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Correspondence Assertions

� Formal notation for stating expected
authenticity properties [Woo and Lam, ‘93]

� Authenticity: Guarantee there are no falsification 
of messages and pretender of protocol users
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Type and Effect system for
checking correspondence assertions
[Gordon and Jeffrey, ‘01] (GJ’s type system)

� Advantage (over other verification methods)
� Efficiency

� Disadvantage
� Complicated type annotations
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This Work

� Extension of GJ’s type system with
fractional effects

� Polynomial-time type inference
� More expressive power

� Proof of NP-hardness of GJ’s type system
(without type annotations)



February 16, 2009 APLAS 2007 6

Outline

� Introduction
� πCA: π-Calculus with Correspondence 

Assertions
� Type and Effect System
� Type Checking Algorithm
� Related Work and Conclusion



February 16, 2009 APLAS 2007 7

Syntax of πCA

� P ::= 0 Inaction
| x![y] Output
| x?[y].P Input
| (P1|P2) Parallel composition
| *P Replication
| (νx)P Name generation
| if x=y then P else Q Conditional
| begin L.P Begin-assertion
| end L.P End-assertion

～

～

Event Labels: <x1,…,xn>
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Example: Transmit-Acknowledge-
Handshake protocol

Receiver(a,b,c) =
c?[m,r].begin <a,b,m>.r![]

Sender(a,b,c) =
(νmsg)(νack)
(c![msg,ack] |

ack?[].end <a,b,msg>)

(νc)(Sender(a,b,c) |
Receiver(a,b,c))

△

△

Correspondence Assertions

Sender a Receiver b

ack[]

c[msg,ack](sending)

(replying)

(receiving)

(responding)

Whenever Sender a receives an 
acknowledgement for a message,
Receiver b has already received it

On execution flow of the protocol, 
begin <a,b,msg> precedes the 
corresponding end <a,b,msg>

)

r![]
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Safety

� Definition: A process P is safe if
whenever an end-event occurs in P,
the corresponding begin-event must have 
occurred before

� Example:
� begin <x>.end <x> : safe
� begin <x>.end <x>.end <x> : unsafe
� begin <x>.begin <x>.end <x> : safe
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Key Idea of Type System

� Extend channel types with information
about capabilities for raising end-events

� Example:
� Ch()[<x>→1]

a channel used for passing a unit value and
the capability for raising one end <x> event

� Ch(Name)[<1>→2]
a channel used for passing a name value and
the capability for raising two end-events on the name
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Syntax of Types and Effects

� T ::= Name Name Type
| Ch(T1,…,Tn)e Channel Type

� e ::= [L1→q1,…,Ln→qn] Fractional Effects

� L ::= <α1,…,αk> Extended Event Labels
� α::= x |ι Extended Names
� ι::= ↑ι| 1 | 2 | … Indices

non-negative rational numbers

capabilities passed through the channel



February 16, 2009 APLAS 2007 13

Type Judgment

� Example:
� x:Name├begin <x>.end <x>:[]
� x:Ch(Name)[<1>→1]├x?[y].end <y>.end <y>:[]
� x:Ch()[<y>→0.5]├x?[].x?[].end <y>:[]

Γ├P:e
Capabilities of 

end-events that 
P may raise

Assumptions about 
how the names 
may be used
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Difference from GJ’s type system

Index Based
Ch(Name)[<1>→1]

Name Based
Ch(x:Name)[<x>]

Channel Type 
Representation

ImplicitExplicitType annotations

Mapping from 
event labels to 

rational numbers

Mapping from 
event labels to

natural numbers
Effects

Our type systemGJ’s type system
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Typing Rules
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Typing Rules
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Type Soundness

� Theorem:
If Γ├P:[], then P is safe

� Proof:
Essentially the same as the proof of the type 
soundness theorem of GJ’s type system 
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Comparison with GJ’s Type System

� Our type system is strictly more expressive 
than GJ’s type system

Example:
P = (begin <a>.(c![] | c![])) | (c?[].c?[].end <a>)

� Typable in our type system
� c:Ch()[<a>→0.5]├P:[]

� Untypable in GJ’s type system

△
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Type Checking Algorithm

Closed process with simple types

Constraints on effects

Linear inequalities on rational numbers

Safe / Unsafe

Step 1: Constraint Generation

Step 2: Constraint Reduction

Step 3: Solve Linear Inequalities
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Example: Transmit-Acknowledge-
Handshake protocol

Sender(a:Name,b:Name,
c:Ch(Name,Ch()ρ0)ρc):ρs =

(νmsg:Name)(νack:Ch()ρack)
(c![msg:Name,ack:Ch()ρack] |

ack?[].end <a,b,msg>)

(νc:Ch(Name,Ch()ρ0)ρc)
(Sender(a:Name,b:Name,

c:Ch(Name,Ch()ρ0)ρc)|…):ρsys

△

……
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Step 1: Constraint Generation

� Sender(a:Name,b:Name,
c:Ch(Name,Ch()ρ0)ρc):ρs =
(νmsg:Name)
(νack:Ch()ρack)
(c![msg:Name,ack:Ch()ρack]
|
ack?[].end <a,b,msg>)

ρs≧ρc!+ρack?
△

ρack=[msg/↑1]ρ0

ρc!≧[msg/1,ack/2]ρc

ρack?+ρack≧[<a,b,msg>→1]
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Step 2: Constraint Reduction

� Relevant events:
L={<x1,x2,x3>|x1,x2,x3∈{a,b,c,msg,ack,1,2,↑1,...}}

={L1,…,Lm}

� Conversion of inequalities:
ρ1≧ρ2+ρ3

ζ1,<a,b,msg>≧ζ2,<a,b,msg>+ζ3,<a,b,msg>,
ζ1,<a,c,ack>≧ζ2,<a,c,ack>+ζ3,<a,c,ack>, ……

(ρi = {L1→ζi,1,…, Lm→ζi,m})
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Step 3: Solve Linear Inequalities

� Inequalities:
ζc!,<a,b,msg>≧ζc,<a,b,↑1>,
ζack?,<a,b,msg>+ζack,<a,b,msg>≧1,
ζs,<a,b,msg>≧ζc!,<a,b,msg>+ζack?,<a,b,msg>,
ζack,<a,b,msg>=ζ0,<a,b,↑1>, ......

� Solutions:
ζ0,<a,b,↑1>=...=ζack,<a,b,msg> =1,
ζc!,<a,b,msg>=ζack?,<a,b,msg>=...=ζs,<a,b,msg>=0,
......

Sender(a,b,c):[]

ack:Ch()[<a,b,msg>→1]
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Efficiency of the Algorithm

� Assumption: Both the size of simple types and 
that of event labels are bounded by a constant

Step 1: polynomial in the size of input P

Step 2: polynomial in the size of constraints

Step 3: polynomial in the size of linear inequalities

The whole procedure runs in time polynomial in |P|
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Complexity of GJ’s Type System

� The typability in GJ’s type system is NP-hard 
without type annotations

� Proof:
Reduction of 3-SAT problem into the type-
checking problem in GJ’s type system
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Related Work

� Extended type and effect system
[Gordon and Jeffrey, ’01-’03]
� Verify authenticity of cryptographic protocols

in spi-calculus

� Fractional effects
[Boyland, ‘03][Terauchi and Aiken, ‘06]
� Prevent interference of read/write operations on 

reference cells or channels
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Conclusion

� Extended Gordon and Jeffrey’s type system 
for checking correspondence assertions

� Fractional effects for polynomial-time type 
inference and more expressive power

� Proved NP-hardness of GJ’s type system 
(without type annotations)
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Future work

� Extension of the type system to deal with 
cryptographic primitives

� Implementation of a protocol verification tool
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Fin.

Thank you for listening to my presentation
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Index Constructors

� Example:

� c:Ch(Name,Ch()[<↑1>→1])[<1>→1]

corresponds to

� c’:Ch(x:Name,y:Ch()[<x>])[<x>]

in GJ’s type system


