
February 16, 2009 APLAS 2007 1

Type-Based Verification of
Correspondence Assertions for
Communication Protocols

Daisuke Kikuchi, Naoki Kobayashi
(Tohoku University)

February 16, 2009 APLAS 2007 2

Outline

� Introduction
� πCA: π-Calculus with Correspondence

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion

February 16, 2009 APLAS 2007 3

Correspondence Assertions

� Formal notation for stating expected
authenticity properties [Woo and Lam, ‘93]

� Authenticity: Guarantee there are no falsification
of messages and pretender of protocol users

February 16, 2009 APLAS 2007 4

Type and Effect system for
checking correspondence assertions
[Gordon and Jeffrey, ‘01] (GJ’s type system)

� Advantage (over other verification methods)
� Efficiency

� Disadvantage
� Complicated type annotations

February 16, 2009 APLAS 2007 5

This Work

� Extension of GJ’s type system with
fractional effects

� Polynomial-time type inference
� More expressive power

� Proof of NP-hardness of GJ’s type system
(without type annotations)

February 16, 2009 APLAS 2007 6

Outline

� Introduction
� πCA: π-Calculus with Correspondence

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion

February 16, 2009 APLAS 2007 7

Syntax of πCA

� P ::= 0 Inaction
| x![y] Output
| x?[y].P Input
| (P1|P2) Parallel composition
| *P Replication
| (νx)P Name generation
| if x=y then P else Q Conditional
| begin L.P Begin-assertion
| end L.P End-assertion

～

～

Event Labels: <x1,…,xn>

February 16, 2009 APLAS 2007 8

Example: Transmit-Acknowledge-
Handshake protocol

Receiver(a,b,c) =
c?[m,r].begin <a,b,m>.r![]

Sender(a,b,c) =
(νmsg)(νack)
(c![msg,ack] |

ack?[].end <a,b,msg>)

(νc)(Sender(a,b,c) |
Receiver(a,b,c))

△

△

Correspondence Assertions

Sender a Receiver b

ack[]

c[msg,ack](sending)

(replying)

(receiving)

(responding)

Whenever Sender a receives an
acknowledgement for a message,
Receiver b has already received it

On execution flow of the protocol,
begin <a,b,msg> precedes the
corresponding end <a,b,msg>

)

r![]

February 16, 2009 APLAS 2007 9

Safety

� Definition: A process P is safe if
whenever an end-event occurs in P,
the corresponding begin-event must have
occurred before

� Example:
� begin <x>.end <x> : safe
� begin <x>.end <x>.end <x> : unsafe
� begin <x>.begin <x>.end <x> : safe

February 16, 2009 APLAS 2007 10

Outline

� Introduction
� πCA: π-Calculus with Correspondence

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion

February 16, 2009 APLAS 2007 11

Key Idea of Type System

� Extend channel types with information
about capabilities for raising end-events

� Example:
� Ch()[<x>→1]

a channel used for passing a unit value and
the capability for raising one end <x> event

� Ch(Name)[<1>→2]
a channel used for passing a name value and
the capability for raising two end-events on the name

February 16, 2009 APLAS 2007 12

Syntax of Types and Effects

� T ::= Name Name Type
| Ch(T1,…,Tn)e Channel Type

� e ::= [L1→q1,…,Ln→qn] Fractional Effects

� L ::= <α1,…,αk> Extended Event Labels
� α::= x |ι Extended Names
� ι::= ↑ι| 1 | 2 | … Indices

non-negative rational numbers

capabilities passed through the channel

February 16, 2009 APLAS 2007 13

Type Judgment

� Example:
� x:Name├begin <x>.end <x>:[]
� x:Ch(Name)[<1>→1]├x?[y].end <y>.end <y>:[]
� x:Ch()[<y>→0.5]├x?[].x?[].end <y>:[]

Γ├P:e
Capabilities of

end-events that
P may raise

Assumptions about
how the names
may be used

February 16, 2009 APLAS 2007 14

Difference from GJ’s type system

Index Based
Ch(Name)[<1>→1]

Name Based
Ch(x:Name)[<x>]

Channel Type
Representation

ImplicitExplicitType annotations

Mapping from
event labels to

rational numbers

Mapping from
event labels to

natural numbers
Effects

Our type systemGJ’s type system

February 16, 2009 APLAS 2007 15

Typing Rules

February 16, 2009 APLAS 2007 16

Typing Rules

February 16, 2009 APLAS 2007 17

Type Soundness

� Theorem:
If Γ├P:[], then P is safe

� Proof:
Essentially the same as the proof of the type
soundness theorem of GJ’s type system

February 16, 2009 APLAS 2007 18

Comparison with GJ’s Type System

� Our type system is strictly more expressive
than GJ’s type system

Example:
P = (begin <a>.(c![] | c![])) | (c?[].c?[].end <a>)

� Typable in our type system
� c:Ch()[<a>→0.5]├P:[]

� Untypable in GJ’s type system

△

February 16, 2009 APLAS 2007 19

Outline

� Introduction
� πCA: π-Calculus with Correspondence

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion

February 16, 2009 APLAS 2007 20

Type Checking Algorithm

Closed process with simple types

Constraints on effects

Linear inequalities on rational numbers

Safe / Unsafe

Step 1: Constraint Generation

Step 2: Constraint Reduction

Step 3: Solve Linear Inequalities

February 16, 2009 APLAS 2007 21

Example: Transmit-Acknowledge-
Handshake protocol

Sender(a:Name,b:Name,
c:Ch(Name,Ch()ρ0)ρc):ρs =

(νmsg:Name)(νack:Ch()ρack)
(c![msg:Name,ack:Ch()ρack] |

ack?[].end <a,b,msg>)

(νc:Ch(Name,Ch()ρ0)ρc)
(Sender(a:Name,b:Name,

c:Ch(Name,Ch()ρ0)ρc)|…):ρsys

△

……

February 16, 2009 APLAS 2007 22

Step 1: Constraint Generation

� Sender(a:Name,b:Name,
c:Ch(Name,Ch()ρ0)ρc):ρs =
(νmsg:Name)
(νack:Ch()ρack)
(c![msg:Name,ack:Ch()ρack]
|
ack?[].end <a,b,msg>)

ρs≧ρc!+ρack?
△

ρack=[msg/↑1]ρ0

ρc!≧[msg/1,ack/2]ρc

ρack?+ρack≧[<a,b,msg>→1]

February 16, 2009 APLAS 2007 23

Step 2: Constraint Reduction

� Relevant events:
L={<x1,x2,x3>|x1,x2,x3∈{a,b,c,msg,ack,1,2,↑1,...}}

={L1,…,Lm}

� Conversion of inequalities:
ρ1≧ρ2+ρ3

ζ1,<a,b,msg>≧ζ2,<a,b,msg>+ζ3,<a,b,msg>,
ζ1,<a,c,ack>≧ζ2,<a,c,ack>+ζ3,<a,c,ack>, ……

(ρi = {L1→ζi,1,…, Lm→ζi,m})

February 16, 2009 APLAS 2007 24

Step 3: Solve Linear Inequalities

� Inequalities:
ζc!,<a,b,msg>≧ζc,<a,b,↑1>,
ζack?,<a,b,msg>+ζack,<a,b,msg>≧1,
ζs,<a,b,msg>≧ζc!,<a,b,msg>+ζack?,<a,b,msg>,
ζack,<a,b,msg>=ζ0,<a,b,↑1>,

� Solutions:
ζ0,<a,b,↑1>=...=ζack,<a,b,msg> =1,
ζc!,<a,b,msg>=ζack?,<a,b,msg>=...=ζs,<a,b,msg>=0,
......

Sender(a,b,c):[]

ack:Ch()[<a,b,msg>→1]

February 16, 2009 APLAS 2007 25

Efficiency of the Algorithm

� Assumption: Both the size of simple types and
that of event labels are bounded by a constant

Step 1: polynomial in the size of input P

Step 2: polynomial in the size of constraints

Step 3: polynomial in the size of linear inequalities

The whole procedure runs in time polynomial in |P|

February 16, 2009 APLAS 2007 26

Complexity of GJ’s Type System

� The typability in GJ’s type system is NP-hard
without type annotations

� Proof:
Reduction of 3-SAT problem into the type-
checking problem in GJ’s type system

February 16, 2009 APLAS 2007 27

Outline

� Introduction
� πCA: π-Calculus with Correspondence

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion

February 16, 2009 APLAS 2007 28

Related Work

� Extended type and effect system
[Gordon and Jeffrey, ’01-’03]
� Verify authenticity of cryptographic protocols

in spi-calculus

� Fractional effects
[Boyland, ‘03][Terauchi and Aiken, ‘06]
� Prevent interference of read/write operations on

reference cells or channels

February 16, 2009 APLAS 2007 29

Conclusion

� Extended Gordon and Jeffrey’s type system
for checking correspondence assertions

� Fractional effects for polynomial-time type
inference and more expressive power

� Proved NP-hardness of GJ’s type system
(without type annotations)

February 16, 2009 APLAS 2007 30

Future work

� Extension of the type system to deal with
cryptographic primitives

� Implementation of a protocol verification tool

February 16, 2009 APLAS 2007 31

Fin.

Thank you for listening to my presentation

February 16, 2009 APLAS 2007 32

Index Constructors

� Example:

� c:Ch(Name,Ch()[<↑1>→1])[<1>→1]

corresponds to

� c’:Ch(x:Name,y:Ch()[<x>])[<x>]

in GJ’s type system

