Compiling
Pattern Matching to
Good Decision Trees

Luc Maranget — Inria Rocquencourt

Motivation

Two targets for match compilers.

e Backtracking automata (Augustsson FPCA’'85,
OCaml, Haskell).

e Decision trees (SML).
Benefits/drawbacks:

e Backtracking automata offer linear guarantee in code
Size, but may test the same position more than once.

e Decision trees are just the opposite.

A matter of code size vs. runtime efficiency?

A practical approach

Compare optimizing match compiler experimentally.
e Compiling to decision trees.
e (GOO0d decision trees.
e Compiling to good decision trees.
e COompare.

Reference for backtracking automata: OCaml.

Compiling pattern matching?

A (Ca)ML program.
type bool =T | F

let £f x y z = match x,y,z with
| _,F, T > 1

| F,T,_ -> 2

| _,_,F -> 3

| _,_,T -> 4

Compile:

e Write the same, without using match — here using if.
To decision trees:

e \When testing x, y or z, consider all possible values,
and draw all conclusions.

Matrices, the right tool

Simultaneous matching of x, y, z.

(= v =)
[(_F T—1)

F T _ — 2
—_ F — 3

\:_ T4

Test variables, one by one

et us start by testing x.

x can be F, or something else (look at constructors in
column x).

Assume X IS F

Then, y and z are still to be tested.

(x v 2)

[(_F T— F T —

F T _—2 T —— 2
- - F—=3 _ F—=3
-y WY

In paper: specialization by constructor F.

Assume X IS something else

Then, y and z are still to be tested.

(x5 2) o

(_FT—>1\ F T —1
FT;—>§ r 3
- —>

K__T_>4) _ T —4

Row 2 cannot match, by ‘‘something else” hypothesis.

In paper: compute default matrix.

First compilation step

([~ F T—1)

F T _ — 2

Cl(xy 2), o) =

Ry

(F T—>1\

F T —1
T _ — 2
if x thenC((yz),| — F — 3 |)elseC((y2z),
_ F — 3
_ T —= 4
K_ T—>4)

Notice: rows 1, 3 and 4 are duplicated (wildcards).

Output of “naive’” compilation

Naive is (depth-first) left-to-right.

let £ xy z =
1f x then
if y then
1f z then 4 else 3
else
if z then 1 else 3
else
if y then 2
else
1f z then 1 else 3

A better way to show compiler output

7 T
E 1
-
F y 2 T
X *
F
y . z - 3
Z
T
4

A decision tree, indeed.

Sharing tests

Good decision trees... are DAGS

(See Pettersson CC'92)

Why test «, y, z INn order 7?

Another decision tree.

y
F
-
Fwv ? y
X)
F
y ;" 2

All of them.

— /Hd\T|T 7T

A simpler example

Classical list-merge

match xs,ys with

| _,[0 -> xs

| O,_ -> ys

| x::xs,y::ys8 -> ...

AS a matrix;:

[]

Good decisions trees?

S
v

Tree on the right is better.

e Smaller: 2 test (switch) nodes vs. 3.

e Shorter path:
In cases where ys = []1,we have 1 test vs. 2.
Runtime behavior identical in other cases.

Necessity

Definition: In matrix (p?), column i is needed for row j
when all paths to leaf 5 test s.

Row 1: xs not needed, ys needed.
Row 2: xs and ys needed.
Row 3: xs and ys needed.

Needed column

Definition: In matrix (pg'), column 2 is needed, when
needed for all rows.

Necessity summary as a matrix.

_ 1 — 1 °
[] . — 2 o o
R T | o o

An explanation for decision tree quality:

Column ys is needed.

Testing needed columns first

Means:
First test columns that must be tested anyway.
Obviously.
e Tends to yield shorter paths (runtime efficiency).

e [rees with shorter paths are likely to be smaller
(code size).

Natural questions

e How to compute necessity?

e VWhat to do when none or several needed columns
exist?

Computing necessity on matrices

o If p/ # _, then column i is needed for row j.

o If Y =_, column i is needed for row j, iff. ..

Proposition: Row j is useless (redundant) in matrix
P with column ¢ erased.

_ [] [] _
P/2 = []

First row of P/xs useful: xs not needed for row 1.

Second row of P/ys useless: ys needed for row 2.

Computing necessity, more difficult

[F T—1) [e o)

F T _ — 2 o o
—_ F — 3 °

\:_T—>4) Lo o o)

e Constructor patterns.

e \Wildcards..

Heuristics

i
K__T—>4) Kooo)

e Heuristic n, needed columns. Favor columns needed
for a maximal number of rows (here y and z).

e Heuristic p, needed prefix. Favor columns needed for
a maximal prefix of rows (here y).

Approximations in heuristics

Replace “column i is needed for row j” by “p’ is a
constructor pattern”.

1. Avoid (complex, costly) necessity computations.

2. Avoid copying rows into all specialized matrices.

e Heuristic d, small default. Approximation of n.
e Heuristic g, constructor prefix. Approximation of p.

e Heuristic f, first row. Favor columns whose first
pattern is a constructor pattern — radical
approximation of p.

d and f were previously known (Scott & Ramsey 2000,
SML)

Other heuristics

e Heuristic b, small branching factor. Favor columns
with a minimal number of different head
constructors. Etc.

e A total of 9 simple heuristics p, n, d, g, f, b a, 7, r.
e Sequences of heuristics pb.. ..

e Pseudo-heuristics are total ordering over subterms. L
(breadth-first, left-to-right) , R (breadth-first,
right-to-left) and N (naive compilation).

Effect of heuristics

(_FT—>1\ (..\

F T _ — 2 o o

- —- F —3 °

DD .

Heuristic nR selects z (n{x,y,z} — {y,z}, R{y,z} — z).

- F =1
ifzthenC((xy),(F T—>2> else C((XY)a(F E:%)

— 4 —

Heuristic p selects y (p{x,y,z} — y).

F _ — 2 - T =1
if y then C((x z),| - F else C((x z),| - F — 3
T T — 4

And finally

And also

nL pL
y y
F \T F \T
Z X Z
£ \x
F| 1 2 z F| 1
F

Experiments — Methodology

1. Select examples from a variety of real world programs
(semi automatic selection of 103 matchings).

2. Apply all sequences of up to three heuristics (507
heuristics) to all examples, twice (ties left broken by
L and R), with a prototype compiler.

3. Estimate decision tree quality by:
(a) Number of test nodes in DAGs (~ code size).

(b) Average path length (~ speed at runtime).

4. Now we have 2 x 507 x 2 x 103 numbers. ..

Dag size for p

In fact for pL and pR.

600

1
slp —

500 F
400
300 F

200

. I HH L HH ||HH

| |

100 150 200

0

0 5

Ratios w.r.t. OCaml match compiler (reference 100).

Average path length for p

In fact for pL and pR.

110 T T T T

100 |
90 H
80 I
70 H

60 H

50 K
40 |
")

0 50 100 150 200

Ratios w.r.t. OCaml match compiler (reference 100).

Comparing

e Compute (geometric) means of data: yields 2
numbers per heuristic (size and average path length).

For single heuristics:

d) f r N b a 14 d N

Size | 86 88 92 92 91 97 98 94 97 106
Path | 86 86 87 89 86 94 91 87 88 92

e But there are 507 heuristics: group them in classes.

e Find heuristics in the best classes for both size and
path length.

Classes of heuristics, sizes

200
180
160
140
120
100
80
60
40
20
0

82 84 86 88 90 92 94 96 98 100 102 104 106 108 110

Best class: qrp qrn qrd qr qdr qr/ pdb qra prb
fbn pba pgb pbr pbd gnb gpb pbl{ pbg fdb qrb qdb
qbr gbp gbn gbd gb fbl gba fr qbl fra frd fr/
fbr fbd frn frb

Classes of heuristics, path lengths

180
160
140
120
100
80
60
40
20
0

84 86 88 90 92 94 96

Best class:

Best heuristics

Intersection of sizes in 82—84 and paths in 84—R&6:

pba pbd pbl pbq pbr pdb pgb prb gb gba gbd gbl
gbn gbp gqbr qdb qdr gnb gpb qr qra qrb qrd qrl
qQrn qrp

The winner is gb (83.49/85.95) for instance, or pba
(83.75/85.83).

Or maybe fdb (SML/NJ, 83.51/86.07).
Anyway, N is a looser (106.38/92.47).

Actual performance

Implemented the new match compiler for OCaml.

Measured significant improvement (over standard
OCaml) in final program speed for gba.

Conclusion

e Decision trees are competitive in practice, when
optimized.

e Decision tress are easy to optimize. A simple
algorithm + simple extensions:
— A simple and effective heuristic (for instance gba).

— Maximal sharing by hash-consing.

