Compiling Pattern Matching to Good Decision Trees

Luc Maranget — Inria Rocquencourt

Motivation

Two targets for match compilers.

- Backtracking automata (Augustsson FPCA'85, OCaml, Haskell).
- Decision trees (SML).

Benefits/drawbacks:

- Backtracking automata offer linear guarantee in code size, but may test the same position more than once.
- Decision trees are just the opposite.

A matter of code size vs. runtime efficiency?

A practical approach

Compare optimizing match compiler experimentally.

- Compiling to decision trees.
- Good decision trees.
- Compiling to good decision trees.
- Compare.

Reference for backtracking automata: OCaml.

Compiling pattern matching?

```
A (Ca)ML program.

type bool = T | F

let f x y z = match x,y,z with
| _,F,T -> 1
| F,T,_ -> 2
| _,_,F -> 3
| _,_,T -> 4
```

Compile:

Write the same, without using match — here using if.

To decision trees:

• When testing x, y or z, consider all possible values, and draw all conclusions.

Matrices, the right tool

Simultaneous matching of x, y, z.

$$\begin{pmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{F} & \mathbf{T} & \rightarrow 1 \\ \mathbf{F} & \mathbf{T} & \rightarrow 2 \\ - & - & \mathbf{F} & \rightarrow 3 \\ - & - & \mathbf{T} & \rightarrow 4 \end{pmatrix}$$

Test variables, one by one

Let us start by testing x.

x can be F, or something else (look at constructors in column x).

Assume x is F

Then, y and z are still to be tested.

$$\begin{pmatrix}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{pmatrix} \\
\begin{pmatrix}
\mathbf{F} & \mathbf{T} \to 1 \\
\mathbf{F} & \mathbf{T} & - \to 2 \\
- & - & \mathbf{F} \to 3 \\
- & - & \mathbf{T} \to 4
\end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{y} & \mathbf{z}
\end{pmatrix} \\
\begin{pmatrix}
\mathbf{F} & \mathbf{T} \to 1 \\
\mathbf{T} & - \to 2 \\
- & \mathbf{F} \to 3 \\
- & \mathbf{T} \to 4
\end{pmatrix}$$

In paper: specialization by constructor F.

Assume x is something else

Then, y and z are still to be tested.

$$\begin{pmatrix}
\mathbf{x} & \mathbf{y} & \mathbf{z}
\end{pmatrix} \\
\begin{pmatrix}
\mathbf{-} & \mathbf{F} & \mathbf{T} \to 1 \\
\mathbf{F} & \mathbf{T} & - \to 2 \\
- & - & \mathbf{F} \to 3 \\
- & - & \mathbf{T} \to 4
\end{pmatrix}$$

$$\begin{pmatrix}
\mathbf{y} & \mathbf{z}
\end{pmatrix} \\
\begin{pmatrix}
\mathbf{F} & \mathbf{T} \to 1 \\
- & \mathbf{F} \to 3 \\
- & \mathbf{T} \to 4
\end{pmatrix}$$

Row 2 cannot match, by "something else" hypothesis.

In paper: compute default matrix.

First compilation step

$$\mathcal{C}((\mathtt{x}\ \mathtt{y}\ \mathtt{z}), \left(egin{array}{cccc} - & \mathtt{F} & \mathtt{T} & \rightarrow 1 \\ \mathtt{F} & \mathtt{T} & - & \rightarrow 2 \\ - & - & \mathtt{F} & \rightarrow 3 \\ - & - & \mathtt{T} & \rightarrow 4 \end{array}
ight) =$$

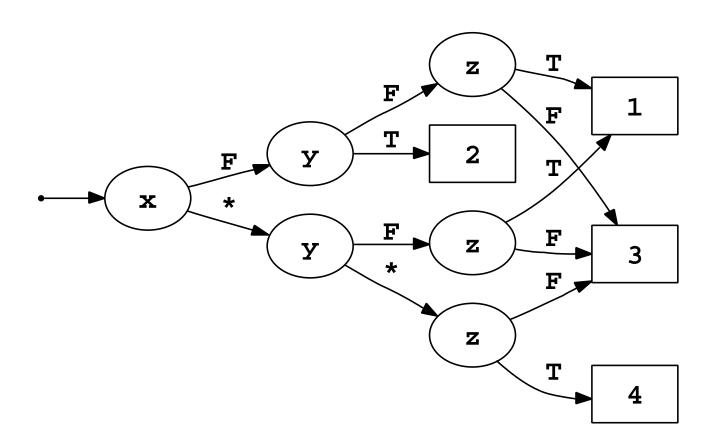
Notice: rows 1, 3 and 4 are duplicated (wildcards).

Output of "naive" compilation

Naive is (depth-first) left-to-right.

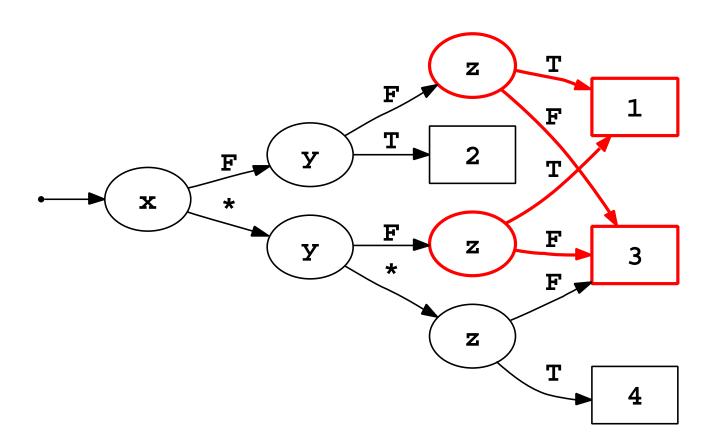
```
let f x y z =
  if x then
    if y then
    if z then 4 else 3
  else
    if z then 1 else 3
  else
    if y then 2
    else
    if z then 1 else 3
```

A better way to show compiler output

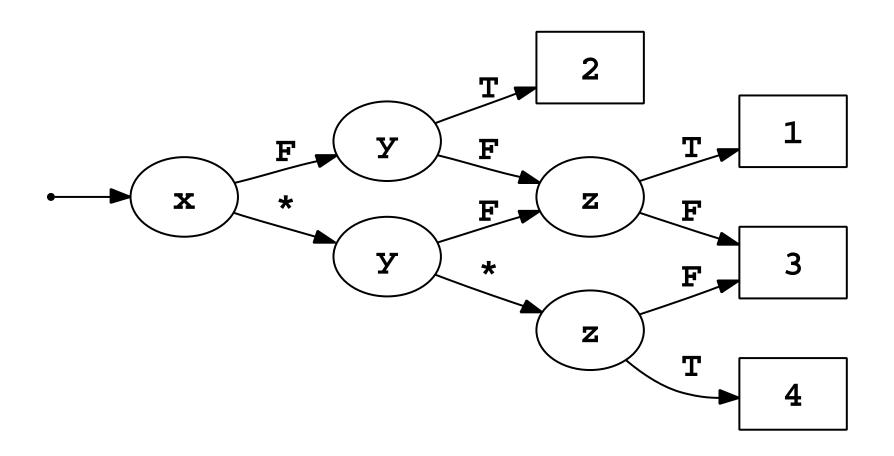


A decision tree, indeed.

Sharing tests



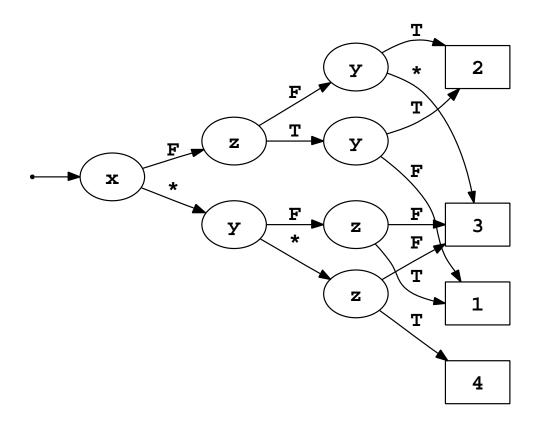
Good decision trees... are DAGs



(See Pettersson CC'92)

Why test x, y, z in order?

Another decision tree.



All of them.

A simpler example

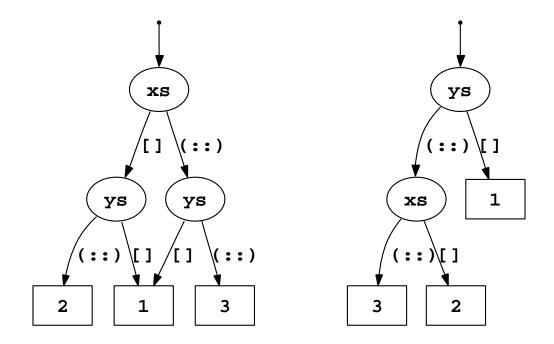
Classical list-merge

```
match xs,ys with
| _,[] -> xs
| [],_ -> ys
| x::xs,y::ys -> ...
```

As a matrix:

$$\begin{pmatrix} - & \begin{bmatrix} \end{bmatrix} & \rightarrow 1 \\ \begin{bmatrix} \end{bmatrix} & - & 2 \\ - & \vdots & \rightarrow 3 \end{pmatrix}$$

Good decisions trees?



Tree on the right is better.

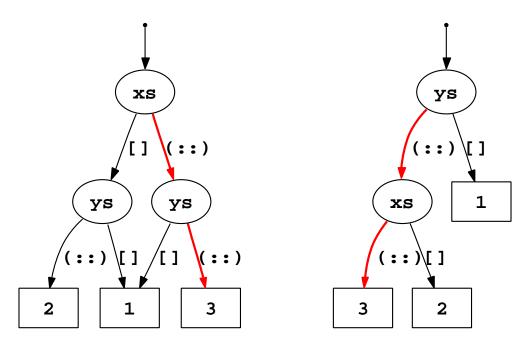
- Smaller: 2 test (switch) nodes vs. 3.
- Shorter path:

In cases where ys = [], we have 1 test vs. 2.

Runtime behavior identical in other cases.

Necessity

Definition: In matrix (p_i^j) , column i is needed for row j when all paths to leaf j test i.



Row 1: xs not needed, ys needed.

Row 2: xs and ys needed.

Row 3: xs and ys needed.

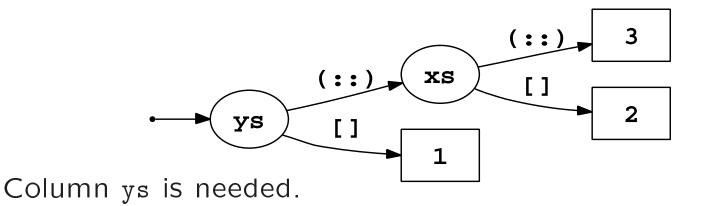
Needed column

Definition: In matrix (p_i^j) , column i is needed, when needed for all rows.

Necessity summary as a matrix.

$$\begin{pmatrix} - & \square \to 1 \\ \square & - \to 2 \\ - : : - \to 3 \end{pmatrix} \qquad \begin{pmatrix} \bullet \\ \bullet & \bullet \end{pmatrix}$$

An explanation for decision tree quality:



Testing needed columns first

Means:

First test columns that must be tested anyway.

Obviously.

- Tends to yield shorter paths (runtime efficiency).
- Trees with shorter paths are likely to be smaller (code size).

Natural questions

- How to compute necessity?
- What to do when none or several needed columns exist?

Computing necessity on matrices

- If $p_i^j \neq _$, then column i is needed for row j.
- If $p_i^j = _$, column i is needed for row j, iff. . .

Proposition: Row j is useless (redundant) in matrix P with column i erased.

$$P = \begin{pmatrix} - & \begin{bmatrix} 1 \\ & \end{bmatrix} \\ -\vdots & - \end{bmatrix}, \qquad P/1 = \begin{pmatrix} \begin{bmatrix} 1 \\ - \\ -\vdots & \end{bmatrix}, \qquad P/2 = \begin{pmatrix} - \\ & \end{bmatrix} \\ -\vdots & - \end{pmatrix}$$

First row of P/xs useful: xs not needed for row 1.

Second row of P/ys useless: ys needed for row 2.

Computing necessity, more difficult

$$\begin{pmatrix} \mathbf{-} & \mathbf{F} & \mathbf{T} \to 1 \\ \mathbf{F} & \mathbf{T} & \mathbf{-} \to 2 \\ \mathbf{-} & \mathbf{F} \to 3 \\ \mathbf{-} & \mathbf{T} \to 4 \end{pmatrix} \qquad \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

- Constructor patterns.
- Wildcards...

Heuristics

$$\begin{pmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{pmatrix} \qquad \begin{pmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{pmatrix}$$

$$\begin{pmatrix} \mathbf{F} & \mathbf{T} & \to 1 \\ \mathbf{F} & \mathbf{T} & - \to 2 \\ - & - & \mathbf{F} & \to 3 \\ - & - & \mathbf{T} & \to 4 \end{pmatrix} \qquad \begin{pmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} \end{pmatrix}$$

- Heuristic n, needed columns. Favor columns needed for a maximal number of rows (here y and z).
- Heuristic p, needed prefix. Favor columns needed for a maximal prefix of rows (here y).

Approximations in heuristics

Replace "column i is needed for row j" by " p_i^j is a constructor pattern".

- 1. Avoid (complex, costly) necessity computations.
- 2. Avoid copying rows into all specialized matrices.
 - Heuristic d, small default. Approximation of n.
 - Heuristic q, constructor prefix. Approximation of p.
 - Heuristic f, first row. Favor columns whose first pattern is a constructor pattern — radical approximation of p.

d and f were previously known (Scott & Ramsey 2000, SML)

Other heuristics

- Heuristic b, small branching factor. Favor columns with a minimal number of different head constructors. Etc.
- A total of 9 simple heuristics p, n, d, q, f, b a, ℓ, r.
- Sequences of heuristics pb. . . .
- Pseudo-heuristics are total ordering over subterms. L
 (breadth-first, left-to-right), R (breadth-first,
 right-to-left) and N (naive compilation).

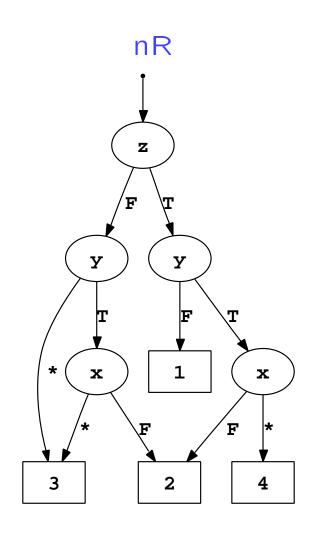
Effect of heuristics

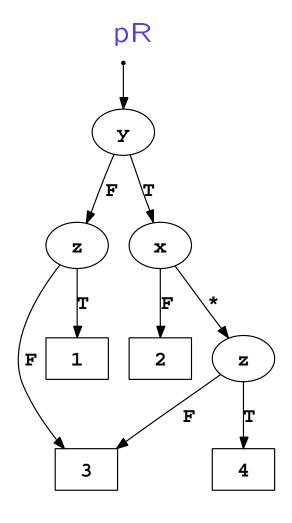
$$\begin{pmatrix} \mathbf{-} & \mathbf{F} & \mathbf{T} \to 1 \\ \mathbf{F} & \mathbf{T} & \mathbf{-} \to 2 \\ \mathbf{-} & \mathbf{F} \to 3 \\ \mathbf{-} & \mathbf{T} \to 4 \end{pmatrix} \qquad \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

Heuristic nR selects z $(n\{x,y,z\} \rightarrow \{y,z\}, R\{y,z\} \rightarrow z)$.

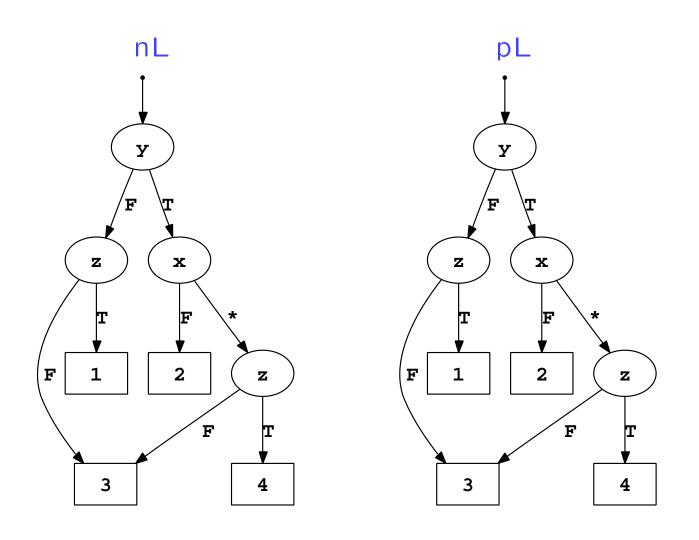
Heuristic p selects y $(p\{x,y,z\} \rightarrow y)$.

And finally





And also

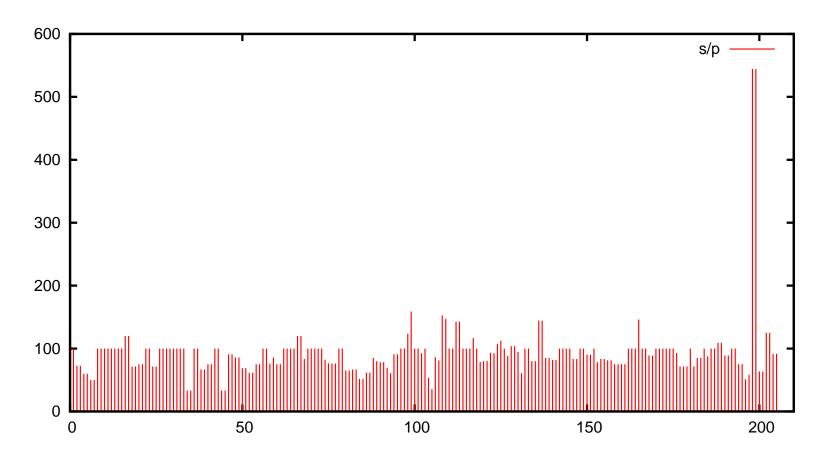


Experiments — Methodology

- 1. Select examples from a variety of real world programs (semi automatic selection of 103 matchings).
- Apply all sequences of up to three heuristics (507 heuristics) to all examples, twice (ties left broken by L and R), with a prototype compiler.
- 3. Estimate decision tree quality by:
 - (a) Number of test nodes in DAGs (\sim code size).
 - (b) Average path length (\sim speed at runtime).
- 4. Now we have $2 \times 507 \times 2 \times 103$ numbers...

Dag size for p

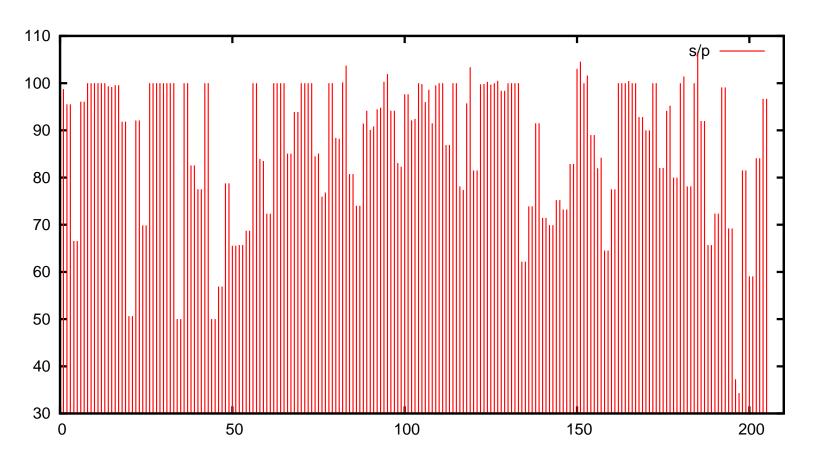
In fact for pL and pR.



Ratios w.r.t. OCaml match compiler (reference 100).

Average path length for p

In fact for pL and pR.



Ratios w.r.t. OCaml match compiler (reference 100).

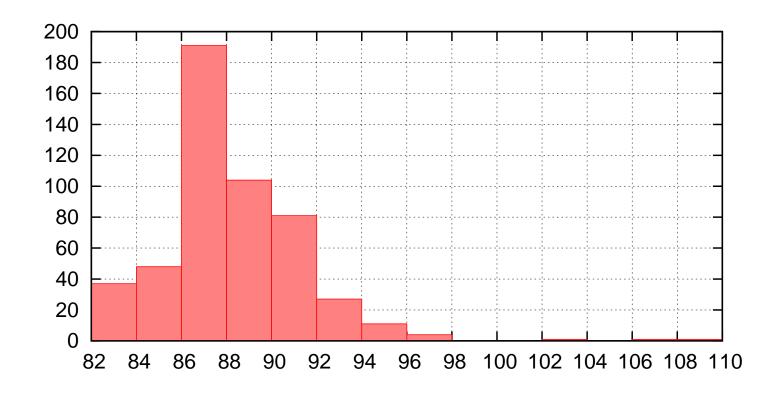
Comparing

 Compute (geometric) means of data: yields 2 numbers per heuristic (size and average path length).
 For single heuristics:

	q	р	f	r	n	b	а	ℓ	d	N
Size	86	88	92	92	91	97	98	94	97	106
Path	86	86	87	89	86	94	91	87	88	92

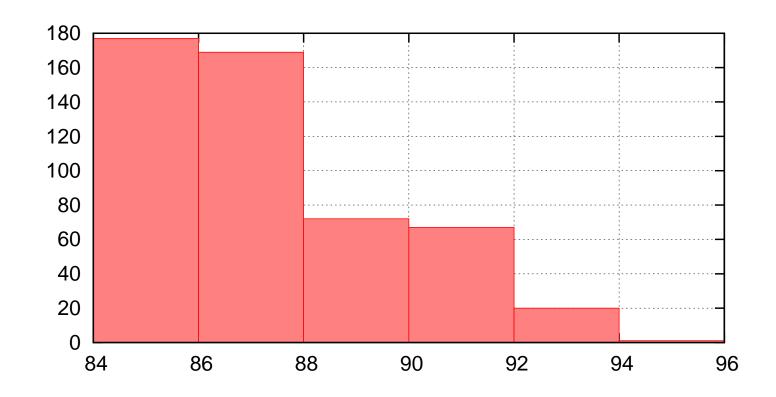
- \bullet But there are 507 heuristics: group them in classes.
- Find heuristics in the best classes for both size and path length.

Classes of heuristics, sizes



Best class: qrp qrn qrd qr qdr qr ℓ pdb qra prb fbn pba pqb pbr pbd qnb qpb pb ℓ pbq fdb qrb qdb qbr qbp qbn qbd qb fb ℓ qba fr qb ℓ fra frd fr ℓ fbr fbd frn frb

Classes of heuristics, path lengths



Best class: ...

Best heuristics

Intersection of sizes in 82-84 and paths in 84-86:

pba pbd pbl pbq pbr pdb pqb prb qb qba qbd qbl qbn qbp qbr qdb qdr qnb qpb qr qra qrb qrd qrl qrn qrp

The winner is qb (83.49/85.95) for instance, or pba (83.75/85.83).

Or maybe fdb (SML/NJ, 83.51/86.07).

Anyway, N is a looser (106.38/92.47).

Actual performance

Implemented the new match compiler for OCaml.

Measured significant improvement (over standard OCaml) in final program speed for qba.

Conclusion

- Decision trees are competitive in practice, when optimized.
- Decision tress are easy to optimize. A simple algorithm + simple extensions:
 - A simple and effective heuristic (for instance qba).
 - Maximal sharing by hash-consing.