
Type-Based Deadlock-Freedom Verification for
Non-Block-Structured Lock Primitives and

Mutable References

Kohei Suenaga

Tohoku University

Abstract. We present a type-based deadlock-freedom verification for
concurrent programs with non-block-structured lock primitives and mu-
table references. Though those two features are frequently used, they are
not dealt with in a sufficient manner by previous verification methods.
Our type system uses a novel combination of lock levels, obligations and
ownerships. Lock levels are used to guarantee that locks are acquired in
a specific order. Obligations and ownerships guarantee that an acquired
lock is released exactly once.

1 Introduction

Concurrent programs are getting important as multi-processor machines and
clusters are getting popular. Many programs including operating systems and
various network servers are written as concurrent programs.

A problem with a concurrent program is the possibility of a deadlock: a state
in which every thread is waiting for a lock to be released by other threads. A
deadlock is considered to be a serious problem since a deadlock causes uninten-
tional halt of a system.

This paper presents a type-based method for deadlock-freedom verification.
Our verification framework supports non-block-structured lock primitives and
mutable references to locks. Those two features are heavily used in real-world
software. For example, non-block-structured lock primitives, whose locking op-
erations do not syntactically correspond to unlocking operations, are used in, for
example, C programs with POSIX thread library.

Figure 1 shows a program with non-block-structured lock primitives and mu-
table references to locks, which suffers from a deadlock. The example is based
on an actual bug found in nss ldap-226-20.rpm [5]. In that example, a function
nss ldap getgroups dyn first calls nss ldap enter and then executes two
branches. The first branch calls nss ldap leave before executing return , while
the second branch does not call nss ldap leave . Because nss ldap enter
acquires a global lock lock and returns without unlocking it, lock is kept
acquired if the second branch is executed after nss ldap getgroups dyn re-
turns. This causes a deadlock if nss ldap getgroups dyn is called twice with
an environment under which the second branch is executed.

static mutex_t __lock;

void _nss_ldap_enter() { ... mutex_lock(&__lock); ... }

void _nss_ldap_leave() { ... mutex_unlock(&__lock); ... }

char *_nss_ldap_getgroups_dyn(const char *user...) {

...

_nss_ldap_enter ();

if (...) { _nss_ldap_leave(); return NULL; }

/* _nss_ldap_leave is not called in this branch. */

if (...) { return NSS_STATUS_NOTFOUND; }

...

}

Fig. 1. A deadlock contained in nss ldap-226-20.rpm.

static mutex_t lockA, lockB;

void accessA() {

mutex_lock(&lockA);

...

mutex_unlock(&lockA);

}

void accessB() {

mutex_lock(&lockB);

...

mutex_unlock(&lockB);

}

void thread1() {

mutex_lock(&lockB);

accessA();

mutex_unlock(&lockB);

}

void thread2() {

mutex_lock(&lockA);

accessB();

mutex_unlock(&lockA);

}

Fig. 2. An example of a deadlock caused by circular dependency between locks.

Figure 2 shows another example of a deadlock, which is caused by circular
dependency between locks. In the example, a function accessA acquires and
releases a lock lockA , while accessB acquires and releases lockB . These two
functions are called from two threads thread1 and thread2 . In those threads,
accessA is called while lockB is acquired and accessB is called while lockA is
acquired, so that the program may lead to a deadlock because of the lock order
reversal between lockA and lockB .

The main idea of our type system is to guarantee that locks are acquired
in a specific order, and that an acquired lock is released exactly once. The first
property is guaranteed by lock levels, while the second property is guaranteed
by obligations and ownerships.

So far, much effort has been paid for static deadlock-freedom verification [1, 2,
7, 8, 11, 12, 14]. However, non-block-structured lock primitives and mutable refer-
ences to locks are not dealt with in a sufficient manner. For example, the analyses
by Boyapati, Lee and Rinard [2] and by Flanagan and Abadi [8] consider only
block-structured synchronization primitives (i.e., synchronized blocks in the
Java language.) Kobayashi et al. [11, 12, 14] proposed a deadlock-freedom analy-

x, y, z, f . . . ∈ Var

lck ::= L | L̂
P ::= eDs
D ::= x(ey) = s
v ::= true | false
s ::= skip | x(ey) | (if x then s1 else s2) | putob(x, y)
| let x = v in s | let x = ref y in s | let x =!y in s | x := y
| spawn s | let x = newlock () in s | lock x | unlock x | s1; s2

E ::= [] | E; s

Fig. 3. Syntax

x′ is fresh

(eD,Env , H, L, {let x = ref y in s}] S) → (eD,Env , H[x′ 7→ y], L, {[x′/x]s}] S)
(E-Ref)

(eD,Env , H[x 7→ y′], L, {x := y}] S) → (eD,Env , H[x 7→ y], L, {skip}] S)
(E-Assign)

(eD,Env , H[y 7→ z], L, {let x =!y in s}] S) →
(eD,Env , H[y 7→ z], L, {([z/x]s);putob(z, y)}] S)

(E-LetDeref)

x′ is fresh

(eD,Env , H, L, {let x = newlock () in s}] S) →
(eD,Env , H, L[x′ 7→ L̂], {[x′/x]s}] S)

(E-LetNewlock)

(eD,Env , H, L[x 7→ L̂], {lock x}] S) → (eD,Env , H, L[x 7→ L], {skip}] S)
(E-Lock)

(eD,Env , H, L[x 7→ L], {unlock x}] S) → (eD,Env , H, L[x 7→ L̂], {skip}] S)
(E-Unlock)

(eD,Env , H, L, {s}] S) → (eD′,Env ′, H ′, L′, {s′}] S′)

(eD,Env , H, L, {E[spawn s]}] S) → (eD′,Env ′, H ′, L′, {s, E[skip]}] S′)
(E-Spawn)

(eD,Env , H, L,putob(x, y)) → (eD,Env , H, L, skip) (E-Putob)

Fig. 4. Operational Semantics (excerpt)

sis for the π-calculus. Although their analysis can, in principle, handle references
by encoding them into channels, the resulting analysis is too imprecise.

The rest of this paper is organized as follows. Section 2 defines our tar-
get language. Section 3 introduces a type system for deadlock-freedom analysis.
Section 4 states soundness of our type system. After discussing related work in
Section 5, we conclude in Section 6.

nss ldap enter(lock) = lock lock
nss ldap leave(lock) = unlock lock
nss ldap getgroups dyn(ret , cond , lock) =

nss ldap enter(lock);
if cond then (nss ldap leave(lock); ret := 0)
else ret := 0

Fig. 5. An encoding of the program in Figure 1 in our language.

2 Target Language

Figure 3 shows the syntax of our target language. A program P consists of
mutually recursive function definitions D̃ and a main statement s. A function
definition D consists of the name of the function x, a sequence of arguments ỹ
and a function body s.

The meta-variable s ranges over the set of statements. The statement skip
does nothing. The statement x(ỹ) is a function call. The conditional branch
if x then s1 else s2 executes s1 if x is true and s2 otherwise. The state-
ments let x = ref y in s, let x =!y in s and x := y are for generating,
dereferencing and assignment to a reference. We write let x = y in s for
let z = ref y in let x =!z in s if the variable z does not freely appear in s.
The statement spawn s spawns a new thread that executes s. putob(x, y),
which is used for type soundness proof and operationally equivalent to skip,
represents the end of scope of x in let x =!y in s. putob(x, y) should not be
included in a program. The statement let x = newlock () in s generates a fresh
lock, binds x to the lock and executes s. The statements lock x and unlock x
are for acquiring and releasing a lock x. The statement s1; s2 is a sequential
composition of s1 and s2. Figure 5 and 6 show how the programs in Figure 1
and 2 are encoded in our language. We omit the main statement of the program
in Figure 1.

The operational semantics of our calculus is defined as a transition relation
between configurations. Figure 4 presents an excerpt of the transition rules. A
configuration in our semantics is a tuple of a set of function definitions D̃, an
environment that maps a variable to a value Env , a heap H, a map from a lock
variable to a state of the lock L and a multiset of running threads S. A state of
a lock is either locked (L) or unlocked (L̂.) In Figure 4, S1] S2 is the disjoint
union of multisets S1 and S2.

3 Type System

3.1 Overview

We first present an overview of our type system. As mentioned in Section 1, our
type system guarantees that locks are acquired in a specific order by using lock

accessA(lockA) = lock lockA;unlock lockA
accessB(lockB) = lock lockB ;unlock lockB
thread1 (lockA, lockB) = lock lockB ; accessA(lockA);unlock lockB
thread2 (lockA, lockB) = lock lockA; accessB(lockB);unlock lockA
let lockA = newlock() in let lockB = newlock() in

spawn (thread1 (lockA, lockB)); spawn (thread2 (lockA, lockB))

Fig. 6. An encoding of the program in Figure 2 in our language.

f(x, y) = unlock x;unlock y
main() = let x = newlock() in

lock(x); (let y = ref x in f(x, !y))

Fig. 7. Programs that contain aliasing to a lock occurs.

levels and that an acquired lock is released exactly once by using obligations and
ownerships.

Lock levels Each lock type in our type system is associated with a natural
number called lock level. The type system prevents deadlocks by guaranteeing
that locks are acquired in a strict increasing order of lock levels. For example,
the statement spawn (lock x; lock y;unlock y;unlock x);
(lock y; lock x;unlock x;unlock y) is rejected because the first thread requires
the level of x to be less than that of y, while the second thread requires the level
of y should be less than x.

Obligations In order to guarantee that an acquired lock is released exactly once,
each lock type in our type system has information on obligation to release the
lock. A lock type lock(lev , U) in our type system has a flow-sensitive component
U called a usage, in addition to a lock level lev . A usage is either ob, which
denotes an obligation to release the lock, or 1, which shows there is no such
obligation.

More precisely, the type system deals with obligations based on the following
principles.

1. lock x can be executed if and only if (1) x does not have an obligation and
(2) the level of every lock with an obligation is less than the level of x. x has
an obligation after lock x is performed.

2. unlock x can be performed if and only if x has an obligation. x does not
have the obligation after unlock x is performed.

3. An obligation is treated linearly, that is, if an alias to a lock with an obli-
gation is generated, then exactly one of the lock or the alias inherits the
obligation.

let x = newlock() in let y = newlock() in
let z = newlock() in let r = ref x in

spawn (lock(z); lock(!r);unlock(z); lock(z);unlock(!r);unlock(z));
(lock(z); r := y;unlock(z))

Fig. 8. A program in which a lock contained in a reference is not correctly released.

For example, the type system rejects the program

f(x) = lock x
let x = newlock() in f(x); lock x

because x has an obligation after the function call f(x) returns, which is followed
by lock x, so that (1) in the first condition above is violated. The program in
Figure 7 is also rejected because, from the third condition above, only one of x or
y inherits the obligation generated by lock x after the reference y is generated,
while both x and y are required to have an obligation just before f(x, !y).

Note the difference between our obligations and flow-sensitive type qualifiers
in CQual [9]. Flow-sensitive type qualifiers in CQual represent the current state
of values, while our obligations represent how variables should be used afterwards.
This difference matters when we consider a program with aliasing. For example,
consider the program (lock x; let y = x in s). In our type system, x has the
type lock(lev , ob) just after lock x, which means the lock should be released
through x afterwards. After the alias y of x is created, the type environment may
be either x : lock(lev , ob), y : lock(lev ,1) or x : lock(lev ,1), y : lock(lev , ob)
depending on how x and y are used in s. On the other hand, in CQual, if x is
put in an abstract location ρ, then the flow-sensitive type qualifier assigned to
ρ just after lock x is locked, which means that x is currently locked. After the
alias y is created, x and y have the same type as they are bound to the same
lock.

Ownership In order to guarantee deadlock-freedom of a program with thread
creation and accesses to mutable references, obligations are still insufficient to
guarantee that an acquired lock is released exactly once. For example, consider
the program in Figure 8. That program consists of two threads. The first thread
acquires and releases a lock contained in the reference r, while the second thread
assigns another lock to the same reference. Then, the lock released by the first
thread may be different from acquired one, so that the acquired lock may not
be released.

The problem here can be described as follows: a write to a reference to a
lock should not occur while the lock is held. Note that this property differs from
race-freedom because race-freedom only guarantees that a write to a reference
and another read or write to the reference do not occur at the same time. In fact,
though the program in Figure 8 is race-free because each access to the reference
r is guarded by a lock z, it still has a problem described above.

lev ∈ {0, 1, . . .} ∪ {∞}
U ::= ob | 1
r ∈ [0,∞)

τ ::= bool | lock(lev , U) | τ refr | (τ1, . . . , τn)
lev→(τ ′1, . . . , τ

′
n)

Fig. 9. Syntax of types.

To solve such problem, our type system uses ownerships, a thread’s capa-
bility to access a reference. As in Boyland [3], Terauchi [17] and Kikuchi and
Kobayashi [10] do, we use rational-numbered ownerships. A well-typed program
obeys the following rules on ownerships in manipulating references.

1. An ownership less than or equal to 1 is assigned to a reference to a lock when
the reference is generated.

2. A thread is required to have an ownership greater than 0 on a reference in
order to read a lock from the reference.

3. A thread is required to have an ownership 1 on a reference in order to write
a lock to the reference.

4. When a thread is spawned, an ownership of each reference is divided and
distributed to each thread.

Based on those rules, a thread has to have an ownership greater than 0 to acquire
a lock through a reference, which prevents other threads from overwriting the
reference while the lock is acquired. For example, the program in Figure 8 is
rejected because the total ownership required on the reference r exceeds 1: the
first thread requires an ownership more than 0 while the second thread requires
1.

3.2 Syntax

Figure 9 shows the syntax of types. The set of lock levels, ranged over by a
meta-variable lev , is the set of natural numbers with ∞. We extend the standard
partial order ≤ on the set of natural numbers to that on lock levels by lev ≤ ∞
for any lev . We write lev1 < lev2 for lev1 ≤ lev2 ∧ lev1 6= lev2.

Usage, ranged over by a meta-variable U , represents whether there is an
obligation to release a lock. A usage ob represents an obligation to release a
lock, while a usage 1 represents that there is not such obligation.

The meta variable τ ranges over types. A lock type lock(lev , U) is for locks
that should be used according to lev and U . For example, if a variable x has the
type lock(1,1), then the lock can be acquired through x if locks whose levels are
more than 1 are not already acquired. If a variable x has the type lock(1, ob)
then the lock should be released exactly once through the variable x.

The type τ refr is for references, whose content should be used according to
τ after it is read from the reference. The meta variable r, which is associated
with a reference type, is a rational number in the set [0,∞) and represents a

U1 ⊗ U2

ob ⊗ ob = undefined
ob ⊗ 1 = ob
1⊗ ob = ob
1⊗ 1 = 1

τ1 ⊗ τ2

τ1 refr1 ⊗ τ2 refr2 = τ1 ⊗ τ2 refr1+r2

lock(lev , U1)⊗ lock(lev , U2) =
lock(lev , U1 ⊗ U2)

τ ⊗ τ = τ
(where τ is int,bool,
or a function type.)

Γ1 ⊗ Γ2

(Γ1 ⊗ Γ2)(x) =

8
<
:

Γ1(x) (if x ∈ Dom(Γ1)\Dom(Γ2))
Γ2(x) (if x ∈ Dom(Γ2)\Dom(Γ1))
Γ1(x)⊗ Γ2(x) (if x ∈ Dom(Γ1) ∩Dom(Γ2))

noob(U),noob(τ)

noob(1)
(NoOb-Unlocked)

τ is bool or a function type.

noob(τ)
(NoOb-Other)

noob(U)

noob(lock(lev , U))
(NoOb-Lock)

noob(τ)

noob(τ refr)
(NoOb-Ref)

Fig. 10. Definition of auxiliary operators and predicates.

thread’s capability to access the reference. An ownership being greater than 0
means that one can read a value through the reference. An ownership 1 means
that one can write a value to the reference. A function type τ̃

lev→τ̃ ′ consists of
the following components.

– τ̃ : the types of arguments before execution of the functions.
– τ̃ ′: the types of arguments after execution of the functions.
– lev : the minimum level of locks that may be acquired by the functions.

3.3 Type Judgment

The type judgment for statements is Γ ` s ⇒ Γ ′ & lev . Type environments Γ
and Γ ′ describe the types of free variables in s before and after execution of s.
A lock level lev is an effect of s, which is a minimum level of locks that may be
acquired during execution of s.

The type judgment intuitively means that (1) locks are acquired in an strict
increasing order of their levels, (2) an acquired lock is released exactly once and,
(3) the levels of acquired locks are greater than or equal to lev if s is executed
under an environment described by Γ and with a continuation that respects
types in Γ ′.

The type judgment is defined as the least relation that satisfies the typing
rules in Figure 11. In those rules, we use the operation ⊗ defined in Figure 10.

∅ ` skip ⇒ ∅ & ∞ (T-Nop)

Γ1 ` s1 ⇒ Γ2 & lev Γ2 ` s2 ⇒ Γ3 & lev

Γ1 ` s1; s2 ⇒ Γ3 & lev
(T-Seq)

x : bool, Γ ` s ⇒ x : bool, Γ ′ & lev

Γ ` let x = v in s ⇒ Γ ′ & lev
(T-LetBool)

x : lock(lev ′,1), Γ ` s ⇒ x : lock(lev ′,1), Γ ′ & lev

Γ ` let x = newlock () in s ⇒ Γ ′ & lev
(T-Newlock)

x : lock(lev ,1) ` lock x ⇒ x : lock(lev , ob) & lev (T-Lock)

x : lock(lev , ob) ` unlock x ⇒ x : lock(lev ,1) & ∞ (T-Unlock)

τ = (τ1, . . . , τn)
lev→(τ ′1, . . . , τ

′
n)

y1 : τ1 ⊗ · · · ⊗ yn : τn ⊗ x : τ ` x(y1, . . . , yn) ⇒ y1 : τ ′1 ⊗ · · · ⊗ yn : τ ′n ⊗ x : τ & lev
(T-App)

x : bool, Γ ` s1 ⇒ Γ ′ & lev x : bool, Γ ` s2 ⇒ Γ ′ & lev

x : bool, Γ ` if x then s1 else s2 ⇒ Γ ′ & lev
(T-If)

x : τ1 refr, y : τ2, Γ ` s ⇒ x : τ ′1 refr′ , y : τ ′2, Γ
′ & lev noob(τ ′1)

r ≤ 1 if ¬nolock(τ1) wf(τ1 refr) wf(τ2)

y : τ1 ⊗ τ2, Γ ` let x = ref y in s ⇒ y : τ ′2, Γ
′ & lev

(T-Ref)

x : τ1, y : τ2 refr, Γ ` s ⇒ x : τ ′1, y : τ ′2 refr′′ , Γ ′ & lev r′ > 0
wf(τ1) wf(τ2 refr)

y : τ1 ⊗ τ2 refr+r′ , Γ ` let x =!y in s ⇒ y : τ ′1 ⊗ τ ′2 refr′′ , Γ ′ & lev
(T-Deref)

noob(τ3) wf(τ1) wf(τ2)

x : τ3 ref1, y : τ1 ⊗ τ2 ` x := y ⇒ x : τ1 ref1, y : τ2 & ∞ (T-Assign)

x : τ1 ⊗ τ2, y : τ3 refr ` putob(x, y) ⇒ x : τ1, y : τ2 ⊗ τ3 refr & ∞
(T-Putob)

Γ1 ` s ⇒ Γ3 & lev noob(Γ3) wf(Γ1) wf(Γ2)

Γ1 ⊗ Γ2 ` spawn s ⇒ Γ2 & lev
(T-Spawn)

Γ ` s ⇒ Γ ′ & lev lev ′ ≤ lev max(levelob(Γ
′′)) < lev ′

Γ, Γ ′′ ` s ⇒ Γ ′, Γ ′′ & lev ′

(T-Weak)

Fig. 11. Typing rules for statements.

U1 ⊗ U2 gives the usage that means both obligations in U1 and U2 have to
be fulfilled. ob ⊗ ob is undefined because releasing an acquired lock twice is
prohibited. The operator ⊗ on usages are naturally extended to types.

We also use the following definitions in Figure 11.

eD = {f(x11, . . . , x1m1) = s1, . . . , f(xn1, . . . , xnmn) = sm}
Γ = f1 : (τ1,1, . . . , τ1,m1)

lev1→ (τ ′1,1, . . . , τ
′
1,m1), . . . ,

fn : (τn,1, . . . , τn,mn)
levn→ (τn,1, . . . , τn,mn)

Γ, xi,1 : τi,1, . . . , xi,mi : τi,mi ` si ⇒ Γ, xi,1 : τ ′i,1, . . . , xi,mi : τ ′i,mi
& lev i

`Def
eD : Γ

(T-Fundef)

`Def
eD : Γ Γ ` s ⇒ Γ ′ & lev noob(Γ ′)

`Prog
eDs

(T-Prog)

Fig. 12. Typing rules for programs.

Definition 1 (No obligation). noob(τ) is defined as the least predicate that
satisfies the rules in Figure 10.

The predicate noob(τ) asserts that τ does not have any obligation to fulfil.

Definition 2. levelU , a function that takes a type and returns a set of lock
levels, is defined as follows.

levelU (τ refr) = levelU (τ)
levelU (lock(lev , U ′)) = {lev} (where U = U ′)

levelU (τ) = ∅ (otherwise)

levelU (Γ) is defined as {lev |x : τ ∈ Γ ∧ lev ∈ levelU (τ)}.
The function levelU collects levels of locks whose usages are equal to U .

Definition 3. A predicate wf is defined as the least one that satisfies the fol-
lowing rules.

τ is bool, lock(lev , U)
or a function type.

wf(τ)

wf(τ) ¬noob(τ) ⇒ r > 0
wf(τ refr)

∀x : τ ∈ Γ.wf(τ)
wf(Γ)

The predicate wf(Γ) asserts that ownerships of each reference type in Γ are
consistent with its content type. Note that wf(τ refr) requires r > 0 if τ has an
obligation to release a lock because one has to read the reference to release the
lock.

We explain important rules in Figure 11. In the rule (T-Newlock), noob(U1)
means that the newly generated lock has no obligation. noob(U2) means that all
the obligations in the type of x should be fulfilled at the end of s because x
cannot be accessed after execution of s.

(T-Lock) guarantees that there is no obligation before execution of lock x.
After execution of lock x, x has an obligation to release the lock.

In the rule (T-Ref), we use a predicate nolock(τ). This predicate holds if
and only if τ does not contain lock types as its component. The rule (T-Ref)

...
Γ3 ` unlock z ⇒ Γ4

Γ1 ` let z =!x in unlock z ⇒ Γ2 noob(lock(1,1))

y : lock(1, ob) ` let x = ref y in let z =!x in unlock z ⇒ y : lock(1,1)

Fig. 13. A derivation tree of let x = ref y in unlock x under the assumption y :
lock(1, ob).

states that the ownership assigned to the new reference x in typing s is less than
or equal to 1 if the type of x contains lock types as its component. At the end of
s, x should not have any obligation because x cannot be accessed after execution
of s.

In the rule (T-Deref), if y has an obligation to release a lock, only one of x
and y inherits that obligation during execution of s. The rule (T-Deref) also
states that the ownership assigned to the type of y should be greater than 0.

A derivation of a statement let x = ref y in let z =!x in unlock z under
the type environment y : lock(1, ob) in Figure 13 shows how (T-Ref) and
(T-Deref) work. The type environments Γ1, . . . , Γ4 in that figure are defined
as follows.

Γ1 = x : lock(1, ob) ref1, y : lock(1,1)
Γ2 = x : lock(1,1) ref1, y : lock(1,1)
Γ3 = x : lock(1,1) ref1−r, y : lock(1,1), z : lock(1, ob)
Γ4 = x : lock(1,1) ref1−r, y : lock(1,1), z : lock(1,1).

Here, r is an arbitrary rational number in the set (0, 1). Note that the obligation
of y is passed to the newly generated reference x, delegated to z and fulfilled
through z.

The rule (T-Assign) guarantees that there is no obligation that must be
fulfilled through the reference x because x is being overwritten. If y has an
obligation, then either x or y inherits that obligation after execution of x := y.
For example, both

x : lock(0,1) ref1, y : lock(0, ob) ` x := y ⇒ x : lock(0,1) ref1, y : lock(0, ob)
x : lock(0,1) ref1, y : lock(0, ob) ` x := y ⇒ x : lock(0, ob) ref1, y : lock(0,1)

hold. After the assignment, the obligation originally owned by y should be ful-
filled through y in the first case, while it should be fulfilled through the reference
x in the second case. However,

x : lock(0,1) ref1, y : lock(0, ob) ` x := y ⇒ x : lock(0, ob) ref1, y : lock(0, ob)

does not hold.
In the rule (T-Spawn), the pre type environment of the conclusion part is

split into Γ1 and Γ2. The environment Γ1 is for the newly generated thread s,

while Γ2 is for the continuation of spawn s. The condition noob(Γ3) imposes
that all the obligations in Γ1 should be fulfilled in the newly generated thread s.

The rule (T-Weak) is for adding redundant variables to type environments.
In that rule, the condition max(levelob(Γ ′′)) < lev ′ guarantees that if newly
added lock-typed variables have obligations, then the levels of those lock types
(levelob(Γ ′′)) should be less than the level of locks that may be acquired in s
(lev ′). With this condition, we can guarantee that locks are acquired in a strict
increasing order of lock levels.

The type judgment for programs `Prog D̃s is defined as the least relation
that satisfies the rules in Figure 12. The rule (T-Prog) states that a program
D̃s is well-typed if (1) the defined functions have the types described in a type
environment Γ and (2) the main statement s is well-typed under Γ and (3)
all the obligations generated during execution of the program are fulfilled after
execution of s. The rule (T-Fundef), which is a rule for function definitions,
guarantees that each function has the type described in Γ .

Example In the program in Figure 5, the function nss ldap leave has type
lock(lev , ob)lev→lock(lev ,1) where lev is an arbitrary natural number. Thus,

lock in the body of nss ldap getgroups dyn has type lock(lev ,1) at the end of
the first branch and lock(lev , ob) at the end of the second branch, which violates
the condition of (T-If) that type environments at the end of two branches have
to agree. In the example in Figure 6, the condition max(levelob(Γ ′′)) < lev ′ in
(T-Weak) imposes that the level of lockB has to be less than that of lockA in
the body of thread1 . For the same reason, the level of lockA has to be less than
that of lockB in the body of thread2 , so that the program is ill-typed.

3.4 Type Inference

We informally describe a type inference algorithm in this section. Our algorithm
is a standard constraint-based one; the algorithm takes a program as input,
generates a constraint set based on the typing rules in Figure 11 and reduces
those constraints.

We omit an explanation on the constraint generation phase which is done
in a standard manner. A generated constraint is either (1) lexp1 ≤ lexp2, (2)
ρ = ob ⇒ lexp1 ≤ lexp2, (3) ρ = Uexp1 ⊗ · · · ⊗ Uexpn or (4) a linear inequality
on ownerships. Here, lexp and Uexp are defined by the following syntax.

lexp ::= φ (lock level variables) | ∞ | lexp + 1
Uexp ::= ρ (usage variables) | ob | 1.

Generated constraints are reduced as follows. First, linear inequalities on
ownerships are solved using an external solver. Then, constraints of the form
ρ = Uexp1 ⊗ · · · ⊗Uexpn are reduced to a substitution on usage variables. This
is done by applying a standard constraint reduction algorithm for linear type
systems (e.g., one presented in [13].) By applying the obtained substitution to

`Def
eD : Γfun Γfun(x) = τ

` (eD] {x(ey) = s},Env , H, L, x) : τ, ∅, ∅
(TC-Fundef)

` (eD,Env] {x 7→ v}, H, L, x) : bool, ∅, ∅ (TC-Env)

` (eD,Env , H] {x 7→ x′}, L, x′) : τ, P, O

` (eD,Env , H] {x 7→ x′}, L, x) : τ refr, P, O ⊗ {x 7→ r}
(TC-Heap)

` (eD,Env , H, L] {x 7→ lck}, x) : lock(lev , U), {x 7→ U}, ∅
(TC-Lockstate)

∀x ∈ Dom(eD ∪ Env ∪H ∪ L). ` (eD,Env , H, L, x) : Γ (x), Px, Ox

P =
O

x∈Dom(eD∪Env∪H∪L)

Px O =
O

x∈Dom(eD∪Env∪H∪L)

Ox

∀x ∈ Dom(L). if L(x) = L̂ then P (x) = 1 else P (x) = ob
∀y ∈ Dom(H).¬nolock(Γ (y)) =⇒ O(y) ≤ 1

`E (eD,Env , H, L) : Γ
(T-Env)

`E (eD,Env , H, L) : (Γ1 ⊗ · · · ⊗ Γn) Γi ` si ⇒ Γ ′i & lev i

wf(Γi) noob(Γ ′i) (si ∈ S)

`Conf (eD,Env , H, L, S)
(T-Config)

Fig. 14. Typing rules for configurations.

constraints of the form ρ = ob ⇒ lexp1 ≤ lexp2, we obtain a constraint set of the
form {lexp1 ≤ lexp′1, . . . , lexp1 ≤ lexp′n}. This constraint set on lock levels can
be solved in the same way as Kobayashi’s deadlock-freedom analysis [11].

4 Type Soundness

This section states soundness of the type system introduced in the previous
section. The proof of the soundness statement will appear in the full version of
the current paper.

Because a deadlock is expressed as a stuck state in our language, soundness
of the type system introduced in the previous section is stated as follows.

Theorem 1 (Type soundness). If `Prog D̃s and (D̃, ∅, ∅, ∅, {s}) →∗ (D̃′,Env ′,H ′, L′, S′),
then S = ∅ or there exists a configuration (D̃′′,Env ′′,H ′′, L′′, S′′) that satisfies
(D̃′,Env ′,H ′, L′, S′) → (D̃′′,Env ′′,H ′′, L′′, S′′).

To state lemmas that are used in the proof of the theorem above, we first in-
troduce a type judgment for configurations. Type judgments `Conf (D̃,Env ,H, L, S),
`E (D̃,Env ,H, L) : Γ and ` (D̃,Env ,H, L, x) : τ, P are defined as the least re-
lation that satisfies the rules in Figure 14. Here, the meta-variable P represents

a map from lock-typed variables to usages and is used to describe which vari-
able has an obligation to release each lock. The meta-variable O is a map from
reference-typed variables to ownerships and used for calculating the sum of own-
erships assigned to each reference. Operators P1 ⊗ P2 and O1 ⊗ O2 are defined
as follows.

(P1 ⊗ P2)(x) =





P1(x) (x ∈ Dom(P1)\Dom(P2))
P2(x) (x ∈ Dom(P2)\Dom(P1))
P1(x)⊗ P2(x) (x ∈ Dom(P1) ∩Dom(P2))

(O1 ⊗O2)(x) =





O1(x) (x ∈ Dom(O1)\Dom(O2))
O2(x) (x ∈ Dom(O2)\Dom(O1))
O1(x) + O2(x) (x ∈ Dom(O1) ∩Dom(O2))

The judgment ` (D̃,Env ,H, L, x) : τ, P, O means that (1) x has a type τ under
D̃,Env ,H and L, (2) x or a value reachable from x through H has obligations
to release a lock y if P (y) = ob and (3) references reachable from x are assigned
ownerships as in O. By using this judgment, the rule (T-Env) guarantees that,
for each held lock, there exists exactly one variable that is reachable to the lock
and that has the obligation to release the lock. The rule (T-Config) guarantees
that each obligation is fulfilled by exactly one thread.

The theorem above is proved using the following three lemmas.

Lemma 1. `Prog D̃s implies `Conf (D̃, ∅, ∅, ∅, {s}).
Lemma 2 (Preservation). If `Conf (D̃,Env ,H, L, S) and (D̃,Env ,H, L, S) →
(D̃′,Env ′,H ′, L′, S′), then `Conf (D̃′,Env ′,H ′, L′, S′).

Lemma 3 (Progress). If `Conf (D̃,Env ,H, L, S) then S = ∅ or there exists a
configuration (D̃′,Env ′,H ′, L′, S′) such that (D̃,Env ,H, L, S) → (D̃′,Env ′,H ′, L′, S′).

5 Related Work

Kobayashi et al. [11, 12, 14] proposed type systems for deadlock-freedom of π-
calculus processes. Their idea is (1) to express how each channel is used by a us-
age expression and (2) to add capability levels and obligation levels to the inferred
usage expressions in order to detect circular dependency among input/output
operations to channels. Our usages can be seen as a simplified form of their
usage expressions; following their encoding [11], lock(lev , ob) corresponds to
()/ ∗ I∞lev .Olev

∞ and lock(lev ,1) to ()/Olev
∞ | ∗ I∞lev .Olev

∞ . Their verification method
is applicable to programs which use various synchronization primitives other
than mutexes because they use π-calculus as their target language. However,
their framework does not have references as primitives and cannot deal with
references encoded using channels accurately.

Boyapati, Lee and Rinard [2] proposed a type-based deadlock- and race-
freedom verification of Java programs. In our previous work [16], we have pro-
posed a type-based deadlock-freedom analysis for concurrent programs with

block-structured lock primitives, references and interrupts. The main difference
between those type systems and our type system is that our type system deals
with non-block-structured lock primitives, while their type system only deals
with block-structured lock primitives.

Foster, Terauchi and Aiken [9] proposed a type system with flow-sensitive
type qualifiers [9] and applied their type system to an analysis which checks locks
are not doubly acquired nor released. Their type system adds a flow-sensitive
type qualifier (locked or unlocked in their lock usage analysis) to each abstract
memory location which contains locks, and checks whether qualifiers are in an
expected state. They check that each locking operation is followed by an unlock-
ing operation but do not guarantee deadlock-freedom. They do not deal with
concurrency, either. As discussed in Section 3.1, the meaning of our obligations
differs from that of their flow-sensitive type qualifiers.

6 Conclusion

We have proposed a type-based deadlock-freedom verification method for con-
current programs with non-block-structured lock primitives and references. Our
type system verifies deadlock-freedom by guaranteeing that locks are acquired in
a specific order by using lock levels and that an acquired lock is released exactly
once by using obligations and ownerships.

Future work includes conducting deadlock-freedom verification experiments
of practical software. We have implemented a prototype of a verifier based on our
framework and have successfully verified deadlock-freedom of a network device
driver. We are trying to apply our verifier to larger software such as network
servers.

Another future work is to extend our framework with several practical fea-
tures such as interrupts, recursive types and synchronization primitives other
than mutexes. We are especially interested in dealing with interrupts which
are essential in verifying low-level software such as operating system kernels as
pointed out in several papers [4, 6, 15, 16]. We consider extending usages with
information on whether the lock may be held while interrupts are enabled.

Acknowledgement We thank Naoki Kobayashi for his fruitful comments on
our research. We also thank the members of Kobayashi-Sumii group in Tohoku
University and anonymous reviewers for their comments. This research is par-
tially supported by Grant-in-Aid for JSPS Fellows (19·1504) and JSPS Research
Fellowships for Young Scientists.

References

1. Mart́ın Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe locking:
Static race detection for Java. ACM Transactions on Programming Languages and
Systems, 28(2):207–255, March 2006.

2. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In Proceedings of the 2002
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages
and Applications, (OOPSLA 2002), volume 37 of SIGPLAN Notices, pages 211–
230, November 2002.

3. John Boyland. Checking interference with fractional permissions. In Static Anal-
ysis: 10th International Symposium (SAS 2003), pages 55–72, 2003.

4. Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-
zinger, and Jens Palsberg. Stack size analysis for interrupt-driven programs. In-
formation and Computation, 194(2):144–174, 2004.

5. Nalin Dahyabhai. Bugzilla Bug 439215: dbus-daemon-1 hangs when using the op-
tion nss initgroups ignoreusers in /etc/ldap.conf with the user root. Red Hat, Inc.,
March 2008. https://bugzilla.redhat.com/show bug.cgi?id=439215 (accessed
on June 19th, 2008).

6. Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. Certifying low-level programs
with hardware interrupts and preemptive threads. In Programming Language De-
sign and Implementation (PLDI), June 2008.

7. Cormac Flanagan and Mart́ın Abadi. Object types against races. In CONCUR’99,
volume 1664 of Lecture Notes in Computer Science, pages 288–303. Springer-
Verlag, 1999.

8. Cormac Flanagan and Mart́ın Abadi. Types for safe locking. In Proceedings of
8the European Symposium on Programming (ESOP’99), volume 1576 of Lecture
Notes in Computer Science, pages 91–108, March 1999.

9. Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers.
In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 1–12, 2002.

10. Daisuke Kikuchi and Naoki Kobayashi. Type-based verification of correspondence
assertions for communication protocols. In Proceedings of the Fifth ASIAN Sym-
posium on Programming Languages and Systems, November 2007.

11. Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4–5):291–347, 2005.

12. Naoki Kobayashi. A new type system for deadlock-free processes. In Proceedings of
the 17th International Conference on Concurrency Theory, volume 4137 of Lecture
Notes in Computer Science, pages 233–247, August 2006.

13. Naoki Kobayashi. Substructural type systems for program analysis. In Proceedings
of the 9th International Symposium on Functional and Logic Programming (FLOPS
2008), volume 4989, page 14, April 2008. Slides available from http://www.kb.

ecei.tohoku.ac.jp/∼koba/slides/FLOPS2008.pdf.
14. Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free

process calculus. In Proceedings of CONCUR2000, volume 1877 of Lecture Notes
in Computer Science, pages 489–503. Springer-Verlag, August 2000.

15. Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of 7th
International Symposium on Formal Techniques in Real-Time and Fault Toler-
ant Systems, volume 2469 of Lecture Notes in Computer Science, pages 291–310,
September 2002.

16. Kohei Suenaga and Naoki Kobayashi. Type-based analysis of deadlock for a con-
current calculus with interrupts. In Proceedings of 16th European Symposium on
Programming (ESOP 2007), pages 490–504, March 2006.

17. Tachio Terauchi. Types for Deterministic Concurrency. PhD thesis, Electrical
Engineering and Computer Sciences, University of California at Berkeley, August
2006.

