Types for Units-of-Measure in F

Andrew Kennedy
Microsoft Research
Cambridge

T

7NN

r TSI

NASA “Star Wars” experiment, 1983

234 March 1983. Ronald Reagan
announces SDI (or “Star Wars”): ground-
based and space-based systems to
protect the US from attack by strategic
nuclear ballistic missiles.

http://upload.wikimedia.org/wikipedia/en/e/e5/C13571-8a.jpg

Mirror on underside

i SDI experiment:

The plan

Big mountain in Hawaii

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

SDI experiment:
The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

The reality

http://upload.wikimedia.org/wikipedia/commons/9/97/Sts-51-g-patch.png

ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol i0 no 3/ Jul 1985 page 10

Attention All Units, Especially Miles and Feet!

Much to the surprise of Mission Control, the space shuttle Discovery flew upside-down over Maui on
19 June 1985 during an attempted test of a Star-Wars-type laser-beam missile defense experiment.
The astronauts reported secing the bright-blue low-power laser beam emanating from the top of Mona
Kea, but the experiment failed because the shuttle's reflecting mirror was oriented upward! A
statement issued by NASA said that the shuttle was to be repositioned so that the mirror was
pointing (downward) at a spot 10,023 feet above sea level on Mona Kea; that number was supplied to
the crew in units of feet, and was correctly fed into the onboard guidance system -- which
unfortunately was expecting units in nautical miles, not feet. Thus the mirror wound up being
pointed (upward) to a spot 10,023 nautical miles above sea level. The San Francisco Chronicle article
noted that ‘‘the laser experiment was designed to see if a low-energy laser could be used to track a
high-speed target about 200 miles above the earth. By its failure yesterday, NASA unwittingly proved
what the Air Force already knew -- that the laser would work only on a ‘cooperative target’ -- and is
not likely to be useful as a tracking device for enemy missiles.” [This statement appeared in the S.F.
Chronicle on 20 June, excerpted from the L.A. Times; the NY Times article on that date provided
some controversy on the interpretation of the significance of the problem.| The experiment was then
repeated successfully on 21 June (using nautical miles). The important point is not whether this
experiment proves or disproves the viability of Star Wars, but rather that here is just one more
example of an unanticipated problem in a human-computer interface that had not been detected prior
to its first attempted actual use,

MAIN PAGE
WORLD
U.5.

LOCAL
POLITICS
WEATHER
BUSINESS
SPORTS
TECHNOLOGY
[sPAcCE -]
HEALTH
ENTERTAINMENT
BOOKS

TRAVEL
EOOD
ARTS & STYLE

HATURE

IN-DEPTH
ANALY 5|5
myCHN

Headline Mews brief
DEMS OUZ
daily almanac

MULTIMED|A:

video

video archive

audio

multimedia showease

MoTe Sefvices

E-MAIL:
Subsoibe to one of our
news e-mail lists.
Enter your address:
1

NASA Mars Climate Orbiter,

[in-depthspecials[€

Metric mishap caused loss of

NASA orbiter

September 30, 1999
Web posted at: 4:21 p.m. EDT (2021 GMT)

In this story:

Metric system used by NASA for many
years

Error points to nation's conversion lag

=T

RELATED STORIES, SITES ¥ - :

! Lo T =
HNASA's Climate Orbite
September 23, 1999

By Robin Lloyd
CNN Interactive Senior Writer

(CNN) -- NASA lost a 5125 million Mars orhiter because a Lockheed
Martin engineering team used English units of measurement while the
agency's team used the more conventional metric system for a key
spacecraft operation, according to a review finding released Thursday.

The units mismatch prevented navigation information from transferring
between the Mars Climate Orbiter spacecraft team in at Lockheed Martin in
Denver and the flight team at NASA's Jet Propulsion Laboratory in
Pasadena, Calfornia.

1999

Solution

* Check units at development time, by
— Static analysis, or
— Type checking

Ty
app
ter

Annotation-less Unit Type Inference for C

Tudor Antoniuf
Philip Guo and Stephen McCamant

Final Project, 6.883: Program Analysis

December 14, 2005

Validating the Unit Correctness of Spreadsheet Programs’

unk Microsystems

Paul A. Steckler*
Northrop Grumman IT/FNMOC

Shriram Krishn:
Brown Unive

Erich Neuwirth

Matthias Felleisen

Chapter 18

Rule-based Analysis of Dimensional Safety

Ab

Feng Chen, Grigore Rogu, Ram Prasad Venkatesan sclientiﬁc companies, el
v include e increasingly I

Department of Computer Science Irams are ums. The creat

University of Tllinois at Urbana - Champaign, USA

{fengchen, grosu, rpvenkat }@uiuc. edu

Abstract. Dimensi
analysis concerned wi

st track the,

unit

ciples of units of meg

Inférence d’unités physiques en ML

routinely dimensional

can hide significant
to find otherwise. D!
tional programming
eral design principles
prototypes, implemer
static checkers. Our
code which are prope:

Jean Goubault"”

1 Bull coordination recherche
rue Jean Jaurés

78 340 Les Clayes sous Bots, France
Jean.Goubault@frcl.ball.
DMI-LIENS Ecole Normale Supéry

programming languag
types consists of war
safety policy. These
Maude, using more 2
non-trivial applicatio

1 Introduction
Checking software for me:
analysis, is an old topic in| Résumé : Nous décrivons une extension du syste)
typage plus fin des quantités numériques, par
ique (masse, 1 , etc.). Le systéme est
effectue la vérification et I'inférence automatique des
physiques (kg, m, etc.) sont alors des échelles le long del
antomatiquement lea natructiona de converalon enty

mains, such as physics, m| un
involves units of measuremj ph
programming languages.

units can be quite compli
putations, for example ad
domain-specific errors whi

Nous en décrivons lea

Adding Apples and Orang

Martin Erwig and Margaret Burnett

Oregon State University
Department of Computer Science
Corvallis, OR 97331, USA
[erwig|burnett]l@cs.orst.edu

Edit this pad

ensio

Abstract. We define a unit system for end-user spreadsheets tha
based on the concrete notion of units instead of the abstract concep

Categories: Mathematics | Type-level

Automatic Dimensional Inference

Mitchell Wand* Patrick O’Keefe
College of Computer Science
Northeastern University
360 Huntington Avenue, 161CN
Boston, MA 02115, USA

wand@corwin.ccs.northeastern.edu

ICAD, Inc.
1000 Massachusetts Avenue
Cambridge, MA 02139

1. While there have been a number of proposals to integrate dimensional
alysis into existing compilers [1, 7, 8, 9], it appears that no one has made
observation that dimensional analysis fits neatly into the pattern
e type inference [4, 5, 6]. In this paper we show how to add
g the simply-typed lamhda calculus, and we show that every

jn-preserving term has a

principal type. The principal type

ensional
ptatically checked physical
dimensions for Haskell.
oads Wiki Issues

Not logged in
Login | Help

E | Related changes

nalized ndmbers

gta types for performing arithmetic with physical

e physical dimensions of the quantities/units
of operations is verified by the type

gang of numerical values as quantities
eMits. The library is designed to, as far as
of unit usage.

types. Units are derived from header information given by spreadshe
The unit system contains concepts, such as dependent units, mulf
units, and unit generalization, that allow the classification of spr
sheet contents on a more fine-grained level than types do. Also, bec

| have created a simple toy example using functional d
types to do compile-time unit analysis error catching a
only two "base dimensions” time, and length, and very
but it is usable.

The Units of Measure Library

Dimensions and Units

DimType
DimRef
TypeRef DimRef
TypeRef - DimRef
TypeRef | DimRef
TypeRef per DimRef
TypeRef UnitRef
TypeRef - UnitRef
TypeRef | UnitRef
TypeRef per UnitRef
TypeRef in DimRef
StaticArg
Unity
dimensionless
StaticArg - StaticArg
StaticArg StaticArg
© 4rg / StaticArg
aticArg
Arg © StaticArg
Arg per StaticArg
eOp StaticArg
Arg DUPostOp

communication with the end user happens only in terms of objects
are contained in the spreadsheet, our system does not require end users

to learn new abstract concepts of type systems.

Keywords: First-Order Functional Language,
Checking, Unit, End-User Programming

Spreadsheet, Type

Donate

Provides a C++ type-safe mechanism to deal with various units of measure. It prevents many units-related run-time
errors (such as mistakenly mixing feet and meters) by catching them at compile time. The library includes scalar, 2D,
and 3D vectors.

Programming Languages
and
Dimensions

Andrew John Kennedy
=t. Catharine’s College

A dissertation submitted to the University of Cambridge
towards the degree of Doetor of Philosophy

November 1005

msdn

Microsoft F# Developer Center

Library Cownloads Support Community

MSDN * Developer Centres * Microsoft F# Developer Center ¥ Home

F#

F# is a functional programming language for the .NET F
libraries, interoperability, and object model of .NET.

ework. It combines the succinct, expressive, and compositional st

Getting Started with F#
Download the F# CTP

o000 p ut I nto
Get the newest release of F&, .
including the compiler, tools,
Visual Studio 2008 integratig p ra Ct I Ce at
to get started developing
EN&

Pon Syme describes the key new

Learn F#
Get resources for learning F#,
including articles, videos, and books.
Three sample chapters of the Expert
F# book are also available for
preview.

o the new world of F#£.

Maore...

The F# Language Specification

Get all the nitty-gritty details of the .

F# language from the draft F# Featured Videos
language specification. Provides a in-

depth description of the F#

language's syntax and semantics.

Also available in PDF.

Talk overview

* Practice
— What is F#?
— A tour of units in F#
— Case studies
* Theory
— Type system

— Type inference

* Future

What is F#?

* It's a functional language in the ML tradition
core is compatible with core of Caml
+ .NET object model, builds on experience of SML.NET, ML;j
+ active patterns, quotations, monad comprehensions, units-of-measure,
lightweight syntax and other features
e Shipping as a product with next release of Visual Studio
— Community Tech Preview released September 08
— Also available for Mac/Linux via the Mono runtime

— Come to Don Syme’s CUFP talk (9am Friday), or the DEFUN tutorial
(Sunday pm)

Units-of-measure in F

Type system extension

— Not just a static analysis tool

Minimally invasive

— Type inference, in the spirit of ML & Haskell
* Annotate literals with units, let inference do the rest
* But overloading must be resolved

— No run-time cost (erasure)
Support F# object model as far as possible

Extensible
— Not just for floats!

Feature Tour

Case studies

 We've been using the units feature at Microsoft for a
few months now
— Machine learning (Ralf Herbrich)
— Games (Phil Trelford)
— Physics simulation (Philipp Hennig, Don Syme, Chris Smith)
— Finance (Luca Bolognese)

Feedback from users

* Units are useful
— They really do catch unit errors (Ralf, Phil, Philipp)
— They inform the developer, and “correct” types help catch errors e.g.

let doublesgr x = sgr x + X

‘Val doublesqr : float -> float ‘

let doublesgr x = sgr X + sr X

val doublesqr : float<'u> -> float<'u » 2>

* Automatic unit conversions: would be nice, but surprisingly
not a big request

* Need for “unit asserts” for external code e.g.

type System.Math =
with
val Sqgrt : float<'u™2> -> float<'u>
end

Theory

The type system, informally

Take the ML type system with Hindley-Milner inference

Add a new sort: Measure

[<Measure>]| type kg
type ([<Measure>] 'a) complex = {real:float<'a>; imag:float<'a>}

Add operators on Measures (product, inverse, no units)
val (*) : float<'a> -> float<'b> -> float<'a 'b>

[<Measure>] type Hz = s"=1

val norm : Vector<'a> -> Vector<l>

Build in equational theory on Measures (commutativity,
associativity, identity, inverses i.e. Abelian group)

Refine the types of arithmetic operators e.g.

val sgrt : float<'a”2> -> float<'a>
val (/) : float<'u> -> float<'v> -> float<'u/'v>

Toy type system, formally

Syntax

units pr=ulb| 1|y pe | gt

types Tu=a|floatpu |7 — 72 | bool | ---

type schemes o ::=VYu.7

expressions eun=zx|ceER|ee|Ar.e|letx=e;iney |-
judgments ULy ovyUp; L1 2 O1ye.., Ty 0 e

Equational theory of units (Abelian groups)
identity 1-u =y p inverse p-pu~!t=y1
ass0C (1 - p2) - ps =u pr - (B2 - p3) comm py - p =y fl2* f

Typing rules (excerpt)

(x:Vu.r) el ATFe:n T =y To
A;T F o 7|/ dl AT He:my A;TFc:floatl
Aul'Fer:mn AT x:Vur ey AT, x:mbFe:n

A;I'Fletx =epines : 7o AT dxe:m — 1o

Type inference and principal types

The type systems of SML, Caml, Haskell and F# have (in principle,
at least) the principal types property:

— if expression e is typeable there exists a unique type scheme o
such that all valid types are instances of o

— moreover, an inference algorithm will find the principal type

If type checking e produces a type scheme that instantiates to 7
write tc(e) < 7
We can express correctness as

— Soundness:tcle) < 7t=Fe:T

— Completeness:e: 7= tcle) < T

Units-of-measure also have principal types, but algorithm is
trickier

ML type inference algorithm

 Two essential ingredients

1. Unification. A unifier of two types 7, and 7, is a
substitution S on type variables such that S(7,)=S(7,). For
unifiable types, there is a most general unifier.

2. Generalization. To type let x=e, in e, find a type 7 for e,
and then quantify on the variables that are free in 7 but
not free in the type environment /.

The good news...

* For units, a unifier of two unit expressions p, and p, is a
substitution S on unit variables such that S(u,)=, S(,)

* Fortunately, Abelian Group unification is

— unitary (unique most general unifiers exist with respect to the
equational theory), and

— decidable (algorithm is a variation of Gaussian elimination)

Unification algorithm

Unify(u1, o) = UnifyOne(puy - po 1)

UnifyOne(p) =
let p=wui'---uZm - by ---b¥ where |z1| < |x2], -, |Tm|
In

if m=0and n =0 then [

if m = 0 and n # 0 then fail

if m =1 and x; | y; for all ¢ then {u; — bl_yl/w1 ce b;ly”/wl}

if m = 1 otherwise then fail

else S5 0 S7 where
S1={ur —u-u
SQ — UnifyOne(Sl (,u))

2—L$2/$1J o u;lem/le . bl_ ly1/z1] b, Lyn/le}

Unification in action

I ey {v—v-ut-kg’}
u-v? =gy 1
I ey {urru-v7?}
u=y 1
b apnly {ur—1}
1=y 1

Success!

The bad news...

Generalization based on free variables is sound but not complete
for units-of-measure

Why? Because the notion of syntactic free variables is not stable
under various transformations.

1. “Free variables” is not stable under equivalence of types e.g.
fv(u- v - ut) #fv (v).
Solution: normalize

2. “Free variables” is not stable under equivalence of type schemes e.g.
fv (V u. float<u- v>— float<u- v>) # fv(V u.float<u>— float<u>)
Solution: normalize

3. “Generalizable variables” is not stable under equivalence of typings e.g.
d : float<u- v> I~ expr : float<u>— float<v>
d : float<u- v> I~ expr : float<u- w>— float<v- wi>
Solution: normalize

Type Scheme Equivalence

Two type schemes are equivalent if they instantiate to the
same set of types

For vanilla ML, this just amounts to renaming quantified type
variables or removing redundant quantifiers.

For ML + units, there are many non-trivial equivalences. E.g.

/ :Vuv.float u — floatv — floatu - v !
: Yuvw.floatw - u — floatv — floatw-u - v~
: Yuv.float u~! — floatv~! — floatu= ! w
: Yuv.floatu-v — floatu — float v

: Yuv.float u — floatv~! — floatu - v

: YVuv.floatw - u — floatw -v — floatu - v~

1

1

T— T T T T

Simplifying type schemes

It’s possible to show that two type schemes are equivalent iff there
is an invertible substitution on the bound variables that maps
between them (this is a “change of basis”)

Idea: compute such a substitution that puts a type scheme in some
kind of preferred “normal form”. Desirable properties:

No redundant bound or free variables (so number of variables = number
of “degrees of freedom”)

Minimize size of exponents
Use positive exponents if possible
Unique up to renaming

Such a form does exist, and corresponds to Hermite Normal Form
from algebra

Pleasant side-effect: deterministic ordering on variables in type

Simplification in action

Vuv.float w - u — floatw - v+ — floatu - v

J{u—u: w1}
Vuv.floatu — floatw - vt — floatw ™! - u-v
J {v— v}
Vuv.floatu — floatw - v — floatw™! - u- v~ 1
J {v—vo: w1}

Vuv.float u — floatv — floatu - vt

Generalization: example problem

Suppose
['={/:Vuv.float u-v — float u — float v}

Infer a type for
0;T'F Ax.let f = /x in (f1.0<kg>, f2.0<s>) : 7

Problem: when typing let, we can’t generalize:
[x:floatu-vtF /x:floatu — floatv

Solution: apply a “simplifying” substitution to the environment:

lfcu—>u-v_1

[',z:floatulF /x:floatu-v ' — floatw

Generalization

* Recipe:

— Use the “simplify” algorithm on the free variables of the type
environment ['to compute an invertible change-of-basis substitution S

— Apply S to both I'and the inferred type 7
— Compute generalizable variables in the usual way i.e. fv(S(7)) \ fv(S(1))
— Apply S to the resulting type scheme.

* Summary:
Gen(I',7) = S~ (Vuq,...,u,.S(7))
where fv(S (7)) \ fv(S(T")) = {wu1,...,un}

and S is simplifier of free variables of I'.

Generalization in action

[x:floatwu- vt /x:floatu — floatw

lui—>’LL°U_1

[,z:floatul /z:floatu-v ' — floatw
quantify

[,z:floatulF /x:Vu.floatu-v ' — floatw

rename
[,z:floatul /z: Vw.floatu-w * — float w

l Uur—u-v

[,z:floatu-vtF /x:Vw.floatu-v-w * — floatw

Beyond Hindley-Milner

* Non-regular datatypes

// Non-regular datatype: a list of derivatives of a function
type derivs<[<Measure>] '"u, [<Measure>] 'v> =

Nil
| Cons of (float<'u>» -> float<'v>) * derivs<'u,'v/'u>

* Polymorphic recursion

let rec makeDerivs<[<Measure>] 'u, [<Measure>] 'v>
(h:float<'u>)
(f:float<'u> -> float<'v>)
(n:int) : derivs<'u,'v> =
if n=0 then Nil else Cons(f, makeDerivs h (diff h f) (n-1))

Future developments (F# v.next?)

e Automatic unit conversion

— FAQ, but not a top priority for developers who have tried out the
feature

— Implicit insertion of floating-point operations considered harmful?

e Units for external code: asserting a type

— Should be controlled: not a general cast mechanism

* Higher kinds e.g. Consider

T

type Matrix<[<Measure>] 'u, 't> = 't<'u> array array

Conclusion

* Units-of-measure types occupy a “sweet spot” in the
space of type systems
— Type system is easy to understand for novices
— Typing rules are very simple

— Types have a simple form (e.g. no constrained
polymorphism)

— Types don’t intrude (there is rarely any need for
annotation)

— Behind the scenes, inference is non-trivial but practical

Pointers

* F# download:
http://msdn.microsoft.com/fsharp

* Blog on units:
http://blogs.msdn.com/andrewkennedy

* Thesis and papers:
http://research.microsoft.com/~akenn/units

http://msdn.microsoft.com/fsharp
http://blogs.msdn.com/andrewkennedy
http://research.microsoft.com/~akenn/units

