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Abstract. The capability calculus is a framework for statically reason-
ing about program resources such as deallocatable memory regions. Frac-
tional capabilities, originally proposed by Boyland for checking the deter-
minism of parallel reads in multi-thread programs, extend the capability
calculus by extending the capabilities to range over the rational numbers.
Fractional capabilities have since found numerous applications, includ-
ing race detection, buffer bound inference, security analyses, and sep-
aration logic. However, previous work on fractional capability systems
either lacked polymorphism or lacked an efficient inference procedure.
Automated inference is important for the application of the calculus to
static analysis. This paper addresses the issue by presenting a polymor-
phic fractional capability calculus that allows polynomial-time inference
via a reduction to rational linear programming.

1 Introduction

The capability calculus [5] was originally proposed as a framework for region-
based memory management, that is, a system for guaranteeing that a deallocated
region is never accessed. The capability calculus is a good framework for stati-
cally reasoning about properties of general program resources such as memory
regions [5], reference cells [4], and communication channels [14]. Researchers [4,
13] extended the framework to fractional capabilities ([4] called them fractional
permissions), allowing (1) more flexibility by letting the capabilities range over
rational numbers, which allows reasoning about concurrent reads and writes,
and (2) efficient inference via a reduction to (rational) linear programming,
whereas no efficient inference is known for the non-fractional calculi1. Fractional
capabilities have found applications in many areas of program verification and
program logic, including determinism checking [4, 12, 13], separation logic [3],
security protocol analysis [2, 7], buffer bound inference [14], race detection [10],
and secure information flow [11].

Previous work on capability calculus either lacked parametric polymorphism [14,
10, 11] or lacked an efficient inference procedure [5, 4, 3]. By parametric poly-
morphism, we mean allowing capabilities appearing in the function types to
be parametrized by resource variables2. The issue turns out to be surprisingly
non-trivial as “obvious” approaches result in an overly conservative system.

1 Indeed, some of them are proven to be NP-hard [13, 7].
2 Resource variables range over program resources to be reasoned by the calculus such

as memory locations or communication channels, depending on the application.



The rest of the paper is organized as follows. In the next section, we give an
overview of the main issues, highlighting the problems with naive approaches,
and presenting our solution informally. Section 3 formally presents the solution
and proves its soundness. Section 4 shows the type inference algorithm. The
inference algorithm utilizes linear programming and runs in time polynomial in
the size of the underlying Hindley-Milner types. To present the idea assuming
little prior background in fractional capabilities, we focus on the application of
the capability calculus to the problem of region-based memory management [5].
But, our idea can also be applied to other fractional capability calculi. Section 5
discusses how the idea can be transferred to the capability calculus for race
detection [10]. Section 6 discusses related work and concludes. The appendix
contains the proofs and the figures omitted from the main body of the paper.

2 Informal Overview

We informally present the idea by showing how the capability calculus guarantees
region-based memory safety. A program is said to be memory safe if it does not
access a deleted region. Consider the following program fragment.

let a = ref 0@ρa in
let b = ref 0@ρb in
let f = fun f [ρ] (x : ref (int)@ρ) = !x; free ρ in

f [ρa] (a); f [ρb] (b)

The program allocates two reference cells a and b, hopefully in separate regions
ρa and ρb. The function f is called with each cell, dereferencing the given cell and
deleting its region. Here, ρ is a region parameter that is passed from the caller.
Unlike in the traditional stack-discipline of the Tofte-Talpin region calculus [15],
the capability calculus allows non-scoped region deletion, which introduces more
opportunities for dangling pointers. Here, ; is the sequential composition, !e reads
the reference cell e, and free ρ deletes the region ρ.

Note that we need f to be polymorphic in ρ because otherwise, the regions
ρa and ρb would be equated, and so the program becomes memory unsafe (as
the second call to f would try to read from the deleted region). Therefore, we
would like to assign f the following polymorphic type.

∀ρ.({ρ 7→ 1}, ref (int)@ρ) → ({ρ 7→ 0}, int)

The type says that the function takes a region ρ and an argument of the type
ref (int)@ρ (i.e., an integer reference allocated in the region ρ) and returns an
integer. It also says that the caller is required to have the capability {ρ 7→ 1}.
(Any capability greater than 0 is sufficient for dereferencing or writing to the
region whereas the capability greater than or equal to 1 is needed to delete the
region.) The function returns to the caller the capability {ρ 7→ 0} indicating that
ρ is deleted and cannot be accessed or deleted after the call.



letreg ρa in

let a = ref 0@ρa in

let f = fun f [ρx, ρy] (x : ref (int)@ρx, y : ref (int)@ρy) = !x; free ρx; !y
in

f [ρa, ρa] (a, a)

Fig. 1. A memory unsafe program.

Instantiating the polymorphic type at the calls, we get the types

({ρa 7→ 1}, ref (int)@ρa) → ({ρa 7→ 0}, int)
({ρb 7→ 1}, ref (int)@ρb) → ({ρb 7→ 0}, int)

and we are able to type check the program as memory safe, assuming that
the capability before the code fragment is {ρa 7→ 1, ρb 7→ 1}, indicating that the
code may access and delete the regions ρa and ρb. The capability for a region ρ
is initialized to 1 when the region is created at letreg ρ.

Formally, a capability is a mapping from region variables (ρ’s) to non-negative
rationals [0,∞) (e.g., {ρa 7→ 1} is a shorthand for a function that maps ρa to
1 and all other region variables to 0). Note that instantiating the type of f by
ρa and ρb involve substitutions {ρ 7→ 1}[ρa/ρ] = {ρa 7→ 1} and {ρ 7→ 1}[ρb/ρ] =
{ρb 7→ 1}. Given a capability Ψ , the naive instantiation Ψ [ρ1/ρ2] syntactically
replaces ρ2 in the capability Ψ by ρ1.

2.1 Additive Instantiation

Unfortunately, the naive instantiation is inadequate. Consider the program shown
in Figure 1. Now, f takes two cells, x and y, accesses x, deletes the region in
which x is allocated (i.e., ρx), and then accesses y. Note that the program is
unsafe because f is called with both arguments set to a, and therefore, deletes
the region where a is allocated (i.e., ρa) before accessing a for the second time.

The function f can be given the type

∀ρx.∀ρy.(Ψin , ref (int)@ρx, ref (int)@ρy) → (Ψout , int)

where Ψin = {ρx 7→ 1, ρy 7→ q} and Ψout = {ρx 7→ 0, ρy 7→ q} for some q > 0.
When we instantiate the type via the substitution θ = [ρa/ρx][ρa/ρy] naively, the
capability required before the call is Ψinθ = {ρa 7→ 1, ρa 7→ q} and the capability
required after the call is Ψoutθ = {ρa 7→ 0, ρa 7→ q}. The capabilities are not
mappings. To overcome the issue, the existing polymorphic fractional capability
calculi (e.g. [4]) performs additive instantiation, defined as follows.

Ψ [ρ1/ρ2]⊕ = {ρ1 7→ Ψ(ρ2) + Ψ(ρ1)} ∪ {ρ2 7→ 0} ∪ {ρ 7→ Ψ(ρ) | ρ /∈ {ρ1, ρ2}}

Then,

Ψin [ρa/ρx]⊕[ρa/ρy]⊕ = {ρa 7→ 1, ρy 7→ q}[ρa/ρy]⊕ = {ρa 7→ 1 + q}



With this instantiation scheme, we are able to safely reject the program in
Figure 1, because now the call f [ρa, ρa] (a, a) requires {ρa 7→ 1 + q} where q > 0,
but the caller only has {ρa 7→ 1}.

2.2 Down Instantiation

The additive instantiation scheme discussed above, while sound, is somewhat
conservative in the presence of recursive calls. Consider the following program.

letreg ρa in
let a = ref 0@ρa in
let f =

fun f [ρx, ρy] (x : ref (int)@ρx, y : ref (int)@ρy) = !x; !y; f [ρx, ρx] (x, x)
in f [ρa, ρa] (a, a)

This program is obviously safe (because no region is deleted). However it is not
typable with the additive instantiation scheme. To see this, note that f must
have a type of form ∀ρx, ρy.(Ψin , ref (int)@ρx, ref (int)@ρy) → (Ψout , int) with
Ψin (ρx) > 0 and Ψin (ρy) > 0 because f accesses both x and y. But, the capability

Ψrec = Ψin [ρx/ρx]⊕[ρy/ρx]⊕ = Ψin [ρy/ρx]⊕

is required before the recursive call f [ρx, ρx] (x, x). Thus, Ψrec(ρx) = Ψin (ρx) +
Ψin (ρy). But because Ψin = Ψrec (or Ψin ≥ Ψrec

3), we have

Ψin (ρx) ≥ Ψin (ρx) + Ψin (ρy) Ψin (ρx) > 0 Ψin (ρy) > 0

It is easy to see that there exists no non-negative rational number that can
be assigned to Ψin (ρx) to satisfy these inequalities. Therefore, the type system
rejects the program as untypable.

One way to overcome the issue is to allow polymorphism over the fractions
as done in some fractional capability calculi [4, 3]. Unfortunately, it is unclear
whether an efficient inference exists for such systems.

Instead, we propose to relax the caller’s requirement when the function does
not delete the region. Specifically, when a function requests a positive capability
for some ρ, we allow a call to the function to be type checked with a positive
capability for ρ that is lower than the actual capability requested by the callee,
provided that the call does not delete ρ. The rationale for this is that any positive
capability is sufficient for a region access (but not region deletion). To this end,
we introduce a new instantiation scheme called down instantiation, defined as
follows.

Ψ [ρ1/ρ2]⇓ = {ρ1 7→
1

2
(Ψ(ρ2) + Ψ(ρ1))} ∪ {ρ 7→ Ψ(ρ) | ρ /∈ {ρ1, ρ2}}

3 This constraint is from the fact that a sequential composition passes capabilities
along the sequence.



ρ ∈ Regvar

Ψ ∈ Regvar → [0,∞)
L ::= ∅ | L ∪ {ρ}

τ ::= int | ref (τ )@ρ | (Ψin , τin )
L
→ (Ψout , τout) | ∀ρ.τ

v ::= λx : τ .e | Λρ.v
e ::= n | x | v | fix x : τ.v | e (e′) | e[ρ]

| ref e@ρ | !e | e := e′ | letreg ρ in e | free ρ

Fig. 2. The syntax of the region language.

Note that the down instantiation lowers the capability by one half for the region
being instantiated.

Using the down instantiation in the running example, linear inequalities to
be solved becomes as follows.

Ψin (ρx) ≥
1

2
(Ψin (ρx) + Ψin (ρy)) Ψin (ρx) > 0 Ψin (ρy) > 0

These inequalities are solvable (e.g., by assigning 1 to both Ψin (ρx) and Ψin (ρy)),
and hence, the program becomes typable.

For soundness, we may only apply the down instantiation to regions that are
not deleted by the call because it would be unsafe to lower a capability required
for a region deletion to some positive number less than 1. Therefore, we select
the instantiation scheme based on which region a function call may delete. We
use the additive instantiation when instantiating regions that are deleted, and
use the down instantiation for those that are not. We use effects to infer the
deleted regions. In the example above, the effect analysis detects that f frees
neither ρx nor ρy, and therefore, that the down instantiation can be used for ρx
and ρy.

3 Polymorphic Fractional Capability Calculus

We now formally define the polymorphic fractional capability calculus. We focus
on the simple region language shown in Figure 2. The language is essentially the
standard Tofte-Talpin region language [15] extended with free ρ and function
types containing capabilities. Note that freeρ can be used to free a region before
its scope expires (i.e., before e is fully evaluated in letreg ρ in e), thus possibly
creating a dangling pointer.

We briefly describe the syntax of expressions (e). Expressions include integer
constants n, variables x, functions λx : τ .e, region variable abstractions Λρ.v,
recursive definitions fix x : τ .v, function applications e (e′), region applications
e[ρ], reference allocations ref e@ρ, reference reads !e, reference writes e := e′,
region allocations letreg ρ in e, and region deallocations free ρ. Region ab-
straction and recursive definition are restricted to values v, which, for now, are
just functions (and their region abstractions). For simplicity, the region language



only allocates reference cells in regions, but it is easy to extend the language so
that function closures are also allocated in regions. We write let x : τ = e1 in e2
for (λx : τ .e2) (e1), and e1; e2 for let x : τ = e1 in e2 where x is not free in e2.

Each function takes a single argument, but a multi-argument function can be
encoded via currying. Instead of letting functions directly take region arguments
as in Section 2, we use separate syntax for region variable abstraction and region
instantiation. We also use separate syntax for recursive definition. For example,
fun f [ρ] (x : τ) = e from Section 2 can be expressed as fix f : τ ′.Λρ.λx : τ .e.
Multi-region arguments can also be encoded by currying.

Next, we describe the grammar of the types. The types include integer types
int , reference types ref (τ)@ρ, region polymorphic types ∀ρ.τ , and function types

(Ψin , τin )
L
→ (Ψout , τout) where L denotes the latent effect. Unlike in the Tofte-

Talpin region system, we do not use effects to control the access to regions. As
explained in Section 2, the latent effect overapproximates the regions that may
be deleted by calling the function.

Ψ denotes a capability, which as discussed above, is a function from region
variables Regvar to non-negative rational numbers in the range [0,∞). As dis-
cussed in Section 2, a capability represents the access rights over the regions.
Informally, having Ψ such that Ψ(ρ) > 0 means that the region ρ can be accessed
(i.e., allocated, read, or written). In addition, Ψ(ρ) ≥ 1 means that the region
ρ can also be deleted. Deleting a region consumes the capability, that is, the
capability for ρ after free ρ becomes 0. The capability for a region is initialized
to 1 when the region is created.

Alternatively, we can define the capabilities as mappings from Regvar to
(0, 1] ∪ {undefined} and formalize a type system with such kind of capabili-
ties like in other fractional capability calculus [3]. Then, having Ψ such that
Ψ(ρ) = undefined means that the region ρ can be neither deleted nor accessed,
Ψ(ρ) > 0 means that the region ρ can be accessed, and Ψ(ρ) = 1 means that the
region ρ can be deleted and accessed. Because this strategy does not improve
the expressibility and complicates the inference, we do not adopt it and use the
range [0,∞) instead.

3.1 Dynamic Semantics

We define the operational semantics of the region language. The semantics is
defined as small step reductions from states to states, where a state is a triple
(R, h, e) consisting of a region environment R, a store h, and a run-time expres-
sion e. A region environment maps region variables to {0, 1} where 0 indicates
that the region has been deleted, and 1 indicates that the region is alive. A store
is a mapping from locations ` to values. We extend values to include integers
and locations as follows: v ::= · · · | n | `@ρ.

Here, `@ρ is a location ` allocated in the region ρ. The semantics trivially
guarantees that for any `, there is a unique ρ such that `@ρ appears as a value in
the semantics. Also, the semantics guarantees that if `@ρ appears somewhere in
the reduction, then ρ ∈ dom (R) at that point, and that ` in dom (h). However,



(R, h, (λx : τ.e) (v)) → (R, h, e[v/x]) App

(R, h, (Λρ.v)[ρ′]) → (R, h, v[ρ′/ρ]) TyApp

R(ρ) = 1 ` /∈ dom(h)

(R, h, ref v@ρ) → (R,h[` 7→ v], `@ρ)
Ref

ρ /∈ dom(R)

(R, h, letreg ρ in e) → (R[ρ 7→ 1], h, e)
Letreg

R(ρ) = 1

(R,h, free ρ) → (R[ρ 7→ 0], h, 0)
Free

e→ e′

E[e] → E[e′]
Context

Fig. 3. Representative reduction rules.

it does not guarantee that R(ρ) = 1 at such a point, which, importantly, allows
dangling pointers, and therefore, memory unsafe programs. It is the job of the
static system to reject such unsafe programs (cf. Section 3.2).

Figure 3 shows a few representative reduction rules (see Figure 9 in the
appendix for the complete set of rules). App handles function calls and TyApp
handles region parameter passing. Here, the substitution e[ρ1/ρ2] is defined in
the standard capture-avoiding way (see Figure 10 in the appendix). We defer
the definition of substitution for types τ [ρ1/ρ2] to Section 3.2, which is also
capture avoiding. We let expressions and types equivalent up to renaming of
bound variables and region variables.

Ref handles reference allocations, and requires the region where the reference
is allocated to be alive. The reduction gets stuck when trying to access a deleted
region. The reduction rules for other reference accesses (i.e., reads and writes) are
similar (cf. Figure 9). Here, the notation f [u 7→ v] denotes the extension of f by
u mapping to v. That is, f [u 7→ v] = f∪{u 7→ v} for u /∈ dom(f). Letreg creates
a fresh region, and Free frees a live region. Reduction gets stuck when trying to
free an already freed region. Context is the usual rule to allow reduction in an
evaluation context. The evaluation contexts are defined as follows.

E ::= [ ] | E (e) | v (E) | E[ρ] | refE@ρ | E := e | v :=E | !E

Let us write (R, h, e) →∗ (R′, h′, e′) for zero or more reduction steps from
the state (R, h, e) to (R′, h′, e′). We say that the program e is memory safe if
reducing from the initial state (∅, ∅, e) does not get stuck. More formally,

Definition 1 (Safety). We say that e is memory safe if for any state (R1, h1, e1)
such that (∅, ∅, e) →∗ (R1, h1, e1), either e1 is a value or there exists a state
(R2, h2, e2) such that (R1, h1, e1) → (R2, h2, e2).



Γ, Ψ ` n : int , Ψ, ∅
Int

Γ, Ψ ` x : Γ (x), Ψ, ∅
Var

Γ [x 7→ τin ], Ψin ` e : τout , Ψout , L ∀ρ /∈ L.Ψin (ρ) = Ψout(ρ)

Γ, Ψ ` λx : τin .e : (Ψin , τin )
L
→ (Ψout , τout), Ψ, ∅

Fun

Γ, Ψ ` `@ρ : ref (Γ (`))@ρ, Ψ, ∅
Loc

Γ [x 7→ τ ], Ψ ` v : τ, Ψ, ∅

Γ, Ψ ` fix x : τ.v : τ, Ψ, ∅
Fix

Γ, Ψ ` e1 : (Ψin , τin)
L
→ (Ψout , τout), Ψ1, L1 Γ, Ψ1 ` e2 : τin , Ψkeep + Ψin , L2

Γ, Ψ ` e1 (e2) : τout , Ψkeep + Ψout , L1 ∪ L2 ∪ L
App

Γ, Ψ ` v : τ, Ψ ′, ∅ ρ /∈ free(Γ )

Γ, Ψ ` Λρ.v : ∀ρ.τ, Ψ ′, ∅
RegAbs

Γ, Ψ ` e : ∀ρ.τ, Ψ ′, L

Γ, Ψ ` e[ρ′] : τ [ρ′/ρ], Ψ ′, L
TyApp

Γ, Ψ ` e : τ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ ` ref e@ρ : ref (τ )@ρ,Ψ ′, L
Ref

Γ, Ψ ` e : ref (τ )@ρ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ ` !e : τ, Ψ ′, L
Deref

Γ, Ψ ` e : ref (τ )@ρ,Ψ1, L1 Γ, Ψ1 ` e′ : τ, Ψ ′, L2 Ψ ′(ρ) > 0

Γ, Ψ ` e := e′ : int , Ψ ′, L1 ∪ L2

Write

Γ, Ψ + {ρ 7→ 1} ` e : τ, Ψ ′, L ρ /∈ free(Γ ) ∪ free(τ ) Ψ(ρ) = Ψ ′(ρ) = 0

Γ, Ψ ` letreg ρ in e : τ, Ψ ′, L \ {ρ}
Letreg

Γ, Ψ + {ρ 7→ 1} ` free ρ : int , Ψ, {ρ}
Free

Fig. 4. The type checking rules.

3.2 Static Semantics

A capability calculus is a type system, and consists of a set of deductive typing
rules. We present the polymorphic fractional capability calculus that guarantees
that a typable program is memory safe.

Figure 4 presents the typing rules. The typing judgements are of the form
Γ, Ψ ` e : τ, Ψ ′, L. Here, the type environment Γ maps variables to types, pre-
capability Ψ is the capability of the program before the evaluation of e, post-
capability Ψ ′ is the capability after evaluating e, τ is the type of e, and L is the
effect of e.

We briefly describe the typing rules. Int and Var are self-explanatory. In
Fun, we type check the body starting with the pre-capability of the function
Ψin and ending in the post-capability Ψout . We also record L as the latent effect



int [ρ1/ρ2] = int

(ref (τ )@ρ′1)[ρ1/ρ2] = ref (τ [ρ1/ρ2])@ρ
′
1[ρ1/ρ2]

(∀ρ′1.τ )[ρ1/ρ2] = ∀ρ′1.(τ [ρ1/ρ2]) where ρ′1 6= ρ2

((Ψin , τ )
L
→ (Ψout , τ

′))[ρ1/ρ2] =

(Ψin [ρ1/ρ2]
L, τ [ρ1/ρ2])

L[ρ1/ρ2]
→ (Ψout [ρ1/ρ2]

L, τ ′[ρ1/ρ2])

Fig. 5. τ [ρ1/ρ2]

Ψ [ρ1/ρ2]
L =

(

Ψ [ρ1/ρ2]⇓ if ρ1 /∈ L[ρ1/ρ2]

Ψ [ρ1/ρ2]⊕ if ρ1 ∈ L[ρ1/ρ2]

Fig. 6. Ψ [ρ1/ρ2]
L (see Section 2 for the definitions of Ψ [ρ1/ρ2]⊕ and Ψ [ρ1/ρ2]⇓).

of the function. The condition ∀ρ /∈ L.Ψin (ρ) = Ψout(ρ) becomes handy when
proving the soundness of the type system.4

RegAbs, Fix, and Loc are self-explanatory. Here, free(Γ ) is defined to be
{free(τ) | τ ∈ ran(Γ )} where free(τ) is defined as follows.

free(int) = ∅
free(ref (τ)@ρ) = free(τ) ∪ {ρ}

free((Ψin , τin )
L
→ (Ψout , τout )) = free(τin ) ∪ free(τout ) ∪ L

free(∀ρ.τ) = free(τ) \ {ρ}

App types function applications. The rule takes care of the left-to-write
reduction order by connecting the post-capability of e1 (i.e., Ψ1) to the pre-
capability of e2. Here the capability addition Ψ1 + Ψ2 is defined point-wise as
λρ.Ψ1(ρ) + Ψ2(ρ). Note that the post-capability of e2, is “split” into Ψkeep and
Ψin so that only Ψin needs to be given to the function and Ψkeep is kept by the
caller and combined with the post-capability of the function. This capability
“flow around” technique provides context sensitivity as each call site can use a
different Ψkeep to avoid conflating capabilities. (Note, however, that this context
sensitivity is orthogonal to parametric region polymorphism.) The flow around
technique is inspired by similar ideas used in Cqual [6] and Locksmith [8], and
has also been used in the fractional capability calculus for race detection [10].

TyApp handles region instantiation. The type substitution τ [ρ′/ρ] is non-
standard and is defined in Figure 5. The substitution rules for integer types,
reference types, and region polymorphic types are self-explanatory (recall that
the substitution is capture avoiding). For function types, we instantiate its
pre-capability and the post-capability via the special substitution of the form
Ψ [ρ1/ρ2]

L. Figure 6 defines the substitution. Note that it only does the addi-
tive instantiation for region variables in L, and does the down instantiation for

4 It is actually redundant for closed programs as it can be derived as a lemma.



other regions. This formally implements the controlled additive instantiation
discussed in Section 2. We explain the down instantiation in further detail. The
down instantiation is applied for regions that are only accessed but not deleted
in the function. Since accessing these regions needs capabilities greater than 0,
a function caller needs a capability that satisfies the constraint

Ψcaller(ρ) > 0 if Ψpre(ρ) > 0

where Ψcaller is the capability necessary to call the function, and Ψpre is the pre-
capability of the function. However, because linear programming cannot deal
with the logical implication, we transform the constraint into the following con-
straint: 5

Ψcaller(ρ) ≥
1
2Ψpre(ρ)

Ref , Deref , and Write type check reference accesses by checking that the
program has enough capability for the accesses. Unlike in the usual effect-based
region calculus, the rules do not add the accessed regions to the effect.

Letreg creates a new region and adds the capability to access the region
to the pre-capability of e. Free frees a region. Note that the pre-capability is
required to have the full capability to access the region and deletes it from the
post-capability. Free also adds ρ to the effect to record that the expression
deletes ρ.

Next, we define the notion of a well-typed state. Let 0 = λρ.0, that is, a
capability that maps all regions to 0. We write Γ ` h if for each ` ∈ dom (h),
Γ, 0 ` h(`) : Γ (`), 0 , ∅. We write ` Γ if for all function types (τ, Ψin ) →L

(τ ′, Ψout ) appearing in Γ , ρ 6∈ L implies Ψin (ρ) = Ψout (ρ).

Definition 2 (Well-typed State). We write Γ ` (R, h, e, τ, Ψ ′) if there exist
Ψ and L such that (1) Γ ` h, (2) Γ, Ψ ` e : τ, Ψ ′, L, (3) R(ρ) ≥ Ψ(ρ) for all
ρ ∈ dom (R), and (4) ` Γ .

We prove that typability is preserved under region instantiations, with a
“large enough” effect. The proofs appear in the appendix.

Lemma 1 (Region Variable Substitution). Suppose Γ, Ψ ` e : τ, Ψ ′, L′ and
L′ ⊆ L. Then, Γ [ρ′/ρ], Ψ [ρ′/ρ]L ` e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]L, L′[ρ′/ρ].

Using the lemma, we show that typability is preserved across reductions.

Lemma 2 (Preservation). Suppose Γ ` (R, h, e, τ, Ψ ′) and (R, h, e) → (R′, h′, e′).
Then, there exists Γ ′ ⊇ Γ such that Γ ′ ` (R′, h′, e′, τ, Ψ ′).

Lemma 3 (Progress). Suppose Γ ` (R, h, e, τ, Ψ ′) and e is a closed term.
Then, either e is a value or there exist R′, h′, and e′ such that (R, h, e) →
(R′, h′, e′).

5 Dividing capabilities by a number greater than 2 is still sound. For now, we adopt
2, because choosing a greater number does not contribute to the precision of the
analysis.



From Lemma 2 and Lemma 3, it follows that if e is well-typed then e is
memory safe.

Theorem 1. Suppose ∅ ` (∅, ∅, e, τ, Ψ ′). Then, e is memory safe.

4 Capability Inference

We now give a polynomial time capability inference algorithm for the capability
calculus. Note that the focus of the paper is not region inference, and therefore,
the input program is an expression in the source syntax (cf. Figure 2) that
already contains region commands (i.e., region creations, region deletions, and
region abstractions). In addition, the algorithm assumes that it is given types for
the bound variables, including the effects, except for the capabilities (i.e., Ψ ’s).
Such types may be provided externally as in the original capability calculus
[5],or inferred by known techniques [15, 9]. We note that there can be more than
one valid region and effect annotations for a program. For example, using [9],
polymorphism is restricted to only over let and fix bound variables (i.e., not
λ-bound variables). But, our algorithm can infer capabilities given any valid
annotation, in time polynomial in the size of the annotation.

More formally, we assume that every variable binding in the program is
annotated by the following signature σ.

ψ ∈ Capvar
ϕ ::= ψ | ϕ[ρ′/ρ]L

σ ::= int | ref (σ)@ρ | (ϕin , σin )
L
→ (ϕout , σout ) | ∀ρ.σ

Here, capability variables ψ are place holders for the actual capabilities to be
inferred by the algorithm (we use the lower-case “psi” for the variables). Each
ϕ appearing in the annotation is a distinct capability variable (i.e., some ψ).
The form ϕ[ρ′/ρ]L appears during the constraint generation. Unless specified
otherwise, we overload e to expressions with σ annotations. Without loss of
generality, we assume that bound variables and region variables are distinct in
the given program.

The inference judgements are of the form ∆,ψ ` e : σ, ψ′, L ⇒ C, which
is read “given environment ∆, e is inferred to have the signature σ, the pre-
capability variable ψ, the post-capability variable ψ′, and the effect L with the
set of capability constraints C”. A capability constraint is of the following forms.

ψ(ρ) = ψ′(ρ) ψ(ρ) > 0 ϕ = ϕ′

ψ = ψ′ + {ρ 7→ 1} ψ(ρ) = 0 ϕ0 = ϕ1 + ϕ2

To generate constraints, we initialize ∆ such that for each variable x, ∆(x) =
σ where σ is the signature of x given in the annotation, that is, either fixx : σ.v
or λx : σ.e appears in the program (recall that bound variables are distinct).
We also pick distinct capability variables ψstart and ψend , and we generate con-
straints C by ∆,ψstart ` e : σ, ψend , L ⇒ C where e is the input program, and
ψstart , ψend are distinct capability variables.



ψ fresh ∆,ψin ` e : σout , ψout , L ⇒ C

∆, ψ ` (λx : σin .e) : (ψin , σin)
L
→ (ψout , σout), ψ, ∅ ⇒

C ∪ {ψin (ρ) = ψout(ρ) | ρ ∈ L \ L}

cFun

ψ, ψ′ fresh

∆,ψ ` free ρ : int , ψ′, {ρ} ⇒ {ψ = ψ′ + {ρ 7→ 1}}
cFree

∆,ψ ` e1 : (ϕin , σin)
L
→ (ϕout , σout), ψ1, L1 ⇒ C1

∆,ψ2 ` e3 : σ′, ψ3, L2 ⇒ C2 ` σin =u σ
′ ⇒ C3 ψkeep fresh

∆,ψ ` e1 (e2) : σout , ψ
′, L1 ∪ L2 ∪ L⇒

C1 ∪ C2 ∪ C3 ∪ {ψ1 = ψ2, ψ3 = ϕin + ψkeep , ψ
′ = ψkeep + ϕout}

cApp

Fig. 7. Representative constraint generation rules.

Figure 7 shows a few representative constraint generation rules (see Figure 11
in the appendix for the complete set of rules). Each rule is a straightforward
syntax-directed constraint generation rule for the type checking rules from Fig-
ure 4. The rules use the relation ` σ =u σ

′ ⇒ C to generate capability equality
constraints of the form ϕ = ϕ′. The relation is defined inductively on the struc-
ture of the types, and is straightforward (see Figure 12 in the appendix). We
assume that the type annotations in the input program are correct in the sense
that the instances of the rules are all well-defined in the constraint generation.

The substitution σ[ρ′/ρ] is defined exactly like τ [ρ′/ρ] from Figure 5 (i.e.,
inductively on the structure of σ) with the substitution ϕ[ρ′/ρ]L just interpreted
syntactically.

Let L be the set of regions occurring in the program. For each capability vari-
able ψ and a region ρ ∈ L, we associate a distinct linear programming variable
ξψ,ρ to denote ψ(ρ). We reduce the capability constraints to linear inequality
constraints by applying the following rules.

ψ(ρ) = ψ′(ρ) ⇒ {ξψ,ρ = ξψ′,ρ}
ψ(ρ) > 0 ⇒ {ξψ,ρ > 0}
ϕ = ϕ′ ⇒ {S(ϕ, ρ) = S(ϕ′, ρ) | ρ ∈ L}
ψ = ψ′ + {ρf 7→ 1} ⇒ {ξψ,ρ = ξψ′,ρ | ρ ∈ L \ {ρf}} ∪ {ξψ,ρf

= ξψ′,ρf
+ 1}

ψ(ρ) = 0 ⇒ {ξψ,ρ = 0}
ϕ0 = ϕ1 + ϕ2 ⇒ {S(ϕ0, ρ) = S(ϕ1, ρ) + S(ϕ2, ρ) | ρ ∈ L}

where S(ϕ, ρ) is defined as follows.

S(ψ, ρ) = ξψ,ρ
S(ϕ[ρa/ρx]

L, ρ) = if ρ = ρx then 0
else if ρ 6= ρa then S(ϕ, ρ)
else if ρx 6∈ L then 1

2 (S(ϕ, ρx) + S(ϕ, ρa))
else S(ϕ, ρx) + S(ϕ, ρa)



We also add the inequality ξψ,ρ ≥ 0 for each ξψ,ρ to ensure that capabilities
are within the range [0,∞). Then, we check whether there exists a solution to the
set of these inequalities, and if so, we accept the program as safe, and otherwise,
we reject the program.

To apply linear programing algorithms that can only take non-strict inequali-
ties such as GLPK [1], we add a fresh linear programming variable ξs and replace
each ξψ,ρ > 0 with ξψ,ρ ≥ ξs, and set the objective function to be ξs. We then ask
the linear programming solver to find a solution that maximizes ξs and accept
if and only if the solver returns a solution with ξs > 0.

The soundness and the completeness of the inference is stated and proven in
the appendix (cf. Theorems 2 and 3).

4.1 Time Complexity

We discuss the time complexity of the capability inference algorithm. Recall that
we assume that region and effect annotations are provided.6 The complexity of
the constraint generation is polynomial in the size of the given region and effect
annotations, and so is the size of the generated set of linear inequalities. The
complexity of (rational) linear programming is polynomial in the size of the linear
inequalities. Therefore, the complexity of our inference algorithm is polynomial
in the size of the provided types.

NP-hardness of non-fractional capability calculus: It is possible to show that re-
stricting capabilities to range only over the set {0, 1} instead of the range [0,∞)
renders the capability inference NP-hard, even without polymorphism [13, 7].
Therefore, not only is the fractional capability calculus able to prove more pro-
grams memory safe than the non-fractional variant, it is actually more compu-
tationally tractable, assuming that P 6= NP.

5 Adding Polymorphism to Other Fractional Capability

Calculi

Our approach can be used to add parametric polymorphism to other fractional
capability calculus applications. We take race detection [10] for instance and
discuss the methodology.

Recall that, for the region calculus, we may use the down instantiation for
regions that are only accessed (i.e., read, written, or allocated) but not deleted
in the function. Because the race detection calculus needs to distinguish reads
from writes7, we use the down instantiation for abstract locations8 that are only

6 They may be inferred in time polynomial in the size of the underlying Hindley-Milner
type under certain restrictions (i.e., impredicativity) via methods like [9].

7 Formally, a race occurs when two accesses to a memory location happens concur-
rently such that one of them is a write, and so a concurrent read is not a race.

8 Abstract locations soundly approximates the actual locations. They serve the role
similar to region variables in the region calculus, and we overload ρ to range over
abstract locations in this section.



read but not written. In the race calculus, writes and reads are distinguished by
requiring the capability greater or equal to 1 for writes and capability greater
than 0 for reads. We define a new instantiation scheme, called 1-instantiation,
to instantiate abstract locations that may be written in functions:

Ψ [ρ1/ρ2]1 = {ρ1 7→ 1} ∪ {ρ 7→ Ψ(ρ) | ρ 6∈ {ρ1, ρ2}}

Note that this scheme lowers the capability for ρ2 to 1. We use effects to track
the abstract locations that may be written.

To prove Lemma 1, it is important that the effect L contains the regions
where pre-capability (i.e., Ψ) and post-capability (i.e., Ψ ′) are different (cf. Ap-
pendix A). For the region calculus, this occurs only when the Free type rule is
applied (see Figure 4). In the race detection calculus, this occurs when capabili-
ties are passed across threads via operations like lock creation, lock acquisition,
and lock release. For example, the following rule is applied for lock creation.

Γ, Ψ + Ψ1 ` newlock : lock(Ψ1), Ψ

Note that pre-capability, Ψ + Ψ1, may differ from the post-capability, Ψ , and so
we need to track the abstract locations where the capabilities differ as effects.
Like in the region calculus, we use additive instantiation for such abstraction
locations.

To summarize, we have three instantiation schemes for the race detection
calculus: the down instantiation for read-only locations, 1-instantiation for read-
or-write-only locations, and the additive instantiation for the rest (i.e., ones that
may be possibly passed across threads).

As in the region calculus, we use effects to select the instantiation schemes.
We now have two kinds of effects, one for abstract locations that change their
capabilities (L1 in the definition below), and one for abstract locations that are
written (L2 in the definition below). The new instantiation rule is defined as
follows.

Ψ [ρ1/ρ2]
L1,L2 =











Ψ [ρ1/ρ2]⇓ if ρ1 6∈ (L1 ∪ L2)[ρ1/ρ2]

Ψ [ρ1/ρ2]⊕ if ρ1 ∈ L1[ρ1/ρ2]

Ψ [ρ1/ρ2]1 if ρ1 ∈ (L2 \ L1)[ρ1/ρ2]

We modify the type checking rules to track effects. Judgements are of the form
Γ, Ψ ` e : τ, Ψ ′, L1, L2 where L1 overapproximates abstract locations that may
change in e, and L2 overapproximates abstract locations that are written in e.

Figure 8 shows a few representative type checking rules. WRITE rule adds
the written abstract location in the effect L2. In NEWL rule, we add the ab-
stract locations that are passed by the lock creation, that is, positive(Ψ1). Infer-
ring positive(Ψ1) requires solving linear inequalities, inducing cyclic dependencies
between capability constraint generation and capability constraint solving. For-
tunately, it is sound to overapproximate effects, and so a tractable approach is to
use all abstract locations (i.e., L) in place of positive(Ψ1) at NEWL (and other
type rules that also change capabilities). By an argument analogous to the one
in Section 4.1, it can be shown that the capability inference for such a system is
polynomial time computable.



Γ, Ψ ` e1 : ref (τ )@ρ,Ψ1, L1, L2 Γ, Ψ1 ` e2 : τ, Ψ2, L
′
1, L

′
2 Ψ2(ρ) ≥ 1

Γ, Ψ ` e1 := e2 : int , Ψ2, L1 ∪ L′
1, L2 ∪ L′

2 ∪ {ρ}
WRITE

Γ, Ψ + Ψ1 ` newlock : lock(Ψ1), Ψ, positive(Ψ1), ∅
NEWL

where positive(Ψ) = {ρ ∈ dom (Ψ) | Ψ(ρ) > 0}

Fig. 8. Representative polymorphic fractional race typing rules

6 Related Work and Conclusion

Fractional capabilities were originally proposed by Boyland to guarantee deter-
minism of multi-thread programs while permitting parallel reads [4]. For the
monomorphic fragment, it has been shown that the type inference can be solved
efficiently by a reduction to linear programming [12, 13], and later work has ex-
ploited this observation to create efficient fractional-capability-based program
analyses, ranging from race detection to security analyses [7, 14, 10, 11].

While extending these calculi to parametric polymorphism is discussed in
some of the papers (e.g., [4, 13, 10]), none has shown how to do type inference
efficiently in the presence of polymorphism. This paper addresses the issue by
presenting a general methodology to extend a fractional capability calculus to
parametric polymorphism while preserving soundness and the ability to do effi-
cient type inference.
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A Omitted Proofs

Definition 3. We write Ψ ≥ Ψ ′ if for all ρ, Ψ(ρ) ≥ Ψ ′(ρ).

Definition 4. Ψ + Ψ ′ = λρ.Ψ(ρ) + Ψ ′(ρ)

Definition 5. positive(Ψ) = {ρ | Ψ(ρ) > 0}

Definition 6. We write ` Γ if for all function types (τ, Ψin) →L (τ ′, Ψout) in
Γ , ∀ρ 6∈ L.Ψin = Ψout.

Lemma 4. Suppose Ψ ≥ Ψ ′. Then, Ψ [ρ′/ρ]L ≥ Ψ ′[ρ′/ρ]L.

Proof. Trivial.

Lemma 5. Suppose Γ, Ψ ` e : τ, Ψ ′, L. Then, Γ, Ψ + Ψ+ ` e : τ, Ψ ′ + Ψ+, L

Proof. We prove by induction on typing derivations. We only show the Letreg
case. Other cases are trivial.

By induction hypothesis, we have Γ, Ψ + {ρ 7→ 1} + Ψ+ ` e : τ, Ψ ′ + Ψ+, L.
By α-conversion, we have ρ 6∈ positive(Ψ+). Therefore, Ψ(ρ) = Ψ ′(ρ) = 0. Thus,
Γ, Ψ + Ψ+ ` letreg ρ in e : τ, Ψ ′ + Ψ+, L \ {ρ}.



Lemma 6. There exist Γ and τ such that Γ, Ψ ` v : τ, Ψ, ∅

Proof. Trivial.

Lemma 7. Suppose ` Γ and Γ, Ψ ` e : τ, Ψ ′, L′. Then, for all function types
(τ, Ψin) →L (τ ′, Ψout) in τ , ∀ρ′ 6∈ L.Ψin(ρ′) = Ψout(ρ

′).

Proof. Trivial.

Lemma 1. Suppose the following conditions.

– Γ, Ψ ` e : τ, Ψ ′, L′

– ` Γ
– L′ ⊆ L

Then, Γ [ρ′/ρ], Ψ [ρ′/ρ]L ` e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]L, L′[ρ′/ρ]

Proof. We prove by induction on derivation of type.

– Int
– Var
– Loc

Trivial.
– Fun

By I.H.(induction hypothesis), We have

(Γ, x : τ)[ρ′/ρ], Ψin[ρ
′/ρ]L

′[ρ′/ρ] ` e[ρ′/ρ] : τ ′[ρ′/ρ], Ψout[ρ
′/ρ]L

′[ρ′/ρ], L′[ρ′/ρ]

Then, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]∅ ` (λx : τ.e)[ρ′/ρ] : (τ, Ψin) →
L′[ρ′/ρ] (τ ′, Ψout)[ρ

′/ρ], Ψ [ρ′/ρ]∅, ∅

– App
By the assumptions, we have the following properties
1. Γ, Ψ ` e : (τ, Ψin) →L (τ ′, Ψout), Ψ0, L0

2. Γ, Ψ0 ` e′ : τ, Ψkeep + Ψin, L1

3. Γ, Ψ ` e (e′) : τ ′, Ψkeep + Ψout, L0 ∪ L1 ∪ L
4. L0 ∪ L1 ∪ L ⊆ Ls

By I.H. and property 1, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ] : ((τ, Ψin) →L (τ ′, Ψout))[ρ
′/ρ], Ψ0[ρ

′/ρ]Ls , L0[ρ
′/ρ]

≡ Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ] :

(τ [ρ′/ρ], Ψin[ρ
′/ρ]L) →L[ρ′/ρ] (τ ′[ρ′/ρ], Ψout[ρ

′/ρ]L), Ψ0[ρ
′/ρ]Ls , L0[ρ

′/ρ]

By I.H. and property 2, we have

Γ [ρ′/ρ], Ψ0[ρ
′/ρ]Ls ` e′[ρ′/ρ] : τ [ρ′/ρ], (Ψin + Ψkeep)[ρ

′/ρ]Ls , L1[ρ
′/ρ]

We now show that ρ′ 6∈ L[ρ′/ρ] ∧ ∀ρx 6∈ L.Ψ(ρx) = Ψ ′(ρx) ⇒ Ψ(ρ′) =
Ψ ′(ρ′)∧Ψ(ρ) = Ψ ′(ρ). If ρ′ ∈ L, then ρ′ ∈ L[ρ′/ρ]. It leads to a contradiction.



Therefore, ρ′ 6∈ L. Hence, Ψ(ρ′) = Ψ ′(ρ′). By the same fashion, we have
ρ 6∈ L. Hence, Ψ(ρ) = Ψ ′(ρ).
Here, we show Ψout[ρ

′/ρ]L + Ψ ′
keep = (Ψout + Ψkeep)[ρ

′/ρ]Ls by case analysis.
By ` Γ , we have ρ 6∈ L.Ψin(ρ) = Ψout(ρ). Let X(ρx) and Y (ρy) be as follows.

X(ρx) = Ψout[ρ
′/ρ]L(ρx) + Ψ ′

keep(ρx)

= Ψout[ρ
′/ρ]L(ρx) + (Ψkeep + Ψin)[ρ

′/ρ]Ls(ρx) − Ψin[ρ
′/ρ]L(ρx)

Y (ρx) = (Ψout + Ψkeep)[ρ
′/ρ]Ls(ρx)

It suffices to show that X(ρx) = Y (ρy) for any cases.
Suppose ρx 6= ρ′.

X(ρx) = Ψout(ρx) + Ψkeep(ρx) + Ψin(ρx) − Ψin(ρx)
= Ψout(ρx) + Ψkeep(ρx)

Y (ρx) = Ψout(ρx) + Ψkeep(ρx)

Suppose ρ′ ∈ L[ρ′/ρ] ∧ ρ′ = ρx.

X(ρx) = Ψout(ρ) + Ψout(ρ
′) + Ψkeep(ρ) + Ψkeep(ρ

′) + Ψin(ρ) + Ψin(ρ′)
−(Ψin(ρ) + Ψin(ρ

′))
= Ψout(ρ) + Ψout(ρ

′) + (Ψkeep(ρ) + Ψkeep(ρ
′))

= Y (ρx)

Suppose ρ′ 6∈ L[ρ′/ρ], ρ′ ∈ Ls[ρ
′/ρ], and ρx = ρ′.

X(ρx) = 1/2(Ψout(ρ) + Ψout(ρ
′)) + Ψkeep(ρ) + Ψkeep(ρ

′) + Ψin(ρ) + Ψin(ρ
′)

−1/2(Ψin(ρ) + Ψin(ρ
′))

= Ψkeep(ρ) + Ψkeep(ρ
′) + Ψin(ρ) + Ψin(ρ

′)
= Ψkeep(ρ) + Ψkeep(ρ

′) + Ψout(ρ) + Ψout(ρ
′)

= Y (ρx)

Suppose ρ′ 6∈ L[ρ′/ρ], ρ′ 6∈ Ls[ρ
′/ρ] and ρx = ρ′.

X(ρx) = 1/2(Ψout(ρ) + Ψout(ρ
′)) + 1/2(Ψkeep(ρ) + Ψkeep(ρ

′)) + 1/2(Ψin(ρ) + Ψin(ρ′))
−1/2(Ψin(ρ) + Ψin(ρ′))

= 1/2(Ψout(ρ) + Ψout(ρ
′)) + 1/2(Ψkeep(ρ) + Ψkeep(ρ

′))
= Y (ρx)

Hence, we have Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` (e(e′))[ρ′/ρ] : τ [ρ′/ρ], (Ψout+Ψkeep)[ρ
′/ρ]Ls , (L0∪

L1 ∪ L)[ρ′/ρ].
– Ref

By I.H., we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]

By the premise of the typing derivation, we have Ψ ′(ρx) > 0. Therefore, we
have Ψ ′[ρ′/ρ]Ls(ρx[ρ

′/ρ]) > 0. Hence, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` (ref e@ρx)[ρ
′/ρ] : (ref (τ)@ρx)[ρ

′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]



– Write
By I.H., we have
• Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ] : ref (τ)@ρx[ρ

′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]
• Γ [ρ′/ρ], Ψ ′[ρ′/ρ]Ls ` e′[ρ′/ρ] : τ [ρ′/ρ], Ψ ′′[ρ′/ρ]Ls , L′[ρ′/ρ]
• Ψ ′′[ρ′/ρ]Ls(ρx[ρ

′/ρ]) > 0
Then, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e := e′[ρ′/ρ] : int [ρ′/ρ], Ψ ′′[ρ′/ρ]Ls , (L ∪ L′)[ρ′/ρ]

– Read
By I.H., we have
• Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e : ref (τ)@ρx[ρ

′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]
• Ψ ′[ρ′/ρ]Ls(ρx[ρ

′/ρ]) > 0
Then, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls `!e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]

– Free
We have the following derivation.

Ψ [ρ′/ρ]Ls = Ψ ′[ρ′/ρ]Ls + {ρx[ρ′/ρ] 7→ 1}

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ] : int[ρ′/ρ], Ψ ′[ρ′/ρ]Ls , {ρx[ρ
′/ρ]}

Free

– Letreg
Because [ρ′/ρ] doesn’t contain ρx (by α conversion), by I.H., we have Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls+
{ρx 7→ 1} ` e[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]. By the same manner, we
have ρx 6∈ free(Γ [ρ′/ρ])∪ free(τ [ρ′/ρ]) and Ψ [ρ′/ρ]Ls(ρx) = Ψ ′[ρ′/ρ]Ls(ρx) =
0. Therefore, we have

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` (letreg ρx in e)[ρ
′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ]Ls , L[ρ′/ρ]

– TyApp
Because ρ is a fresh region variable (α conversion), we have [ρ′x/ρx][ρ

′/ρ] =
[ρ′/ρ][ρ′x[ρ

′/ρ]/ρx]. By I.H., we have the following derivation.

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′x][ρ
′/ρ] : ∀ρx.τ [ρ

′/ρ], Ψ ′[ρ′/ρ]Ls , Ls[ρ
′/ρ] [ρ′/ρ]′ = [ρ′x[ρ

′/ρ]/ρx]

Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′/ρ][ρ′/ρ]′ : τ [ρ′/ρ][ρ′/ρ]′, Ψ ′[ρ′/ρ]Ls , Ls[ρ
′/ρ]

Therefore, we have Γ [ρ′/ρ], Ψ [ρ′/ρ]Ls ` e[ρ′x/ρx][ρ
′/ρ] : τ [ρ′x/ρx][ρ

′/ρ], Ψ ′[ρ′/ρ]Ls , Ls[ρ
′/ρ]

– RegAbs
We can suppose ρx 6= ρ, because of α conversion. By I.H., we have Γ [ρ′/ρ], Ψ [ρ′/ρ] `
v[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ], ∅. Therefore, we have Γ [ρ′/ρ], Ψ [ρ′/ρ] ` Λρx.v[ρ′/ρ] :
∀ρx.τ [ρ′/ρ], Ψ ′[ρ′/ρ], ∅.

– Fix
By I.H., we have Γ [x 7→ τ ][ρ′/ρ], Ψ [ρ′/ρ] ` v[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ], ∅.
Therefore, we have Γ [ρ′/ρ], Ψ [ρ′/ρ] ` fix x : τ .v[ρ′/ρ] : τ [ρ′/ρ], Ψ ′[ρ′/ρ], ∅

Lemma 8. Suppose the following conditions.



1. Γ, x : τ, Ψin ` e : τ ′, Ψout, L
2. Γ, Ψ ` v : τ, Ψ, ∅

Then, Γ, Ψin ` e[v/x] : τ ′, Ψout, L.

Proof. By induction on derivation, trivial.

Definition 7. We write Ψ ` R if for all ρ ∈ dom (R).R(ρ) ≥ Ψ(ρ).

Definition 8. We write Γ ` (R, h, e, τ, Ψ ′) if there exist Ψ and L such that

1. Γ, Ψ ` e : τ, Ψ ′, L
2. Γ ` h
3. Ψ ` R
4. ` Γ

Lemma 9. Suppose Γ, Ψ ` e : τ, Ψ ′, L and Γ ⊆ Γ ′. Then, Γ ′, Ψ ` e : τ, Ψ ′, L.

This lemma is a standard weakening property.

Proof. Trivial.

Lemma 10. Suppose Γ, x : τ, Ψ ` v : τ, Ψ, ∅. Then, Γ, Ψ ` v[fix x : τ.v/x] :
τ, Ψ, ∅.

Proof. Trivial.

Lemma 2. Suppose Γ ` (R, h, e, τ, Ψ ′) and (R, h, e) → (R′, h′, e′). Then, Γ ′ `
(R′, h′, e′, τ, Ψ ′) where Γ ⊆ Γ ′.

Proof. By case analysis on evaluation.

– Ref
By assumption, there exists Ψ such that
1. Γ, Ψ ` ref v@ρ : ref (τ)@ρ, Ψ ′, ∅
2. Γ ` h
3. Ψ ` R
4. ` Γ
5. (R, h, ref v@ρ) → (R, h[` 7→ v], `@ρ)
Ψ = Ψ ′ is obvious by Lemma 6. Let Γ ′ be Γ, ` : ref (τ)@ρ, we have

Γ ′, Ψ ` v : τ, Ψ, ∅

Γ ′, Ψ ` ref v@ρ : Γ ′(`), Ψ, ∅

If τ is a function type, we have ∀ρ′ 6∈ L.Ψin(ρ
′) = Ψout(ρ

′) by lemma 7.
1. Γ ′, Ψ ′ ` `@ρ : ref (τ)@ρ, Ψ ′, ∅
2. Γ ′ ` h[` 7→ v]
3. Ψ ′ ` R
4. ` Γ ′

Therefore, we have Γ ` (R, h[` 7→ v], `@ρ, ref (τ)@ρ, Ψ ′).



– Write
By assumption, there exists Ψ such that

1. Γ, Ψ ` `@ρ := v : int , Ψ ′, ∅
2. Γ ` h
3. Ψ ` R
4. ` Γ
5. (R, h, `@ρ := v) → (R, h[` 7→ v], 0)

Ψ = Ψ ′ is obvious by Lemma 6. Because the h(`)’s type and the v’s type are
same, we have Γ ` h[` 7→ v].

1. Γ, Ψ ′ ` 0 : int , Ψ ′, ∅
2. Γ ` h[` 7→ v]
3. Ψ ` R
4. ` Γ

Therefore, we have Γ ` (R, h[` 7→ v], 0, int , Ψ ′).
– Read

1. Γ, Ψ ` !`@ρ : τ, Ψ ′, ∅
2. Γ ` h
3. Ψ ` R
4. ` Γ
5. (R, h, !`@ρ) → (R, h, h(`))

Ψ = Ψ ′ is obvious by Lemma 6. By property 2, we have Γ, Ψ ′ ` h(`) : τ, Ψ ′, ∅.

1. Γ, Ψ ′ ` h(`) : τ, Ψ ′, ∅
2. Γ ` h
3. Ψ ` R
4. ` Γ

Therefore, we have Γ ` (R, h, h(`), τ, Ψ ′).
– Free

By assumption, we have

• Γ, Ψ ` free ρ : int , Ψ ′, {ρ}
• Γ ` h
• Ψ ` R
• ` Γ
• (R, h, free ρ) → (R[ρ 7→ 0], h, 0)

and by premise of Free rule, Ψ = Ψ ′ + {ρ 7→ 1}. By property 4, we have
Ψ ′(ρ) = 0. Then we have Γ ` h and Ψ ′ ` R[ρ 7→ 0]. Therefore, we have
Γ ` (R[ρ 7→ 0], h, 0, int, Ψ ′).

– Letreg
By assumption, we have

• Γ, Ψ ` letreg ρ in e : τ, Ψ ′, L
• Γ ` h
• Ψ ` R
• ` Γ
• (R, h, letreg ρ in e) → (R[ρ 7→ 1], h, e)



By the premise of type derivation, we have

Γ, Ψ + {ρ 7→ 1} ` e : τ, Ψ ′, L

By premise of property 1, we have Γ, Ψ + {ρ 7→ 1} ` e : τ, Ψ ′, L. Therefore,
we have Γ ` h and Ψ + {ρ 7→ 1} ` R[ρ 7→ 1].

– App
By assumptions, we have
• Γ, Ψ ` (λx : τ .e) (e′) : τ ′, Ψkeep + Ψout, L0 ∪ L1 ∪ L
• Γ ` h
• Ψ ` R
• ` Γ

By the premise of introduction of Γ, Ψ ` (λx : τ .e) (v) : τ ′, Ψkeep + Ψout, L,
we have the following conditions.
• Γ, Ψ ` λx : τ .e : (τ, Ψin) →L (τ ′, Ψout), Ψ, ∅
• Γ, Ψ ` v : τ, Ψ, ∅

By Lemma 8 and Lemma 5, we have

Γ, Ψ ` e[v/x], τ ′, Ψkeep + Ψout, L

– TyApp
By assumptions, we have
• Γ, Ψ ` (Λρ.v)[ρ′] : τ, Ψ, L
• Γ ` h
• Ψ ` R
• ` Γ
• (R, h, (Λρ.v)[ρ′]) → (R, h, v[ρ′/ρ])

By Lemma 1, we have Γ, Ψ ` v[ρ′/ρ] : τ [ρ′/ρ], Ψ, L. Then, Γ ` (R, h, v[ρ′/ρ], τ [ρ′/ρ], Ψ).
– Fix

By assumption, we have
• Γ, Ψ ` fix x : τ .v : τ, Ψ, ∅
• Γ ` h
• Ψ ` R
• ` Γ
• (R, h, fix x : τ .v → (R, h, v[fix x : τ .v/x])

By the derivation of Γ, Ψ ` fixx : τ .v : τ, Ψ, ∅, we have Γ, x : τ, Ψ ` v : τ, Ψ, ∅.
By Lemma 10, we have Γ, Ψ ` v[fix x : τ .v : τ/x], Ψ, ∅.

– Context
By structural induction on evaluation contexts.
• E=[]

Trivial.
• E = E′ (e′)

By assumption, there exist Ψ and L such that
1. Γ, Ψ ` E′[e] (e′) : τout, Ψkeep + Ψout, L1 ∪ L2 ∪ L
2. Γ ` h
3. Ψ ` R
4. ` Γ



By property 1, we have the following derivation.

Γ, Ψ ` E′[e] : (Ψin, τin) →L (Ψout, τout), Ψ1, L1 Γ, Ψ1 ` e′ : τin, Ψkeep + Ψin, L2

Γ, Ψ ` E′[e] (e′) : τout, Ψkeep + Ψout, L1 ∪ L2 ∪ L
App

Then, we have Γ ′ ` (R, h,E′[e], (Ψin, τin) →L (Ψout, τout), Ψ1). By I.H.,
we have Γ ′ ` (R′, h′, E′[en], (Ψin, τin) →L (Ψout, τout), Ψ1). We have the
following derivation

Γ ′, Ψ ′ ` E′[en] : (Ψin, τin) →L (Ψout, τout), Ψ1, L1 Γ ′, Ψ1 ` e′ : τin, Ψkeep + Ψin, L2

Γ ′, Ψ ′ ` E′[en] (e′) : τout, Ψkeep + Ψout, L1 ∪ L2 ∪ L
App

Hence, we have Γ ′ ` (R′, h′, E[en], τout, Ψkeep + Ψout).
• E = v (E′)

By assumption, there exist Ψ and L such that

1. Γ, Ψ ` v (E′[e]) : τout, Ψkeep + Ψout, L1 ∪ L2 ∪ L
2. Γ ` h
3. Ψ ` R
4. ` Γ

By property 1, we have following derivation.

Γ, Ψ ` v : (Ψin, τin) →L (Ψout, τout), Ψ, ∅ Γ, Ψ ` E′[e] : τin, Ψkeep + Ψin, L2

Γ, Ψ ` v (E′[e]) : τout, Ψkeep + Ψout, L2 ∪ L
App

Then, Γ ` (R, h,E′[e], τin, Ψkeep+Ψin). By I.H., we have Γ ′ ` (R′, h′, E′[en], τin, Ψkeep+
Ψin). Hence, we have Γ ′ ` (R′, h′, E[en], τout, Ψkeep + Ψout).

• E = E′[ρ]
• E = refE′@ρ
• E = E′ := e
• E = v :=E′

• E = !E′

Proved by the similar approaches.

Lemma 3. Suppose e is a closed term, and we haveΓ ` (R, h, e, τ, Ψ). Then,
either e is a value or (R, h, e) → (R′, h′, e′).

Proof. By induction on typing derivations.

– Var
We assume e is a closed term, then this case wouldn’t occur.

– Loc
– Int
– Fun
– RegAbs
e is a value.



– Ref
By assumption, we have the following derivation.

Γ, Ψ ` e : τ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ ` ref e@ρ : ref (τ)@ρ, Ψ ′, L

If e is a value, since Ψ ` R, Ψ = Ψ ′ (by Lemma 6), and Ψ ′(ρ) > 0, that
is, R(ρ) = 1, for any ell such that ` 6∈ dom (h), we have (R, h, ref e@ρ) →
(R, h[` 7→ e], `@ρ).
If e is not a value, by Γ ` (R, h, e, ref (τ)@ρ, Ψ ′) and I.H., we have (R, h, e) →
(R′, h′, e′). Then, we have (R, h, ref e@ρ) → (R′, h′, ref e′@ρ).

– Write

Γ, Ψ ` e : ref (τ)@ρ, Ψ ′′, L Γ, Ψ ′′ ` e′ : τ, Ψ ′, L′ Ψ ′(ρ) > 0

Γ, Ψ ` e := e′ : int , Ψ ′, L ∪ L′

Suppose e and e′ are values. By Ψ ` R, Ψ = Ψ ′ = Ψ ′′, and Ψ ′(ρ) > 0, that
is, R(ρ) = 1. v = h(`) by Γ ` h. Otherwise, trivial.

– Deref

Γ, Ψ ` e : ref (τ)@ρ, Ψ ′, L Ψ ′(ρ) > 0

Γ, Ψ `!e : τ, Ψ ′, L

Suppose that e is a value. Let `@ρ = e. By Ψ ` R, Ψ = Ψ ′, and Ψ ′(ρ) > 0,
R(ρ) = 1. v = h(`). Otherwise, by Γ ` (R, h, e, ref (τ)@ρ, Ψ ′) and I.H.,
(R, h, e) → (R′, h′, e′). Therefore, we have (R, h, !e) → (R′, h′, !e′).

– Free
By assumption, we have Ψ ` R and Ψ(ρ) > 0, that is, R(ρ) = 1. Hence, we
have (R, h, free ρ) → (R[ρ 7→ 0], h, 0).

– Letreg

Γ, Ψ + {ρ 7→ 1} ` e : τ, Ψ ′, L ρ 6∈ free(Γ ) ∪ free(τ) Ψ(ρ) = Ψ ′(ρ) = 0

Γ, Ψ ` letreg ρ in e : τ, Ψ ′, L \ {ρ}

Let ρ be a region variable such that ρ 6∈ dom (R). We have (R, h, letregρine) →
(R[ρ 7→ 1], h, e).

– App
– TyApp
– Fix

Obvious.

Theorem 1. Suppose ∅ ` (∅, ∅, e, τ, Ψ ′). Then, e is memory safe.

Proof. By Lemma 2, Lemma 3, and Definition 1, it is proven trivially.

Definition 9. We write η |= C if

– for all ψ(ρ) = ψ′(ρ) ∈ C, η(ψ)(ρ) = η(ψ′)(ρ)



– for all ψ(ρ) > 0 ∈ C, η(ψ)(ρ) > 0
– for all ϕ = ϕ′ ∈ C, η(ϕ) = η(ϕ′)
– for all ψ = ψ′ + {ρf 7→ 1} ∈ C, η(ψ) = η(ψ′) + {ρf 7→ 1}
– for all ψ(ρ) = 0 ∈ C, η(ψ)(ρ) = 0
– for all ϕ0 = ϕ1 + ϕ2 ∈ C, η(ϕ0) = η(ϕ1) + η(ϕ2)

Lemma 11. Suppose ` σ =u σ
′ ⇒ C, C ⊆ C ′, and η |= C ′. Then, η(σ) = η(σ′).

Proof. By induction on unification rules and the definition of η |= C ′, it is proven
trivially.

Lemma 12. Suppose ` σ =u σ
′ ⇒ C and η(σ) = η(σ′). Then, η |= C.

Proof. By induction on unification rules and the definition of η |= C, it is proven
trivially.

Lemma 13. Suppose η |= C and η |= C ′. Then, η |= C ∪ C ′.

Proof. By the definition of η |= C, trivial.

Theorem 2 (Soundness of constraint generation).
Suppose ∆,ψin ` e : σ, ψout , L⇒ C, C ⊆ C ′ ,and η |= C ′. Then, η(∆), η(ψ) `

η(e) : η(σ), η(ψout ), L.

Proof. By induction on constraint generation rules. We only show cApp case.
Other cases are proven by the same approach, or proven trivially.

For cApp case, by I.H., we have the following conditions.

– η(∆), η(ψ) ` η(e1) : η((ϕin , σin ) →L (ϕout , σout )), η(ψ1), L1 and
– η(∆), η(ψ2) ` η(e2) : η(σ′), η(ψ3), L2.

By Lemma 11, we have η(σin ) = η(σ′).
By definition of η |= C, we have

– η(ψ1) = η(ψ2),
– η(ψ3) = η(ϕin ) + η(ψkeep), and
– η(ψ′) = η(ψkeep) + η(ϕout ).

Then, we have η(∆), η(ψ) ` η(e1 (e2)) : η(σout ), η(ψ
′), L1 ∪ L2 ∪ L.

Theorem 3 (Completeness of constraint generation).
Suppose ∆,ψin ` e : σ, ψout , L⇒ C and η(∆), η(ψ) ` η(e) : η(σ), η(ψout ), L.

Then, η |= C.

Proof. By induction on typing derivations. We only show App case. Other cases
are proven by the same approach, or proven trivially. For App case, by I.H., we
have

– η |= C1 and
– η |= C2.



By Lemma 13, η |= C3.
By assumption, we have

η(∆), η(ψ) ` η(e1) : η((ϕin , σin ) →L (ϕout , σout )), η(ψ1), L1

η(∆), η(ψ2) ` η(e2) : η(σ′), η(ψ3), L2

η(∆), η(ψ) ` η(e) : η(σout ), η(ψ
′), L1 ∪ L2 ∪ L

By contradiction, suppose the following properties don’t hold.

– η(ψ1) = η(ψ2)
– η(ψ3) = η(ϕin ) + η(ψkeep)
– η(ψ′) = η(ψkeep) + η(ϕout )

Then, we can’t deduce η(∆), η(ψ) ` η(e) : η(σout ), η(ψ
′), L1 ∪L2 ∪L. This leads

to a contradiction. Thus, the properties hold.
Consequently, by Lemma 12, we have

η |= C1 ∪ C2 ∪ C3 ∪ {ψ1 = ψ2, ψ3 = ϕin + ψkeep , ψ
′ = ψkeep + ϕout}

B Omitted Figures



(R, h, (λx : τ.e) (v)) → (R, h, e[v/x]) App

(R, h, (Λρ.v) (ρ′)) → (R, h, v[ρ′/ρ]) TyApp

(R,h, fix x : τ.v) → (R, h, v[(fix x : τ .v)/x]) Fix

R(ρ) = 1 ` /∈ dom(h)

(R, h, ref v@ρ) → (R,h[` 7→ v], `@ρ)
Ref

R(ρ) = 1

(R, h, !`@ρ) → (R,h, h(`))
Read

R(ρ) = 1

(R,h, `@ρ := v) → (R,h[` 7→ v], 0)
Write

ρ /∈ dom(R)

(R, h, letreg ρ in e) → (R[ρ 7→ 1], h, e)
Letreg

R(ρ) = 1

(R,h, free ρ) → (R[ρ 7→ 0], h, 0)
Free

e→ e′

E[e] → E[e′]
Context

Fig. 9. The operational semantics.



n[ρ1/ρ2] = n

x[ρ1/ρ2] = x

λx : τ.e[ρ1/ρ2] = λx : τ [ρ1/ρ2].e[ρ1/ρ2]

Λρ′1.e[ρ1/ρ2] = Λρ′1.e[ρ1/ρ2] where ρ′1 6= ρ2

(fix x : τ.v)[ρ1/ρ2] = fix x : τ [ρ1/ρ2].(v[ρ1/ρ2])

e[ρ′1][ρ1/ρ2] = e[ρ1/ρ2][ρ
′
1[ρ1/ρ2]]

e (e′)[ρ1/ρ2] = (e[ρ1/ρ2]) (e′[ρ1/ρ2])

ref e@ρ′1[ρ1/ρ2] = ref e[ρ1/ρ2]@ρ
′
1[ρ1/ρ2]

(!e)[ρ1/ρ2] = !e[ρ1/ρ2]

(e := e′)[ρ1/ρ2] = (e[ρ1/ρ2] := e
′[ρ1/ρ2])

(letreg ρ′1 in e)[ρ1/ρ2] = letreg ρ′1 in e[ρ1/ρ2]
where ρ′1 6= ρ2

(free ρ′1)[ρ1/ρ2] = free ρ′1[ρ1/ρ2]

(`@ρ′1)[ρ1/ρ2] = `@ρ′1[ρ1/ρ2]

Fig. 10. e[ρ1/ρ2]



ψ fresh

∆,ψ ` x : ∆(x), ψ, ∅ ⇒ ∅
cInt

ψ fresh

∆,ψ ` n : int , ψ, ∅ ⇒ ∅
cVar

ψ fresh ∆, ψin ` e : σout , ψout , L ⇒ C

∆,ψ ` (λx : σin .e) : (ψin , σin )
L
→ (ψout , σout), ψ, ∅ ⇒ C ∪ {ψin (ρ) = ψout(ρ) | ρ ∈ L \ L}

cFun

where L denotes all region occurring in a program

∆, ψ ` e : ∀ρ.σ, ψ′, L ⇒ C

∆,ψ ` e[ρ′] : σ[ρ′/ρ], ψ′, L⇒ C
cTyApp

∆,ψ ` v : σ, ψ, ∅ ⇒ C

∆,ψ ` Λρ.v : ∀ρ.σ, ψ, ∅ ⇒ C
cRegAbs

∆,ψ ` e : σ, ψ′, L ⇒ C

∆,ψ ` ref e@ρ : ref (σ)@ρ,ψ′, L⇒ C ∪ {ψ′(ρ) > 0}
cRef

∆,ψ0 ` e : ref (σ)@ρ,ψ1, L ⇒ C ∆,ψ2 ` e′ : σ, ψ3, L
′ ⇒ C′

∆, ψ0 ` e := e′ : int , ψ3, L ∪ L′ ⇒ C ∪ C′ ∪ {ψ1 = ψ2, ψ3(ρ) > 0}
cWrite

∆,ψ ` e : ref (σ′)@ρ,ψ′, L ⇒ C

∆,ψ ` !e : σ′, ψ′, L ⇒ C ∪ {ψ′(ρ) > 0}
cDeref

∆,ψ ` e : σ, ψ′, L ⇒ C ψ0 fresh

∆,ψ0 ` letreg ρ in e : σ, ψ′, L \ {ρ} ⇒ C ∪ {ψ0 + {ρ 7→ 1} = ψ, ψ0(ρ) = 0, ψ′(ρ) = 0}
cLetreg

ψ, ψ′ fresh

∆,ψ ` free ρ : int , ψ′, {ρ} ⇒ {ψ = ψ′ + {ρ 7→ 1}}
cFree

∆,ψ ` e1 : (ϕin , σin )
L
→ (ϕout , σout), ψ1, L1 ⇒ C1

∆,ψ2 ` e3 : σ′, ψ3, L2 ⇒ C2 ` σin =u σ
′ ⇒ C3 ψkeep fresh

∆,ψ ` e1 (e2) : σout , ψ
′, L1 ∪ L2 ∪ L⇒

C1 ∪ C2 ∪ C3 ∪ {ψ1 = ψ2, ψ3 = ϕin + ψkeep , ψ
′ = ψkeep + ϕout}

cApp

Fig. 11. Constraint generation rules.

` int =u int ⇒ ∅

` σ =u σ
′ ⇒ C

` ref (σ)@ρ =u ref (σ′)@ρ⇒ C

` σ =u σ
′ ⇒ C

` ∀ρ.σ =u ∀ρ.σ′ ⇒ C

` σin = σ′
in ⇒ C ` σout = σ′

out ⇒ C′

` ((ϕin , σin)
L
→ (ϕout , σout)) =u ((ϕ′

in , σ
′
in)

L
→ (ϕ′

out , σ
′
out)) ⇒ C ∪ C′ ∪ {ϕin = ϕ′

in , ϕout = ϕ′
out}

Fig. 12. Unification rules.


