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Abstract—Researchers have proposed formal definitions of
quantitative information flow based on information theoretic
notions such as the Shannon entropy, the min entropy, the
guessing entropy, and channel capacity. This paper investigates
the hardness and possibilities of precisely checking and infer-
ring quantitative information flow according to such definitions.

We prove that, even for just comparing two programs on
which has the larger flow, none of the definitions is ak-
safety property for any k, and therefore is not amenable
to the self-composition technique that has been successfully
applied to precisely checking non-interference. We also show
a complexity theoretic gap with non-interference by proving
that, for loop-free boolean programs whose non-interference is
coNP-complete, the comparison problem is #P-hard for all of
the definitions.

For positive results, we show that universally quantifying the
distribution in the comparison problem, that is, comparing two
programs according to the entropy based definitions on which
has the larger flow for all distributions, is a 2-safety problem
in general and is coNP-complete when restricted for loop-free
boolean programs. We prove this by showing that the problem
is equivalent to a simple relation naturally expressing the fact
that one program is more secure than the other. We prove that
the relation also refines the channel-capacity based definition,
and that it can be precisely checked via the self-composition
as well as the “interleaved” self-composition technique.

I. INTRODUCTION
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In both programs,H is a high security input and is

a low security output. Viewingd as a password)/; is

a prototypical login program that checks if the guess
matches the passwotdBy executing)M;, an attacker only
learns whethetd is equal tog, whereas she would be able
to learn the entire content df by executinghM,. Hence, a
reasonable definition of quantitative information flow should
assign a higher quantity tdé/, than to M, whereas non-
interference would merely say that; and M, are both
interferent, assuming that there are more than one possible
value of H.

Researchers have attempted to formalize the definition of
guantitative information flow by appealing to information
theory. This has resulted in definitions based on the Shannon
entropy [12], [7], [19], the min entropy [29], the guessing
entropy [16], [1], and channel capacity [22], [20], [26].
Much of the previous research has focused on information
theoretic properties of the definitions and approximate (i.e.,
incomplete and/or unsound) algorithms for checking and
inferring quantitative information flow according to such
definitions.

In this paper, we give a verification theoretic and com-
plexity theoretic analysis of quantitative information flow
and investigate precise methods for checking quantitative

We consider programs containing high security inputs andnformatlon flow. In particular, we study the followirgpm-

low security outputs. Informally, the quantitative informatio

flow problem concerns the amount of information that an

attacker can learn about the high security input by executin
g Y IPUEBY hanformation flow definition X' where X' is either SE[4]

the program and observing the low security output. T

problem is motivated by applications in information security.

We refer to the classic by Denning [12] for an overview.
In essence, quantitative information flow measunesv

secure, or insecure, a program is. Thus, unlike non-
interference [14], that only tells whether a program is
completely secure or not completely secure, a definition o
guantitative information flow must be able to distinguish two
programs that are both interferent but have different degrees

of “secureness.”
For example, consider the following two programs:

My =if H=gthen O:= Oelse O:=1
MQEO:: H

n parison problem Given two programs\/; and M-, decide

if X(M;) < X(Mz). Here X(M) denotes the information
ow quantity of the programd/ according to the quantitative

(Shannon-entropy based with distributiph, ME[u] (min-
entropy based with distribution), GE[n] (guessing-entropy
based with distribution:), or CC' (channel-capacity based).
Note that, obviously, the comparison problem is no harder
than actually computing the quantitative information flow as
jve can compare the two numbers once we have computed
X(Ml) and X(.Z\/.[Q)

Concretely, we show the following negative results, where

X is CC, SE[u], ME[u], or GE[p] with g uniform.
o Checking if X(M;) < X(Ms) is not a k-safety

IHere, for simplicity, we assume that is a program constant. See
Section Il for modeling attacker/user (i.e., low security) inputs.



property [30], [9] for anyk. and proves it equivalent to the comparison problems for
« Restricted to loop-free boolean programs, checking ifthe entropy-based definitions with their distributions uni-
X (M) < X(Ms) is #P-hard. versally quantified. The section also shows that this is a

The results are in stark contrast to non-interference whici?-safety property and is easier to decide than the non-
is known to be a2-safety property in general [3], [11] universally-quantified comparison problems, and suggests
(technically, for the termination-insensitive c3sand can be @ self-composition based method for precisely checking
shown to be coNP-complete for loop-free boolean programguantitative information flow. Section V discusses related
(proved in Section I1I-C). (#P is known to be as hard as thavork, and Section VI concludes. Appendix A contains the
entire polynomial hierarchy [31].) The results suggest thauPporting lemmas and definitions for the proofs appearing
precisely inferring (i.e., computing) quantitative information in the main text. The omitted proofs appear in Appendix B.
flow according to these definitions would be harder than I
checking non-interference and may require a very different
approach (i.e., not self composition [3], [11], [30]).

We also give the following positive results which show

that checking if the quantitative information flow of one pro- L ;
gram is larger than the other for all distributions according™PY [28], [u](X), which is the average of the informa-

to the entropy-based definitions is easier. Beldwis SE, tion content., and intuitively, denotes the uncertainty of the
ME, or GE. random variableX .

Definition 2.1 (Shannon Entropy): Let X be a random
variable with sample spac& and p be a probability
fdistribution associated withX (we write p explicitly for
clarity). The Shannon entropy df is defined as

PRELIMINARIES

We introduce the information theoretic definitions of
guantitative information flow that have been proposed in
literature. First, we review the notion of tHgéhannon en-

o Checking if Vu.Y[u](My) < Y[p](Mz) is a 2-safety
property.
« Restricted to loop-free boolean programs, checking i
V. Y[p|(My) < Y[u](Ms) is coNP-complete.
These results are proven by showing that the prob- Hp)(X) = Z”(X =1)log ————
lems Vu.SE[u](M,) < SE[u](My), Yu.ME[u](M;) < = n(X =)
ME[u](Mz), and Vu.GE[p)(M1) < GE[u](Mz) are all
actually equivalent to a simpiesafety relationR(My, Ms).
We also show that this relation refines the channel-capacit
based quantitative information flow, that is, &(M;, M>)
The fact thatR(M;, M) is a 2-safety property implies
that it can be reduced to a safety problem via self compo
sition. This leads to a new approach to precisely checkin . ! )
quantitative information flow that leverages recent advances - Then, the conditional entropy ok given Y, written
in automated software verification [2], [15], [24], [4]. Briefly, 't#(X[Y) is defined as
given M, and Ms, R(My, M>) means thatM/; is at least _ _ _
as secure ad\/, for all distributions while =R(M;, M>) HIHl(XTY) ZM(Y YHHEY =y)
means that there must be a distribution in whidh is less
secure than\l,, according to the entropy-based definitions WNere
of quantitative information flow. Therefore, by deciding H[p(X|Y =v)

(The logarithm is in base 2.)

ext, we defineconditional entropy Informally, the condi-
ional entropy of X given Y denotes the uncertainty of
after knowingY.

Definition 2.2 (Conditional Entropy): Let X andY be
random variables with sample spac€sandY, respectively,
nd i be a probability distribution associated with and

yeY

R(My, M), we can measure the security of the program _ X — 2V = )1 1

M, relative to anothespecificationprogram/,. Note that %M( 2 y)log wX =z|Y =vy)
this is useful even whed/; and M, are “incomparable” h WX =z,Y =9)

by R, that is, when—R(M;, M,) and —~R(Mx, M;). See pX =2y =y) = WY =)

Section IV-B for the details. . - ) )

The rest of the paper is organized as follows. Section II_N,eXt’ we deflng '(condltlonal) 'mutual '|nf0rmat|on. Intu-
reviews the existing information-theoretic definitions of |t|_vely, the conditional mutual information o' and ¥
quantitative information flow. Section III proves the hardnessJVeN Z represents the mutual dependenceXoandY” after
of their comparison problems and thus shows the hardness 5P°W"f]9 Z )
precisely inferring quantitative information flow according ~Definition 2.3 (Mutual Information): Let X,}" and Z

to these definitions. Section IV introduces the relatisn b€ random variables angi be an associated probability
distribution3 Then, the conditional mutual information of
2We restrict to terminating programs in this paper. (The termination
assumption is nonrestrictive because we assume safety verification as a®We abbreviate sample spaces of random variables when they are clear
blackbox routine.) from the context.



X andY givenZ is defined as Definition 2.5 (Non-intereference): A program M is
. . . ,
IWl(X;Y12) = H(X|Z) = Hlpl(X]Y, 2) ) S A rererent i for ang, € F and £€
= H(Y|2) = Hul(Y]X, 2) . - | |
) o It is worth noting that non-interference can be formalized
Let M be a program that takes a high security infuand a5 a special case of the Shannon-entropy based quantitative
a low security inputL, and gives the low security outp@.  nformation flow where the flow quantity is zero.
For simplicity, we restrict to programs with just one variable Theorem 2.6: Let M be a program that takes high-
of egch km.d’ but it is trivial o extend the formalism to security inputH, low-security inputL, and returns low-
multiple variables (e.g., by letting the variables range Oversecurity outpulD. Then, M is non-interferent if and only if
tuples). Also, for the purpose of the paper, unobservabl ’

(i.e., high security) outputs are irrelevant, and so we assum%eu'SE[M](M) =0

that the only program output is the low security output.-g]elflbowle tgeorﬁ_mhis complrclam(fentary to tr;]e r? ne p};oxen by
Let 1 be a probability distribution over the values éf ark et al. [S] which states that for apysuch tha(H =

and L. Then, the semantics af/ can be defined by the h,L=¢)>0forall h e Handl €L, SE[u](M) = 0 iff

following probability equation. (We restrict to terminating M is non-mt_erferent. ) . )
deterministic programs in this paper.) Next, we introduce themin entropy which Smith [29]

recently suggested as an alternative measure for quantitative

pO=o0)= > upH=hL=2 information flow.
%}Egﬂ{t Definition 2.7 (Min Entropy): LetX andY be random

variables, andu be an associated probability distribution.
Note that we writeM (h, ¢) to denote the low security output Then, the min entropy oX is defined
of the programM given inputsh and ¢. Now, we are 1
ready to introduce the Shannon-entropy based definition of Hoo[](X) = log ———
quantitative information flow (QIF) [12], [7], [19]. Vipl(X)

Definition 2.4 (Shannon-Entropy-based QIF):Let M  and the conditional min entropy of givenY is defined
be a program with a high security inpuf, a low security

1
input L, and a low security outpu®d. Let i be a distribution Hoo[p](X]Y) = log W
over H and L. Then, the Shannon-entropy-based quantita- "
tive information flow is defined where
SE[u(M) = TIu)(0;H|L) V[pl(X) = maxgexp(X =1z)
= HlpJ(H|L) — H[u](H|O, L) V(XY =y) = maxgex (X =a|Y =y)
Intuitively, H[u](H|L) denotes the initial uncertainty know- VIXTY) = 2yey pY =y)V (XY =)

ing the low security input andt[u|(H|O, L) denotes the |ntyitively, V[u](X) represents the highest probability that
remaining uncertainty after knowing the low security output. o, attacker guessés in a single try. We now define the min-

As an example, consider the prograthg and M, from  entropy-based definition of quantitative information flow.
Section I. For concreteness, assume that the value01l Definition 2.8 (Min-Entropy-based QIF): Let M be a
and H ranges over the spad@®0,01,10,11}. Let U be the ith a hiah I —— o
uniform distribution over{00,01, 10, 11}, that is,U(h) = program with a high security Inpulf, a low security input

o ' L, and a low security outpu©. Let 1 be a distribution

1/4 for all h € {00,01,10,11}. The results are as follows. over H and L. Then, the min-entropy-based guantitative

SE[U|(My) = H[U|(H)—-H[U|(H|O) information flow is defined

= log4— %logS

~ .81128 ME[p)(M) = Hoo [l (H|L) — Hoo[u](H|O, L)
SEU|(My) = H[UJ(H) - H[U|(H|O) Whereas Smith [29] focused on programs lacking low

security inputs, we extend the definition to programs with
low security inputs in the definition above. It is easy to
see that our definition coincides with Smith’s for programs
Consequently, we have tha&F [U](M;) < SE[U](M-), but  without low security inputs. Also, the extension is arguably
SE|U|(Ms) £ SE[U](M;). That is, M; is more secure natural in the sense that we simply take the conditional
than M, (according to the Shannon-entropy based definitiorentropy with respect to the distribution over the low security
with uniformly distributed inputs), which agrees with our inputs.

intuition. Computing the min-entropy based quantitative informa-

Let us recall the notion of non-interference [10], [14]. tion flow for our running example program¥&/; and M,

= log4 —logl
= 2



from Section | with the uniform distribution, we obtain, the uniform distribution.

ME[U)(My) = Huo[UJ(H) = Hoo[U](H|O) GEU)(M) = GUNH) - GUNH|O)
= log4 —log2 = 271
= 1 = 0.75

ME[U)(Ms) = Hoo[UJ(H) — Hoo|UJ(H|O) GE[U|(Mz) = g[U](H) — GU)(H|O)
= log4 —logl i 15; 1
= 9 .

Therefore, we again have th&E[U](M;) < GE[U](Mz)
Again, we have thatME[U|(M,) < ME[U](Mz) and  and GE[U])(Ms) £ GE[U](M;), and soMs is considered
ME[U|(M;) £ ME[U](M,), and soM, is deemed less |ggs secure thai/;, even with the guessing-entropy based
secure than\/; . definition with the uniform distribution.

The third definition of quantitative information flow  The fourth and the final existing definition of quantitative
treated in this paper is the one based on the guessingformation flow that we introduce in this paper is the one
entropy [21], that is also recently proposed in literature [16],pased orchannel capacity22], [20], [26], which is simply
[1]. defined to be the maximum of the Shannon-entropy based

Definition 2.9 (Guessing Entropy): Let X and Y be quantitative information flow over the distribution.
random variables, ang: be an associated probability dis-  Definition 2.11 (Channel-Capacity-based QIF):Let

tribution. Then, the guessing entropy &f is defined M be a program with a high security inputl, a low
security inputL, and a low security outpu®. Then, the
Glul(X) = > ixpX =) channel-capacity-based quantitative information flow is
1<i<m defined
where {21, 22, ..., 2} = X and Vi, ji < j = p(X = o) :m,‘?xz[“](O;H'L)

zi) > (X = ). Unlike the Shannon-entropy based, the min-entropy
The conditional guessing entropy &f givenY” is defined  pased, and the guessing-entropy based definitions, the

) channel-capacity based definition of quantitative information

Glul(XY) = Z”(Y =) Z ix X =alY =y) flow is not parameterized by a distribution over the inputs.

ey 1sism As with the other definitions, let us test the definition on the

where {z1,23,...,2,,} = X and Vi, ji < j = w(X = running example from Section | by calculating the quantities
2|V =y) > p(X = 2,]Y =y). h for the programs\/; and M,:

Intuitively, G[u](X) represents the average number of CC(M,) = max,Z[u](O;H)
times required for the attacker to guess the valu&oiwe =1
now define the guessing-entropy-based quantitative informa-
tion flow. CC(My) = max,Z[ul(0;H)

Definition 2.10 (Guessing-Entropy-based QIF):Let = 2

M be a program with a high security inpul/, a low As with the entropy-based definitions (with the uniform
security inputL, and a low security outpu©. Let x be  distribution), we have thatCC(M;) < CC(M;) and

a distribution overHd and L. Then, the guessing-entropy- CC(M,) £ CC(M,), that is, the channel-capacity based
based quantitative information flow is defined quantitative information flow also says thiak, is less secure

than M;.
CE[(M) = Glul(H|L) - Glu)(HIO, L) [1l. HARDNESS OFCOMPARISONPROBLEMS

Like with the min-entropy-based definition, the previous We investigate the hardness of deciding the following
research on guessing-entropy-based quantitative informatiosomparison problenCsg [u]: Given programsV; and M,
flow only considered programs without low security in- having the same input domain, decide SE[u](M;) <
puts [16], [1]. But, it is easy to see that our definition with SE[u](M,). Because we are interested in hardness, we focus
low security inputs coincides with the previous definitionson the case wherg is the uniform distribution/. That
for programs without low security inputs. Also, as with is, the results we prove for the specific case applies to the
the extension for the min-entropy-based definition, it simplygeneral case. Also note that the comparison problem is no
takes the conditional entropy over the low security inputs. harder than actually computing the quantitative information

We testGE on the running example from Section | by flow because we can compaf& |u:|(M;) and SE[u](Ms)
calculating the quantities for the prograths and Ms with if we know their actual values.



Likewise, we study the hardness of the compar-

ison problem Cyglu], defined to be the problem
ME[u|(My) < ME[u](Ms3), Cgrlu], defined to be the
problem GE[u](M;) < GE[u](Mz), and C¢¢, defined to
be the problemCC(M;) < CC(My). As with Csglu], we

Theorem 3.4: C¢¢ is not a k-safety property for any
k> 0.

A. Bounding the Domains
The notion ofk-safety property, like the notion of safety

require the two programs to share the same input domaiproperty from where it extends, is defined over all programs

for these problems.

We show that none of these comparison problemskare
safety problems for any. Informally, a program property is
said to be &-safetyproperty [30], [9] if it can be refuted by
observingk number of (finite) execution traces. &safety
problem is the problem of checking fsafety property.
Note that the standard safety property is-gafety property.
An important property of &-safety problem is that it can
be reduced to a standard safety (i.&-safety) problem,

regardless of their size. (For example, non-interference is a
2-safety property for all programs and unreachability is a
safety property for all programs.) But, it is easy to show
that the comparison problems would becomesafety”
properties if we constrained and bounded the input domains
because then the size of the semantics (i.e., the input/output
pairs) of such programs would be bounded |Hyx |L|. In

this case, the problems are at m#ix|IL|-safety> However,
these bounds are high for all but very small domains, and

such as the unreachability problem, via a simple programare unlikely to lead to a practical verification method.

transformation calledelf compositiorf3], [11].
It is well-known that non-interference is2asafety prop-

B. Proof of Theorem 3.1

erty! and this has enabled its precise checking via a we discuss the details of the proof of Theorem 3.1. The
reduction to a safety problem via self composition andproofs of Theorems 3.2, 3.3, 3.4 are deferred to Appendix B.
piggybacking on advances in automated safety verification pqr contradiction, suppos@sy [U] is ak-safety property.
methods [30], [25], [32]. Unfortunately, the results in this | ot 77 and M’ be programs having the same input domain
section imply that quantitative information flow inference g ;¢ that(M, M') ¢ Csp[U]. Then, it must be the case
problem is unlikely to receive the same benefits. that there exist” C [M] andT’ C [M'] such that/T| <
Because we are concerned with properties about pairs qg, IT'| < k, andVM,, M'.T C [MJAT C [M] =
programs (i.e., comparison problems), we extend the notior@Mw M!) & Csp|U]

of k-safety to properties refutable by observingaces from Let
each of the two programs. More formally, we say that the
comparison problend’ is ak-safety property i M7, Ms) ¢

T = {(h1,01)7 (hQ,OQ), ey (h,,OQ%

C implies that there exist&; C [[M,] andT, C [M,] such T" = {(h1,01), (hy,03), ..., (K}, 0})}
that wherei,j < k. Now, we construct new program®/ and
D) W <k M’ as follows.
(2) T3] < k . S
(3) ¥MJ, M§.T1 C [M{] AT, C [M3] = (M}, M) & C M(fn) = or M (k) = o
. . M(hs) = 09 M’ (hYy) = of

In the above,[M] denotes the semantics (i.e., traces) 2 2
of M, represented by the set of input/output pairs N — N
{(h,0),0) | h € H,L €L o= M(h,{)}. M](\Z(h; — o M{‘{h,(hj; =9

We now state the main results of the section. (Recall that C AL B A A
U denotes the uniform distribution.) We sketch the main M (hiv2) = o M (Rjyp) = 04
idea of the proofs. All proofs are by contradiction. L&t _ o ,
be the comparison problem in the statement and suppose _M(hiyj) = o ,f” /(hj+7;) = 07+z‘
is k-safety. Let(M,, M) ¢ C. Then, we havel; C [M;]] (Ritjs1) = or M (R yi1) = )
and T, C [M] satisfying the properties (1), (2), and (3) o o
above. From this, we construgf; and > such thatl; C M (hn) = or M'(hy,) = o},

[[Ml]] and T, C [[MQ]] and (Ml,MQ) € C to obtain the where

contradiction. « 040
Theorem 3.1: Csg[U] is not ak-safety property for any (o 0;' o {00} =0

k> 0. o 041, 05y .., 0, andol. are distinct,
Theorem 3.2: C)g[U] is not ak-safety property for any o {0},0h, ..., 0} N{0 ... 0h 0l =0,

k> 0. o {hy,....h,}={h4,...,h.}, and
Theorem 3.3: C¢g[U] is not ak-safety property for any o n=2k.

k> 0.

41t is also well known that it is not d-safety property [23].

51t is possible to get a tighter bound for the channel-capacity based
definition by also bounding the size of the output domain.



M o= x:=1|if ¢ then M else M | My; M, range over functions mapping boolean variables of its kind to
G0 = true|z|dAY| o boolean values. So, for exampleifandy are low security
boolean variables angd is a high security boolean variable,
Figure 1. The syntax of loop-free boolean programs then L ranges over the functions:, y} — {false, true}, and

H and O range over{z} — {false, true}.® (Every boolean
variable is either a low security boolean variable or a high
security boolean variable.) We writg/(h,¢) = o for an
input (h,¢) and an outpub if (h,¢) = wp(M,¢) for a
boolean formulap such thab = ¢ ando’ [~ ¢ for all output
o' # o. Here, |= is the usual logical satisfaction relation,
using h, /4,0, etc. to look up the values of the boolean
variables. (Note that this incurs two levels of lookup.)

As an example, consider the following program.

Wi = 1. 6) = o]
wp(if @ then My else M, ¢)
Wp(M07 M17 ¢) = Wp(MOa Wp(Mla (b))

Figure 2. The weakest precondition for loop-free boolean programs

Then, comparing the Shannon-entropy-based quantitative M=
information flow of A/ and M’, we have, Z_.: zw =y
SE[U|(M') — SE[U](M) if xAythen z:= —zelse w:= -w
_ / 1
o;e{fimo;}lU(Ow) log/U(o’I) ) Let z, y be high security variables andw be low security
+ U(0) log g7y + Ul0;) log 757 variables. Then,
~ Qoetorop Uloa) o8 7y SE[UJ(M) = 15
+ ZOyE{Oﬁlw’oiﬁ} U(oy)log Uloy) ME[U|(M) = log3
(Note the abbreviations from Appendix A.) By lemma A.5, GEUJ(M) = 125
we have coan 7 11058349625
Zoze{ol,...,oi} U(OI> IOg U(})w) . .
<SS L U(0l)log —L, We prove the following hardness results. These results
= oy Clogr0fis} T Y TS Uley) are proven by a reduction from #SAT, which is the prob-
and lem of counting the number of solutions to a quantifier-

free boolean formula. #SAT is known to be #P-complete.

U010L< ’ ’ /UO/.IO%
(0)108 755 < 2oy €040y} U0h) 108 70075 Because #SAT is a function problem and the comparison

Trivially, we have problems are decision problems, a step in the proofs makes
1 1 binary search queries to the comparison problem oracle a
U(o})log T~ U(o;)log 7o) polynomial number of times. (Recall that the notatiorn’*FP
" " means the complexity class of function problems solvable
As a result, we have in polynomial time with an oracle for the probler)
SE[U)(M’) — SE[U)(M) >0 Theorem 3.5: #P C FpCs# (U]

. Cyve U
Note thatAd/ and M’ have the same counterexamplesind Theorem 3.6: #P ¢ FPCATD[[U]]
T’, that is, T C [M] andT’ C [M’]. However, we have Theorem 3.7- #P C FPCGE
(M, M’) € Csg[U]. This leads to a contradiction. Theorem 3.8: #P C FP™c¢
. We remind that the above results apply (even) when the
C. Complexities for Loop-free Boolean Programs comparison problem&'sz (U], Ciz[U], CarlU], andCec
The purpose of this section is to show a complexityare restricted to loop-free boolean programs.
theoretic gap between non-interference and quantitative in- In summary, each comparison probléfgz[U], Cz[U],
formation flow. The results strengthen the hypothesis that';;[U], and Ccc can be used a polynomial number of
quantitative information flow is quite hard to compute pre-times to solve a #P-complete problem. Because Toda’s
cisely, and also suggest an interesting connection to countingieorem [31] implies that the entire polynomial hierarchy
problems. can be solved by using a #P-complete oracle a polynomial
We focus on loop-free boolean programs whose syntax isumber of times, our results show that the comparison
given in Figure 1. We assume the usual derived formulaproblems for quantitative information flow can also be used

o =, ¢ =1, ¢V, andfalse. We give the usual weakest
precondition semantics in Figure 2. 6We do not distinguish input boolean variables from output boolean
. . variables. But, a boolean variable can be made output-only by assigning a
To adapt the information flow framework to boolean PrO- constant to the variable at the start of the program and made input-only by

grams, we make each information flow variatsle L, andO assigning a constant at the end.



a polynomial number of times to solve the entire polynomial
hierarchy, for the case of loop-free boolean programs.

As shown below, this presents a gap from non-
interference, which is only coNP-complete for loop-free
boolean programs.

Theorem 3.9: Checking non-interference
complete for loop-free boolean programs.

is CcoNP-

The above is an instance of the general observation that,

by solving quantitative information flow problems, one is
able to solve the class of problems known @sunting
problems’ which coincides with #SAT for the case of loop-
free boolean programs.

D. Proof of Theorem 3.5

1
T > 1.

q

The last line follows fromi

If
We prove the contraposition. Suppagse- i. Then,

SE[U](M;) — SE[UJ(M;)
_qlog +(1- )logllq
—plog 1 — (1 - p)log 11
>0

The last line follows from the fact tha < p < ¢ < 1.
Therefore,SE[U)(M;) £ SE[U)(M;).
]
Then, using Lemma 3.10, we prove the following lemma
which is crucial to proving Theorem 3.5.

We discuss the details of the proof of Theorem 3.5. The Lemma 3.11: Let H be distinct variables and) be a
proofs of Theorems 3.6, 3.7, 3.8 are deferred to Appendix Bboolean formula overH . Then, the number of assignments

First, we prove the following lemma which states that we
can compare the number of solutions to boolean formula
by computingSE[U]. (For convenience, we use large letters

H, L, O, etc. to range over boolean variables as well as

generic random variables.)

Lemma 3.10: Let # and H’ be distinct boolean random
variables. Leti and j be any non-negative integers such that
i < 2‘H| and j < 2/F|. Lety, (resp. ;) be a formula
over H having i (resp. 7) assignments. Thery, < i iff
SE[U)(M;) < SE[U|(M;) where M; = O := ¢; N H’
and M; = O := i A H'.

Proof: Let p = 57— andq = 5/—. We have

. |H|+1 [H|+1 [H|+1
SEU|(M;) = 2|hg|+1 log 2 i 22\H\+1 log 2|2H|+1_]
—pIng+( )IOg Tp
|H|+1 H+1_; |H|+1
SE[U|(M;) = 2|HZ|+1 log 2 7 22\H\+1 log 2‘2H‘+1—i
= qlogq+ (1 —q)log 1=,
. Only If
Supposej < i. Then,
SE[U(M;) — SE[U](M;)
=plog +(1-p)log 15
—qlog ; — (1 —q)log 1%,
= log(-2 p)p} (L)
Then, fromifg >1andp > ¢ > 0, we have
SE[U(M;) — SE[U)(M;) > log(+52)P(1L.)1
17
= log(P)(v5)*
log (5 230)?
= log(=L1)1
= log(E=1)1
1—1
= log(;—%1)?
> 0

“Formally, a counting problem is the problem of counting the number of
solutions to a decision problem. For instance, #P is the class of countin
problems associated with NP.

for ¢ can be computed by executing an oracle that decides
svhether programs are sz [U] at most3 x (\H\ +1)+2
times.

Proof: First, we define a procedure that returns the
number of solutions of.

Let F(j) = O := v A H wherev is a formula overH
having j aSS|gnments and/’ be a boolean variable such
that H' ¢ {H} Note that, by Lemma A.4, such can be
generated in linear time.

Then, we invoke the following procedure whelé¢’ =
O :=¢NH.

l=0;
7‘:2|ﬁ‘;
n=(l+r)/2

while =Csg[U](F(n), M") v
if Csp|U|(F(n),M')

then {{ =n;n=(L+7r)/2;}

else {r=nn=0L+r)/2;}

ﬁCSE[U](M/,F(TL))

return n

Note that when the procedure terminates, we have
SE[U](F(n)) = SE[U](M’), and so by Lemma 3.1
is the number of satisfying assignments@o_>

We show that the procedure iterates at mébt+1 times.
To see this, every iteration in the procedure narrows the
range between and/ by one half. Because—( is bounded
by 2171, it follows that the procedure iterates at mthH—l
times. Hence, the oracltész [U] is accessed x (|H|+1)+2
times, and this proves the lemma. ]

Finally, Theorem 3.5 follows from Lemma 3.11 and the
fact that #SAT, the problem of counting the number of
solutions to a boolean formula, is #P-complete.

IV. UNIVERSALLY QUANTIFYING DISTRIBUTIONS

As proved in Section lll, precisely computing quantitative
information flow is quite difficult. Indeed, we have shown
%hat even just comparing two programs on which has the
arger flow is difficult (i.e.,Csg, Cyge, Cor, andCec).



In this section, we show that universally quantifying from Theorem 4.2 and the definition of the channel-capacity
the Shannon-entropy based comparison probgs[u], based quantitative information flow.
the min-entropy based problediz[u], or the guessing- Theorem 4.5: R C Coc

entrppy based prpblerﬁ?GE[u'] over 'the. diStI’ibUtiOn,u.iS Note that, the other directionR O C¢¢, does not hold
equivalent to a simple relatio® enjoying the following as R is not always a total orde?, wherea®.c is. It is

propert.|es. also immediate from Theorem 4.2 and the property of non-
(1) R is a2-safety property. interference (Theorem 2.6) thdt is compatible with the
(2) R is coNP-complete for loop-free boolean programs. notion of non-interference in the following sense.

Note that (1) implies that we can actually check if Theorem 4.6: Let M, be a non-interferent program.
(My, M) € Csplp] for all 4 via self composition (and o, R(M;, M,) iff M, is also non-interferent and\/,
likewise for Cpe[u] and Cggrlu]). We actually show in Qas the sanjne input domain a,.

Section IV-B that we can even use the security-type-base . . .
y-yp Next, we show thatR is easier to decide than the non-

approach suggested by Terauchi and Aiken [30] to minimize . o . .
code duplication during self composition (i.e., iterleaved universally-quantified versions of the comparison problems.
self composition) ' First, it is trivial to see from Definition 4.1 thaR is a 2-

We remind that except for the coNP-completeness res:uﬁafety property.
(Theorem 4.8), the results in this section apply to any Theorem 4.7: R is a 2-safety property.
(deterministic and terminating) programs and not just to It can be shown that, restricted to loop-free boolean
loop-free boolean programs. programs,R is coNP-complete. This follows directly from
Definition 4.1: We defineR to be the relation such that the observation that we can decideby self composition
R(Mjy, M,) iff for all ¢ € L and h,h’ € H, if My(h,¢) #  thanks to it2-safety property and the fact that, for loop-free
My (K, ) then My(h, £) # My(R',£). boolean programs, self composition reduces the problem to
Note thatR(M, M,) essentially says that if an attacker an UNSAT instancé.
can distinguish a pair of high security inputs by executing Theorem 4.8: Restricted to loop-free boolean programs,
M, then she could do the same by executiig. Hence, R is coNP-complete.
R naturally expresses that/; is at least as secure ag,. 8
It may be somewhat surprising that this simple relationA, Proof of Theorem 4.2
is actually equivalent to the rather complex entropy-based
guantitative information flow definitions when they are cast .
as comparison problems and the distributions are universaIIQrO(_)fS of Theorems 4.3 and 4_'4 are deferred_ to Appendix B.
quantified, as stated in the following theorems. First, we_ 'St we prove the foIIow,mg- lemma which says that,
show thatR coincides exactly withC's;; with its distribution ' (A, M") then SE[U|(M’) is at least as large as
universally quantified. SE[U](M) per each low security input € L.
Theorem 4.2: R = {(My, My) | Vpu.Csp ] (M, M)} ~ Lemma 4:9: SupposeR(M, M'), that is, for all hy, hy
The proof is detailed in Section IV-A. The next two theorems!n H and £ in L, M'(hy,£) = M'(hz,€) = M(h1,£) =
show thatR also coincides Witz and Cp with their £ (h2,¢). Let O be the set of the outputs of/, and
distribution universally quantified. 0’ be the set of the S(Lé'gputs aff". Then,/ for anylti,(é;/ve
Theorem 4.3: R = {(My, Ms) | Vu.Cyplp] (M, Ma)} have > ,cq 1(0, @) log oy = .Zo’e@/ p(o 7.5)_ log H(ol,zj-
Theorem 4.4: R = {(My, Ma) | Vu.Co ] (M, M)} (Recall the n_otatlonal convention from Definition A.1.
The first half of theC direction of the proofs of the theorems . Proof: First, e prove for any/ou}pud; Of,M’ ther/e
above is much like the that of Theorem 4.2, that is, it makesfexISt corresponding output®, = {0, 03, ..., 0y} of M
the observation thaf\/, disambiguates the high security such that
inputs at least as fine as dokg . Then, the proof concludes 11(0, ) log ;E(()z()))
by utilizing the particular mathematical properties relevant <3 a 7(0’ Nlo w()
to the respective definitions. The proof for thedirection = Zuor€0, MO £) 08 4o 0y
is also similar to the argument used in Theorem 4.2. The ., H, be the set such thatl, = {h|M(h,!) = o).
details of the proofs appear in Appendix B. Let {ho,hr,... hn} — H,. Let of = M’(ho é),...and,
Next, we show that? refinesCcc in the sense that if o _ M’(f;n,f). For any h' such that o —
R(M,, Ms) thenC e (M, Ms). This follows immediately M'(K,f) and o. € {o},0,,....0.}, we haveh/ ¢

We discuss the details of the proof of Theorem 4.2. The

8We note that notions similar t& have appeared in literature (often in
somewhat different representations) [27], [18], [6]. In particular, Clark et °To construct a polynomial size boolean formula from a loop-free
al. [6] have shown a result analogous to thedirection of Theorem 4.2  boolean program, we use the well-known efficient weakest precondition
below. But, R's properties have not been fully investigated. construction technique [13], [17] instead of the naive rules given in Figure 2.



{h1,...,h,} since R(M,M’). Then, we haveu(o,?) =
Zo,e{o,ly__’o, y 1(oy, £). By Lemma A.5, we have
n)
M(O, f) log n(o,) (g)
< Zo/re{oé,o’l,...,o;l} IU,(O Z) IOg MO/ 0)

Now to prove the lemma, it suffices to show that e&rh
constructed above are disjoint. That is, fgrando, outputs

of M such thato; # 0y, Q,, N Q,, = (). For contradiction,

suppose’ € Q,, N Q,,. Then, there exisk; and hy such
that 01 = M(hl,f), o = M/(hl,f), 0y = M(hg,é), and
o' = M'(hg,!). SinceR(M,M'), we haveo; = o2, and it
leads to a contradiction. Hence, we have

(f) / p(€)
0,f)lo < o',0)lo
;M( ) 8 0.0 ;u( ) 8 0.0
[ |
We now prove Theorem 4.2,
Proof:
o« C
Supposg M, M') € R. By Lemma A.3,
SE[p](M) = H[u)(O|L) ,
= ¥, %, 10, 0) log 45,
and
SE[W)(M') = H[u)(O'|L)

4
= ZZ Zo’ N(Olv E) log u/{o(’,)f)

By Lemma 4.9 and the fact thdt\/, M’) € R, we
obtain for any/

>0 X, 10, £) log
< Do (0 4) log 2oy
°« 2

We prove the contraposition. Suppo$é/, M') ¢
R. Then, there existo’, hg, hi,¢ such thato =
M'(ho, ") = M'(hy,¢") and M (hg,?') # M(hy,0)
Pick a probability functionu such thatu(hg,¢) =
p(hy, ) = 5
Then, we have

Hp(O'|L) = 32,5, ulo,t)log 45

= 1log%

=0
Let o9 and o; be output variables such that =
M(ho,gl), 01 = M(hl’fl), andOQ 7é 01.

H[pl(O[L) )

(0,2

Zoe{oo 01} :U’(O e/) 1Og
= Zllog+ + 3log+

2 2
1

Therefore, SE[u](M) £  SE[u|(M’), that is,
(M, M") & {(My, M) | Vpu.(My, Ms) € Csppl}-
[

B. Quantitative Information Flow via Self Composition

Theorems 4.2, 4.3, 4.4, and 4.7 imply that we can check if
the entropy-based quantitative information flow of a program
(i.e., SE ME, and GE) is bounded by that of another
for all distributions via self composition [3], [11]. This
suggests a nhovel approach to precisely checking quantitative
information flow.

That is, given atarget program M;, the user would
construct aspecificationprogram M, with the same input
domain asM; having the desired level of security. Then, she
would checkR(M;, M) via self composition. If so, then
M is guaranteed to be at least as securéfasccording to
the Shannon-entropy based, the min-entropy based, and the
guessing-entropy based definition of quantitative information
flow for all distributions (and also channel-capacity based
definition), and otherwise, there must be a distribution in
which M, is less secure tham/, according to the entropy-
based definitions.

Note that decidingR(M;, Ms) is useful even when
M; and M, are R-incomparable, that is, when neither
R(M, M3) nor R(Ms, My). This is because R(M;, Ms)
implies thatM; is less secure thal/s on some distribution.

For example, suppos¥ is some complex login program
with the high security input? and the low security input
L. And we would like to verify that\/; is at least as secure
as the prototypical login program/, below.

My=if H=Lthen O:= 0else O:=1

Then, using this framework, it suffices to just query if
R(M, M>) is true. (Note that the output domains &f;
and M, need not to match.)

We now describe how to actually chedi M, M) via
self composition. From\{; and M5, we construct the self-
composed program/’ shown below.

M'(H,H',L) =
Oy :=M;(H,L); 0} := My(H', L);
Og := My(H,L); 0} := My (H', L);
assert(O; # O] = Oq # 0%)

Note that R(M;, M) is true iff M’ does not cause an
assertion failure. The latter can be checked via a software
safety verifier such as SLAM and BLAST [2], [15], [24], [4].
As an aside, we note that this kind of construction could
be easily generalized to reduce akysafety problem (cf.
Section 1ll) to a safety problem, as shown by Clarkson and
Schneider [9].

Note that the line.1 (resp.L2) of the pseudo code above
is My (resp. Ms) sequentially composed with a copy of
itself, which is from where the name “self composition”

/I L1
II'L2



Mi=0:=H
My=if H=Lthen O:= Oelse O:= H&l

M3=0:= 1;i:= 0
while i < 32
m = 1<<y;
if H&m # L&mn then
O = 0;break;
else
i+
¥

My=0:= 1;i:= 0
while i < 64 {
m:= 1<<yg;

if H&m # L&m then

O = 0; break;
else
i++;
Figure 3. Example programs.

comes. Therefore, technically/’ is a composition of two
self compositions.

L1 (andL2) are actually exactly the original self compo-

Here, H and L are 64-bit values& is the bit-wise and
operator, an&< is the left shift operatorl/; leaks the entire
password.M, checks the password against the user guess
but then leaks the first bit when the check faild; only
checks the first 32 bits of the password. And, implements
password checking correctly via a while loop.

We verify that onlyM, satisfies the specification, that is,
R(My, Mgpe.). To see that-R(My, Msy.), note that for
any/, h,h' such thath # ¢, b’ # ¢ andh # h/, we have that
My(h,£) # My (W, 0) but Mgpec(h,0) = Mgpec (R, €) = 1.

To see that-R(Ms, Mjy.), note that for, h, k' such that
h # ¢ K # (¢ h& = 1 and W& = 0, we have
that 1 = My(h,l) # Ma(h',0) = 0 but Mype(h,€) =

Mspec(h',0) = 1. To see that-R(Ms, Mgpe.), let ¢, h, B’

be such thath|32 = f|32, h/|32 7é g‘gg, and h 7’5 4,

then,1 = Ms(h,f) # Ms(h',¢) = 0 but Mpe.(h,l) =

Mpec (W', €) = 1.1° (Here, 2|32 denotesr mod2%2, i.e., the
first 32 bits ofz.)

The results imply that fod/, M5, and M3, there must be
a distribution where the program is less secure théy..
according to each of the entropy-based definition of quantita-
tive information flow. For instance, for the Shannon-entropy
based definition, we have for the uniform distributibn
= ghe + Zurt log oy
~ 3.46944695 x 1018
SEU(M,) =64
SE[U)(Ma) = § + 52" log 1205 + L5t log 55

SE[U)(Mspec)

sition proposed for non-interference [3], [11]. Terauchi and ~ 1.0

Aiken [30] noted that only the parts df/; (and Ms) that
depend on the high security inpuf$ and H' need to be

964 _ 932 6

SE[U)(Ms) = 2%7 + =56 — log 264_4232
~ 7.78648 x 1079

duplicated and self composed, with the rest of the program

left intact and “interleaved” with the self-composed parts.That is, SE[U](M1) £ SE[U}(Mgpec), SE[U|(Mz) £

The resulting program tends to be verified easier than th&€E[U](Mspe.), and SE[U](Ms) € SE[U](Mpec)-

naive self composition by modern software safety verifiers. Finally, we have thaR(M,, Mj,..), and solM, is at least
They proposed a set of transformation rules that translate@s secure ad/,.. according to all of the definitions of

a WHILE program annotated with security types [33] (or quantitative information flow considered in this paper. In

dependency analysis results) to an interleaved self-composéact, it can be also shown tha (M., M4). (However,

program. This was subsequently improved by a numbenote thatM, and M,,.. are not semantically equivalent,

of researchers to support a richer set of language featuré., their outputs are reversed.)

and transformation patterns [32], [25]. These transformation

methods can be used in place of the naive self compositions
at L1 andL2 in building M’. That is, we apply a security

type inference (or a dependency analysis)fp and M, to

infer program parts that depend on the high security input
H and H' so as to only duplicate and self compose thos

parts of M, and M.

C. Example
We recall the ideal login program below.

Mspee =if H=Lthen O:= Oelse O:=1

V. RELATED WORK

This work builds on previous work that proposed informa-
tion theoretic notions of quantitative information flow [12],

1, [19], [29], [16], [1], [22], [20], [26]. The previous
esearch has mostly focused on information theoretic proper-
ties of the definitions and proposed approximate (i.e., incom-
plete and/or unsound) methods for checking and inferring
them. In contrast, this paper investigates the verification
theoretic and complexity theoretic hardness of precisely
inferring quantitative information flow according to the

We check the four programs shown in Figure 3 using the 1o can pe also shown thatR(M.pec, Ma) and—R(Mapee, Ms), that

above as the specification.

is, M2 and M3 are R-incomparable withMspec.



definitions and also proposes a precise method for checkhe Shannon entropy, the min entropy, the guessing entropy,
ing quantitative information flow. Our method checks theand channel capacity.
quantitative information flow of a program against that of We have shown that comparing two programs on which
a specification program having the desired level of securitshas the larger flow according to these definitions is not
via self composition for all distributions according to the a k-safety problem for anyk, and therefore that it is
entropy-based definitions. not possible to reduce the problem to a safety problem
It is quite interesting that the relatio® unifies the via self composition. The result is in contrast to non-
different proposals for the definition of quantitative informa- interference which is &-safety problem. We have also
tion flow when they are cast as comparison problems andhown a complexity theoretic gap with non-interference by
their distributions are universally quantified. As remarked inproving the #P-hardness of the comparison problems and
Section IV, R naturally expresses the fact that one programcoNP-completeness of non-interference, when restricted to
is more secure than the other, and it could be argued that ibop-free boolean programs.
is the essence of quantitative information flow. We have also shown a positive result that checking if the
Researchers have also proposed definitions of quantitativentropy-based quantitative information flow of one program
information flow that are not detailed in the main body is larger than that of another for all distributions ig-gafety
of the paper. These includes the definition based on thproblem, and that it is also coNP-complete when restricted
notion of belief [8], and the ones that take the maximum to loop-free boolean programs.
over the low security inputs [19], [16]. It can be shown We have done this by proving a surprising result that
that R refines the comparison problems for these notionauniversally quantifying the distribution in the comparison
in the same sense as in Theorem 4.5 (for the belief-basegsroblem for the entropy-based definitions is equivalent to
definition, we universally quantify over the beliefs and thea simple2-safety relation. Motivated by the result, we have
experiments In fact, it can be shown that, for the belief- proposed a novel approach to precisely checking quantitative
based definition, the equivalence result holds much like thosmformation flow that reduces the problem to a safety prob-
for the entropy-based definitior. lem via self composition. Our method checks the quantitative
Despite the staggering complexity made apparent in thisnformation flow of a program for all distributions against
paper, recent attempts have been made to (more) precisdlyat of a specification program having the desired level of
infer quantitative information flow (without universally security.
quantifying over the distribution as in our approach). These
methods are based on the ideacofinting As remarked in ACKNOWLEDGMENT
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For simplicity, we often compute the Shannon-entropy has just k& satisfying assignments, because
based quantitative information flow for programs that do not false v iter(¢,|2’|) has justk — 2/7| assignments
have low security inputs. For such programs, the equation and whenz’ = true, «’ Viter(4,| Z|) has just2/ ™|
SEfrom Definition 2.4 can be simplified as follows. assignments.

Lemma A.2: [ |

SE[u](M) = ZI[u|(0;H) We frequent thg following property of Iogarithmic arith-
= H[u)(0) metic when proving statements concerning the Shannon
entropy.

Lemma A.5: Let p and ¢ be numbers such that, ¢ €
[0,1]. Then, we havelog % + gqlog % > (p+q)log piq.
Proof; Because% > 1 and % > 1, it follows that,

We note the following property of deterministic pro-
grams [5].
Lemma A.3: For M deterministic,

SE[p)(M) = Z[p)(0; H|L) = H[u)(O|L)

plog L +qlog 2 — (p+q)log

The following lemma is used to show that we can generate = plog % —plog ﬁ + qlog % —qlog pTqu
a boolean formula that has exactly the desired number of = plog 24 4 glog P+4
solutions in polynomial (actually, linear) time. >0 P 4

Lemma A.4: Let k£ be an integer such that < k <

27l — 1. Then, a boolean formula that has exactty u
assignments over the variablés can be computed in time APPENDIXB.
linear in | 7’|, OMITTED PROOFS

Proof: We define a procedure iter that returns the Theorem 2.6: Let M be a program that takes high-
— . . 0.
boolean formula. Below,z” = x1,2,..., 1.8, 2; IS the  gecyrity input H, low-security inputZ, and returns low-

ith variable. security outputD. Then, M is non-interferent if and only if
iter(e,0) = false Vu.SE[p)(M) = 0.
::gg%’g i i‘ C E::z:gﬁ’i: B% Proof: Recall that M is non-interferent iff for any
T ’ h,h' € Handl e L, M(h,l) = M(I',0).
Here, ¢ is an empty string. Le¥;, be a|7'|-bit binary « (=) Suppose thatM is non-interferent. Then, by
representation ok. We prove that itgity, |2’|) returns a Lemma A.3,
boolean formula that has exactly k assignments by induction _ .
on the number of variables, that is7|. SElpl(M) = I{u(0; H|L)
Ch—0 = 2,2 k(o 0)log ,*E‘f)?;)
ter | = 2,0 6)log b3
iter(0, 1) returnsz; A false, that is,false. false has - 0 Zue N0 £) 108 (@)
no satisfying assignment. =0
- k=1 The last step follows from the fact that non-interference
iter(1, 1) returnsz, Vfalse, that is,z;. z; has only implies 1(¢) = (0, ¢).
one satisfying assignment. « (<) Suppose thal/ is interferent. Then, there must be
o |7, ho and hy such thatM (ho, ') = op, M (hy,¢') = o1,
— k< ol@all-1 and oy # o;. Pick a probability functionu such that
Let 0¢ be a binary representation of. pu(ho, 0') = p(hy,¢') = 5. Then, by Lemma A3,
iter(04, |7, 2'|) returns 2’ A iter(¢,|Z]). By SELAMY = TIil(O: HIL
induction hypothesis, it¢f, |z’|) hask satisfying (kM) _ H[’Eﬁ]((()’w)' )
assignments forr'. It follows thatz’ Aiter(Z, || B N log 240
has just k satisfying assignments, because = 2o 2 nlo )(?% 1(0,0)
false A iter(¢,|7’|) has no assignment and = (0o, ') log -0
. — . . L(ZI
) an g\ll?t‘er(é, |2’|) has justk assignments. 1 +N(011»£') log ufoﬂ)’)
= ) ) = §log2—|—§log2
Let 1/ be a binary representation ofk. - 1
iter(1¢, |2, 2'|) returns =’ v iter(¢,|7]). £ is _
a binary representation @f — 2/7!. By induction Therefore, there exis{s such thatSE[u](M) # 0, and
hypothesis, itef, | 7'|) has k — 27! satisfying we have the conclusion.

assignments forz . It follows thata’ viter(¢, | z'|) [ |



We note the following equivalence &C and ME[U] for Lemma B.5: Let  be a function such that : D —

programs without low security inputs [29]. [0,1]. Let P and Q be sets such thaP U@ = D and
Lemma B.1: Let M be a program without low security P N Q = 0. Then, we have} _p In(u,D,z)u(x) >
input. Then, ME[U](M) = CC(M). > pep In(p, Pp)u(p) + 3 cq In(p, Q, @) pu(q).
The min-entropy-based quantitative information flow with Proof: Trivial. m
uniformly distributed high security input has the following
property [29]. Definition B.6: Let M be a function such that/ : A —

Lemma B.2: Let M be a program without low security B- For anyo € B, we defineM ' (o) to mean
input and O be the output ofd/. Then, ME[U|(M) =

log(|O). . , ,
. M~ (o)={icAlo=M()}
Theorem 3.2: Cg[U] is not ak-safety property for any
k> 0.
Proof: For contradiction, suppos€yz (U] is ak-safety Theorem 3.3: C¢[U] is not a k-safety property for any

property. LetM and M’ be programs having same input i > 0
domain such thatM, M') ¢ Cye|U]. Then, it must be the

case that there exisf C [M] andT’ C [M’'] such that Proof: For contradiction, supposgq (U] is ak-safety
IT| <k, |T'"| < k,andVM,., M. T C [MJAT' C [M.] =  property. Let)M andM/’ be programs having the same input
(M., M) ¢ CygelU]. domain such thatM, M') ¢ Cgg[U]. Then, it must be the
Let case that there exisf C [M] and T’ C [M’] such that
T — {(h1701)7 (h2,02)7 o (hiaoi)} |T| < /{3,/|T/‘ <k, andVMc,Mé.T - [[MC]]/\T’ C [[Mé]] =
T = {(h}, 04), (Wy, 0b), ..., (), 0)} (J\I4_C,Mc) ¢ CaplU].
_ et
wherei,j < k. Now, we construct new program& and
M’ as follows.
M(h) =01  M'(h}) =0, T = {(h1,01), (h2,02), ..., (hi,0)}
M(hQ):Oz M’(hé)zog T/:{(hllaoll)a(h/270l2)v7(h;7og)}
M(hi) = o; M'(R}) =0 _
M(hiz1) = o M'(h;;l) — 0§'+1 wherei,j < k. Now, we construct new program& and
M(hl+2) =0 M/(h;+2) = 09+2 M’ as follows.
v R _ ry o _ _
M(hy,) = o M'(h,) = o}, M(hl)zol M/(hll)zo/l
where M(h2) = 02 M'(hy) = o
e 0,04, ...,andol, are distinct
410 Oj420 - n ' . -
o {01,005 {0y, 0,1 =0, - M(hi) = o ~M'(hf) = o
o {hi,.oshn} = {h},.... 0}, and M(hiy1) =0 M'(hjq) = 0j44
o n =2k M(hi+2) = o M/(h;+2) = 0;+2
The number of outputs of the prograf’ is greater than o N
or equal to the number of the outputs of the program 7M(hi+j) =0 ,M/(hjﬂ‘) = 0;+z'
Hence, by Lemma B.2, we havéZ, M’) € Cyz[U]. But, M(hiyjy1) =0 M'(hy; 1) =0}
T C [M] andT’ C [M’]. This leads to a contradictiors e o
Definition B.3: M(hn) = or M!'(h,) = o,
In(p, X,2) = {z" € X | u(a") = p(x)}]
" . . , where
Intuitively, In(u, X, z) is the order ofr defined in terms of
He e 0# o,
Lemma B.4: o {01,02,...,0i} N{o,0.} =0,
Gul(X) = Sicicpxjip(z:) . o;J/rl,/o’jJrg, S o;H/, ando.. a/lre d|/st|nct,
= SeexIn(p, X, z)u(x) o {00,050} N {0}y, 0,0} =0,

. o {h1,...,hn} ={R},..., Rk}, and
Proof: Trivial. u n = 2k.



if ¢ o
then Oy :=true; O := H
= —>
else Oy := false; O :

whereOy and O are distinct.

Figure 4. Boolean formula encoding by boolean program

whether programs are i’z [U] at most3 x (|ﬁ| +1)+2
times.
Proof: First, we define a procedure that returns the

number of solutions for. _

Let B(j) = v A H' wheret is a formula overH having
j aSS|gnments andl’ is a boolean variable such that' ¢
{H} Note that by Lemma A.4, such can be generated in
linear time.

Then, we invoke the following procedure wheteé is

We compare the guessing-entropy-based quantitative infogefined in Figure 4.

mation flow of the two programs.
GE| ‘( ) GE[U)(M)
— 7 m ZO e MY () |M/_1(O/)‘2
-5t zoeM ) 1M1 (0)?
D Z m) [ M~ (0)?
2|
W

&

%m Zo EM’(]I-]I) |M'=1(o)]?
(Zome{ol,...,oi} Mﬁl(om)|2
+M(0)]* + [M~or)?)
— 5 (Lop ooty M (03I
+2 0 €0 0)) | M~ (o) [?
+IM'" (o) [?)
By lemma B.5, we have

Zoze{ol,.“,ol} |M71(0:c)‘2
- VL)

and
M 0)2 < S ey M2 (02

Trivially, we have

/ ’ /
0y, €{0) 15,0514

|M'=H(0})]? = [M " (o,)|?
As a result, we have
GE[U)(M’) — GE[U)(M) >0

Recall thatM and M’ have the same counterexamplgs
and 7", that is, T C [M] and 7" C [M']. However, we
have (M, M') € C¢g[U]. This leads to a contradictions

Theorem 3.4: C¢¢ is not a k-safety property for any
k> 0.

Proof: Straightforward from Lemma B.1 and Theo-

rem 3.2. ]
Lemma B.7: Let H be distinct boolean variableg, be a

boolean formula overH andn be the number of satisfying
assignments fop. If n is less thar2!# !, then the number of
the outputs of the boolean prografi{¢) defined in Figure 4
is equal ton + 1.

Proof: Trivial. [ ]

Lemma B.8: Let H be distinct variables and) be a

boolean formula overd . Then, the number of assignments
for ¢ can be computed by executing an oracle that decides

{=0;
r:2‘ﬁ|;
n=(l+r)/2

while ~((T(¢ A H'), T(B(n))) € Casio)
and (T(B(n)),T(¢ A H')) € Cyp[U])
i (T(6 A H'), T(B(n))) € Cas[U]
then {{ =n;n=(0+r)/2;}
else {fr=n;n=0L+1)/2;}
return n

Note that when the procedure terminates, we have
ME[U|(T(B(n)) ME[U|(T(¢ A H')), and so by
Lemma B.2 and Lemma B.7#, is the number of satisfying
assignments to. _

We show that the procedure iterates at maést+1 times.

To see this, note that every iteration in the procedure narrows
the range between and ¢ by one half. Because — ¢ is
bounded by2IHI it follows that the procedure iterates at
most|H| + 1 times. Hence, the oracl@,z[U] is accessed

3 x (|H| + 1) + 2 times, and this proves the lemma. ®

Theorem 3.6: #P C FPCuslU]

Proof: Straightforward by Lemma B.8 and the fact that
#SAT, the problem of counting the number of solutions to a
boolean formula, is #P -complete. ]

Lemma B.9: Let H and H' be distinct variables and
and ¢’ be boolean formulas ovell . LetM = O := oNH'
and M’ = O := ¢’ A H'. Then, we havetSAT(¢) <
#SAT(¢') iff GE[U](M) < GE[U|(M").

Proof: By the definition,

GEWU|(M) = G(H)—-G(H|0)
%('HD % Z Z1<7<‘H| (hi70)
—ﬁﬂM’l(trueﬂ2 + | M~1(false)|?)
Therefore,
GE[U|(M) < GE[U}(M')
iff
|M~t(true)|? + |M 1 (false)|?

|
> |M'~*(true)|* + |M'~!(false)|?



But, trivially, the latter holds iff We reduce via self composition [3], [11]. Lé/ be
, a boolean program that we want to know if it is non-
#SAT(¢) < #SAT(¢) interferent. First, we make a copy dff, with each
variablex in M replaced by a fresh (prlmed) varlable
x'. Call this copyM’ Let ¢ = wp(M; M, 0= O)
where O = O’ is the boolean formula encoding the
conjunction of equalitiesD; = O}, Oy = 04, ...,
0, = O, where Oq,...,0, are the low security

[ |
Lemma B.10: Let H and H’_b)e distinct variables and
¢ be a boolean formula oved. Then, the number of
assignments fop can be computed by executing an oracle
that decides whether programs are ffigy (U] at most output variables ofd/. Note that¢ can be obtained

fd .
3x (| H]+ 1)_+ 2 imes, } in time polynomial in the size of\f. Here, instead of
Proof: First, we define a procedure that returns the the rules in Figure 2, we use the optimized weakest

number of solutions fop. precondition generation technique [13], [17] that gen-
Let B(j) = ¢ A H' wherey is a formula overHl having erates a formula quadratic in the sizeldf. M'. Then,

j assignments andl’ is a boolean variable such that’ ¢ M is non-interferent if and only if is valid, that is,

{H} Note that by Lemma A.4, such can be generated in if and only if —¢ is unsatisfiable.

linear time. o UNSAT C NI
¢ =0; Let ¢ be a formula that we want to know if it is
. 2|ﬁ|; unsatisfiable. We prove that the following programs is

non-interferent iffy is unsatisfiable. Here, all variables
that appear inp are high security input variables and
H is a high security input variable that is distinct from
variables appearing i, and O is the low security
output variable.

n={+r)/2;
while —|(O =¢pANH, O := B(ﬂ)) S CGE[U]

and (O := B(n),0 :=¢ AN H') € Cer[U])

if (O:=¢ANH' O:=B(n)) e CqplU]

then {{ =n;n=(0+7r)/2;}

else {r =nin = ((+7)/2;} if ¢ A H then O := true else O := false
return n
Trivially, if ¢ is unsatisfiable, then this program returns
only false, that is, this program is non-interferent. If this
program is non-interferent, then this program returns
only true for any input, or returns onlyalse for any
input. However, this program can not return ontye,
because ifH = false then¢ A H = false. Therefore,

Note that when this procedure terminates, we have
GE[U)(O := B(n)) = GE[U)(O := ¢ A H'), and so by
Lemma B.9,n is the number of satisfying assignments to
¢, _

We show that the procedure iterates at njésf+1 times.

To see this, every iteration in the procedure narrows the this program only returngalse, when this program is
range between and¢ by one half. Because—£ is bounded non-interferent. That meansis unsatisfiable when the
by 2171 it follows that the procedure iterates at mthH—l program is non-interferent.
times. Hence, the oracl@qz[U] is accesseﬂx(|H|+1)+2

. ! [ |
times, and this proves the lemma.

Definition B.11: Let M be a function such tha¥/ : A —
Theorem 3.7: #P C FpCeslU] B. Then, we define the image &f on X C A, M[X], as

Proof: Straightforward by Lemma B.10 and the fact follows.

that #SAT, the problem of counting the number of solutions M[X]={o|o=M(z) Nz € X}

to a boolean formula, is #P-complete. [ ]
Lemma B.12: Let H be a set, andM and M’ be

Theorem 3.8: #P C FPCc functions whose domains contaidl. Suppose that we
have M'(ho,l) = M'(h1,l) = M(ho,l) = M(hy,l),

Proof: Straightforward from Lemma B.1 and Theo- for all h.hy in H. Then, for all ' e H, we have

rem 3.6. (h | M'(h,0) = M'(R',1)} C {h | M(h,1) = M(I. 1)}
Theorem 3.9: Checking non-interference is coNP- Proof: Trivial. u
complete for loop-free boolean programs. Lemma B.13: Let H, O, O', and L be distinct ran-

Proof: We write NI for the decision problem of check- dom variables. LetA/ and M’ be programs. We have
ing non-interference of loop-free boolean programs. We(M, M’) € R iff for any distributiony, Heo [u](H|0', L) <
prove by reducing NI to and from UNSAT, which is coNP- Heo[1t](H|O, L) whereO" = M'(H, L) andO = M(H, L).
complete. Proof:

« NI C UNSAT . (=)



SupposeR(M, M'). We have

Hoo[p](H|O", L) < Hoo[p](H|O, L)
ifft V[ul(H|O, L) < V[ul(H[0O', L)

by the definition of min entropy, and

VIu](H|O, L)
=2 oco.rer (0, £) maxpen pi(hlo, £)

h,o0,l
= 2_oco,er #0, £) maxpen M;E(o,f))

_ u(h,0,0)
= 2 0c0,ceL MaxXne 4(0, ) lﬂ(o?e)

= 2 oco,rer, Maxpem u(h, 0, £)
=D 0c0,vel, MAXne {njo=M (h',0)} H(h, €)

where® = M[{(h,¢) e H x L | u(h,1) > 0}], andLL
and H are sample spaces of low-security input and
high-security input, respectively. Therefore, it suffices
to show that

VIu(H|O", L) = V[u|(H|O, L)
= Do el MAXne (|0 =017 (' o)} 1(P; €)
— 2 0c0,0eL MAXhe{h o= (n,0)} K(h, )

>0
whereQ' = M'[{(h,¢) e H x L | u(h,£) > 0}].
For anyo € O and ¢ € L, there existsh,, such
thatu(h,mﬁ) = MaXpe{h'|o=M(h',0)} /J,(h,() Because
R(M, M), by Lemma B.12, we have

{h | M'(h,£) = M'(hym, 0)}
C {h| M(h,0) = M(hp,,0)}

Therefore,

:u(hmvé) = (h,ﬁ)

for some o € Q. Hence, each summand in
EOQWELmaxhe{h%:M(h/,@)}u(h,é) also appears
in Zo'e@’,feL mMaXpe{h'|o’=M'(h',0)} ,u(h,f) And, we
have the above proposition.

(<)

We prove the contraposition. Suppo§¥/, M’) ¢ R.
Then, there exiskg, h1, ¢, 00, 01 such thatM’(hg, £) =
M’(hl,é), og = M(ho,f), 01 = M(hl,f), and
o9 # 01. Pick a probability distributionu such that
p(ho, ) = p(hy,£) = 1. Then, we have

VIpl(H]0, L)
= ;0’6@',@6111 maxhe{h’\o’:]\f(h’l)} u(h’ é)

max "
he{h/|o'=M" (k' £)}

=3
and
V(]

|0, L)
oc0 0L, MAXne (' lo=M (h £)} (P, £)

(SIS

HM\HME

Therefore, Hoo (1] (H|O', L) € Hoo[](H|O, L).

|
Theorem 4.3: R = {(My, Ms) | Yu.Cuyg[p] (M, M2)}

Proof: Straightforward from Lemma B.13 and the fact
that Mo ] (H|L) — Moo [u)(H|O, L) < Mool (H|L) —
Hoo[W](H|O", L) iff Hoo[p](H|O, L) > Hoolp](H|O', L).

[ |
Theorem 4.4: R = {(Ml,MQ) ‘ V[LCGE[M](Ml,MQ)}

Proof:
o« C
Supposg M, M’) € R. By the definition,

GE[p](M) =
Z[e]l,,he]}ﬂ In()\hlﬂ(h'> 6)7 Ha h),LL(h, E)
- ZoE@,ZEL,hEH In()‘hlu(h/a o, 6), Ha h):u‘(hv o, g)
and
GEu)(M") =
ZZEL,hEH In()‘h/:u’(h/v ‘€)7 H7 h):u’(hv 6)
=Yoo seLnen AN u(h', o' 0), H, h)u(h, o', €)
where O = M[{(h,¢) e HxL| p(h,£) > 0}] and
O =M'[{(h,£) e HxL| p(h,£) > 0}].
It suffices to show that
Zo’&@’,ée]LJ—LEH In(Ah/M(h’/? 0/7 6)5 H7 h’):u(hy 0/7 Z)

S ZOE@,@E]LJIEH In(Ahl:u(h/a 0, 6)7 Ha h)/.t(h, 0, E)
Leto € O and? € L. Leto = M(ho,l) = --- =
M(hy, ), and leto, = M'(hg, £),...,0,, = M'(hy,{).
BecauseR(M, M'), for any i’ such thatM’ (k' () €
{0p,...,0.}, we haveh’ € {hg,...,hs}. Then, by
Lemma B.5, we have

ZhEHO In(AhIM(h/7 Ola E)a Ha h):u’(h7 0, f)
> Y cor, new, IO u(h', 0, €), H, h)u(h, o, £)

where

o, {0f,...,0.}
H, {ho,h1,..., hs}

Now we prove eacl®), constructed above are disjoint.
That is, foro; and o, outputs of M such thato; #
02, 0,, N0, = 0. For a contradiction, supposg €
0,, N0,,. Then, there exisk; andhy such thato; =
M(hhg), o = M/(hl,f), 09 = M(hg,f), ando =
M'(ha,0). Since R(M, M'), we haveo; = oq, and it
leads to a contradiction. Hence, we have for aryL,

Zo’E@’,hEH In()\h’.u(h’, Olv 5)7 H, h),u(h, Ola e)
< ZoE@,hEH ]n()‘h/'/u‘(h/v 0, é)v H7 h).u(ha o, E)
Therefore, it follows that

>orcnr eeL nen AN (B o' £), H, h)u(h, o, )
< Zoé@,ZEL,hEH In(/\h/'ﬂ(h/’ 0, E)a H7 h)u(h‘v 0, E)

e D



We prove the contraposition. Suppo&¥/, M’) ¢ R.
Then, there exish, ', ¢, 0,0’ such that

— M(h,¢) =0, M(I,¢) =0, ando # o

— M'(h,0) = M'(I,0)
Then, we can picl such thafu(h, £) = u(h',£) = 0.5.
We have

GE[u)(M)=15-1=05

and
GE[p(M')=15-15=0

Therefore, we havéM, M') & Cerlu].

Theorem 4.5: R C Cco

Proof: Let M and M’ be programs such that
(M,M’) € R. We prove(M,M’") € Ccc.
By Theorem 4.2, we have

V. SE[p)(M) < SE[p](M')

Now, there existg:’ such that

CO(M) = SE[u/)(M)
Therefore,
SE[u|(M) < SE[/|(M')
Trivially,
SE[u|(M'") < CC(M')
Therefore, we have the conclusion. [ |

Theorem 4.6: Let M, be a non-interferent program.
Then, R(M, M») iff M; is also non-interferent and\/;
has the same input domain ag;.

Proof: Straightforward from Theorems 2.6 and 4.8.

Theorem 4.8: Restricted to loop-free boolean programs,
R is coNP-complete.

Proof:

e R C coNP

We prove by reducing? to UNSAT, which is coNP-
complete. We reduce via self composition [3], [11].
Let M and M’ be boolean programs that we want to
know if they are inR. First, we make copies ol
and M’, with all variables inM and M’ replaced by
fresh (primed) variables. Call these copMe andM !

Let ¢ = (MM M’M’O’—O’:>O O)
where O OC,O’ and O’ are the low security outputs
of M,M.,M’, and M/, respectively. Note that can
be obtained in time polynomial in the size dff
and M'. Here, like in Theorem 3.9, we use the opti-

mized weakest precondition generation technique [13],

[17] to generate a formula quadratic in the size of

M; M., M'; M. Then, (M,M’) € R if and only if

¢ is valid, that is, if and only if—¢ is unsatisfiable.
coNPC R

We prove by reducing NI ta?, because NI is coNP-
complete by Theorem 3.9. We can check the non-
interference ofM by solving R(M, M’) where M’ is
non-interferent and have the same input domaid/&as
by Theorem 4.6. Note that suéii’ can be constructed
in polynomial time. Therefore, we have coNPR.



