),H, h)µ(h, o′, `)
≤

∑
o∈O,`∈L,h∈H In(λh′.µ(h′, o, `),H, h)µ(h, o, `)

Let o ∈ O and ` ∈ L. Let o = M(h0, `) = · · · =
M(hx, `), and leto′0 = M ′(h0, `), . . . , o′x = M ′(hx, `).
BecauseR(M,M ′), for any h′ such thatM ′(h′, `) ∈
{o′0, . . . , o′x}, we haveh′ ∈ {h0, . . . , hx}. Then, by
Lemma B.5, we have∑

h∈HO
In(λh′.µ(h′, o′, `),H, h)µ(h, o, `)

≥
∑

o′∈O′
o,h∈Ho

In(λh′.µ(h′, o′, `),H, h)µ(h, o′, `)

where
O′

o = {o′0, . . . , o′x}
Ho = {h0, h1, . . . , hx}

Now we prove eachOo constructed above are disjoint.
That is, for o1 and o2 outputs ofM such thato1 6=
o2, Oo1 ∩ Oo2 = ∅. For a contradiction, supposeo′ ∈
Oo1 ∩Oo2 . Then, there existh1 andh2 such thato1 =
M(h1, `), o′ = M ′(h1, `), o2 = M(h2, `), and o′ =
M ′(h2, `). SinceR(M,M ′), we haveo1 = o2, and it
leads to a contradiction. Hence, we have for any` ∈ L,∑

o′∈O′,h∈H In(λh′.µ(h′, o′, `),H, h)µ(h, o′, `)
≤

∑
o∈O,h∈H In(λh′.µ(h′, o, `),H, h)µ(h, o, `)

Therefore, it follows that∑
o′∈O′,`∈L,h∈H In(λh′.µ(h′, o′, `),H, h)µ(h, o′, `)
≤

∑
o∈O,`∈L,h∈H In(λh′.µ(h′, o, `),H, h)µ(h, o, `)

• ⊇



We prove the contraposition. Suppose(M,M ′) 6∈ R.
Then, there existh, h′, `, o, o′ such that

– M(h, `) = o, M(h′, `) = o′, ando 6= o′

– M ′(h, `) = M ′(h′, `)
Then, we can pickµ such thatµ(h, `) = µ(h′, `) = 0.5.
We have

GE [µ](M) = 1.5− 1 = 0.5

and
GE [µ](M ′) = 1.5− 1.5 = 0

Therefore, we have(M,M ′) 6∈ CGE [µ].

Theorem 4.5: R ⊆ CCC

Proof: Let M and M ′ be programs such that
(M,M ′) ∈ R. We prove(M,M ′) ∈ CCC .

By Theorem 4.2, we have

∀µ.SE [µ](M) ≤ SE [µ](M ′)

Now, there existsµ′ such that

CC (M) = SE [µ′](M)

Therefore,
SE [µ′](M) ≤ SE [µ′](M ′)

Trivially,
SE [µ′](M ′) ≤ CC (M ′)

Therefore, we have the conclusion.

Theorem 4.6: Let M2 be a non-interferent program.
Then,R(M1,M2) iff M1 is also non-interferent andM1

has the same input domain asM2.

Proof: Straightforward from Theorems 2.6 and 4.2.

Theorem 4.8: Restricted to loop-free boolean programs,
R is coNP-complete.

Proof:

• R ⊆ coNP
We prove by reducingR to UNSAT, which is coNP-
complete. We reduce via self composition [3], [11].
Let M andM ′ be boolean programs that we want to
know if they are inR. First, we make copies ofM
andM ′, with all variables inM andM ′ replaced by
fresh (primed) variables. Call these copiesMc andM ′

c.
Let φ = wp(M ;Mc;M ′;M ′

c,
−→
O′ =

−→
O′c ⇒

−→
O =

−→
Oc)

where
−→
O ,
−→
Oc,

−→
O′, and

−→
O′c are the low security outputs

of M ,Mc,M ′, andM ′
c, respectively. Note thatφ can

be obtained in time polynomial in the size ofM
andM ′. Here, like in Theorem 3.9, we use the opti-
mized weakest precondition generation technique [13],
[17] to generate a formula quadratic in the size of

M ;Mc;M ′;M ′
c. Then, (M,M ′) ∈ R if and only if

φ is valid, that is, if and only if¬φ is unsatisfiable.
• coNP⊆ R

We prove by reducing NI toR, because NI is coNP-
complete by Theorem 3.9. We can check the non-
interference ofM by solvingR(M,M ′) whereM ′ is
non-interferent and have the same input domain asM
by Theorem 4.6. Note that suchM ′ can be constructed
in polynomial time. Therefore, we have coNP⊆ R.


