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Abstract

We extend Kobayashi and Sumii’s type system for the deadlock-free m-calculus and develop a type
reconstruction algorithm. Kobayashi and Sumii’s type system helps high-level reasoning about concurrent
programs by guaranteeing that communication on certain channels will eventually succeed. It can ensure,
for example, that a process implementing a function really behaves like a function. However, because it
lacked a type reconstruction algorithm and required rather complicated type annotations, applying it to
real concurrent languages was impractical. We have therefore developed a type reconstruction algorithm
for an extension of the type system. The key novelties that made it possible are generalization of usages
(which specifies how each communication channel is used) and a subusage relation.

1 Introduction

1.1 General Background

With increasing opportunities of distributed programming, static guarantee of program safety is becoming
extremely important, because (i) distributed programs are inherently concurrent and exhibit more complex
behavior than sequential programs, (ii) it is hard to debug the whole distributed systems, and (iii) distributed
programs usually involve many entities, some of which may be malicious. Lack of static guarantee results
in unsafe or slow (due to expensive run-time check) program execution. Among various issues of program
safety such as security, this paper focuses on problems caused by concurrency, in particular, deadlock (in a
broad sense).

Traditional type systems are insufficient to guarantee the correctness of concurrent/distributed programs.
Consider the following program of CML [21]:

fun f n = let val ch=channel() in recv(ch)+n+1 end;

The function f creates a new channel ch (by channel()), waits for a value v from the channel (by recv(ch)),
and returns v + n + 1. Since there is no sender on the channel ch, the application f (1) is blocked forever.
Thus, £ actually does not behave like a function, but the type system of CML assigns to £ a function type
it — int.

*A revised version of the technical report TR00-01, Department of Information Science, Univeristy of Tokyo. A summary
will appear in Proceedings of CONCUR2000.



1.2 Our Previous Type Systems for Deadlock-freedom and Their Problem

To overcome problems like above, a number of type systems [11,16,26] have been studied through -
calculus [14] (just as type systems for functional languages have been studied through A-calculus). For
example, Pierce and Sangiorgi [16] introduced a type system that can guarantee that certain channels are
used only for input or output, and Kobayashi, Pierce, and Turner [11] introduced a linear type system
that can guarantee that certain channels (called linear channels) are used just once for communication.
Among them,advanced type systems for the 7-calculus, Our type systems for deadlock-freedom [10, 23] are
among the most powerful type systems: They can guarantee partial deadlock-freedom in the sense that
communication on certain channels will eventually succeed. In addition to the usual meaning of deadlock-
freedom where communications are blocked due to some circular dependencies, it also detects the situation
like above, where there exists no communication partner from the beginning. Through the guarantee of
deadlock-freedom, they can uniformly ensure that functional processes really behave like functions, that
concurrent objects will eventually accept a request for method execution and send a reply, and that binary
semaphores are really used like binary semaphores (a process that has acquired a semaphore will eventually
release it unless it diverges).

In spite of the attractive features of the deadlock-free type systems, however, their applications to real
concurrent programming languages have been limited. The main reason is that there was no reasonable
type reconstruction algorithm and therefore programmers had to explicitly annotate programs with rather
complex types.

1.3 Contributions of This Paper

To solve the above-mentioned problem, this paper develops an implicitly-typed version of the deadlock-free
process calculus and its type reconstruction algorithm. Programmers no longer need to write complex type
expressions; Instead, they just need to declare which communication they want to succeed. (Programmers
may still want to partially annotate programs with types for documentation, etc.: Our algorithm can be
easily modified to allow such partial type annotation.) For example, a process that sends a request to a
function server or a concurrent object can be written as (vr) (s![arg,r]|r?¢[z]....). Here, (vr) creates a fresh
channel r. s![arg,r] sends a pair [arg,r] to the server through channel s, and in parallel to this, r?¢[z]. ...
waits on channel r to receive a reply from the server. The c attached to 7 indicates that this input from
r should eventually succeed, i.e., a reply should eventually arrive on r. If the whole system of processes
(including the server process) is judged to be well typed in our type system, then it is indeed guaranteed
that the input will eventually succeed, unless the whole system diverges.

Our new technical contributions are summarized as follows. (Those who are unfamiliar with our previous
type systems can skip the rest of this paragraph.)

e Generalization of the previous type systems for deadlock-freedom — It is not possible to construct
a reasonable type reconstruction algorithm for the previous type systems. So, we generalized them
by introducing a subusage relation and new usage constructors such as recursive usages and the
greatest lower bound of usages (which roughly correspond to the subtype relation, recursive types,
and intersection types in the usual type system). A usage [23] is a part of a channel type and describes
for which operations (input or output) and in which order channels can and/or must be used. It can
be considered an extension of input/output modes [16] and multiplicities [11].

e Constraint-based type reconstruction algorithm — We have developed a type reconstruction algorithm,
which inputs an implicitly-typed process and checks whether it is well typed or not. The algorithm



is a non-trivial extension of Igarashi and Kobayashi’s type reconstruction algorithm [8] for the linear
m-calculus [11], where a principal typing is expressed as a pair of a type environment and a set of
constraints on type/usage variables.

1.4 Limitations of This Paper

The type system and type reconstruction algorithm described in this paper have the following limitations.

e Incompleteness of the type reconstruction algorithm — The algorithm is sound but incomplete: Al-
though it never accepts ill-typed processes, it rejects some well-typed processes. This is just because
we want to reject some well-typed but bad processes that may livelock (i.e., diverge with keeping some
process waiting for communication forever). So, our algorithm is actually preferable to a complete
algorithm (if there is any).

e Naive treatment of time tags — The treatment of time tags and tag relations, which are key features
of the deadlock-free type systems [10, 23], is very naive in this paper. As a result, the expressive power
is very limited. This is just for clarifying the essence of new ideas of this paper. It is easy to replace
the naive treatment of time tags in this paper with the sophisticated one in the previous papers [10, 23]
and extend the type reconstruction algorithm accordingly. The resulting deadlock-free process calculus
is more expressive than the previous calculi [10, 23], which have already been shown to be expressive
enough to encode the simply-typed A-calculus with various evaluation strategies, semaphores, and
typical concurrent objects.

1.5 The Rest of This Paper

The rest of this paper is structured as follows. In Section 2, we briefly review the previous type systems for
deadlock-freedom [10, 23], discuss why type reconstruction was difficult, and explain key ideas of the new
type system and the type reconstruction algorithm. Section 3 introduces the syntax of types and processes
and defines the operational semantics of processes. Section 4, 5 and 6 are the main part of this paper:
after defining a type system in Section 4, we describe a constraint-based type reconstruction algorithm,
which inputs a process expression and outputs a pair of a type judgment containing type variables and a
set of constraints on variables, in Section 5. Section 6 describes how to solve those constraints and decide
typability of the input process. We discuss extensions of the type system in Section 7 and discuss related
work in Section 8.

2 Main Ideas

In this section, we first review basic ideas of Kobayashi and Sumii’s type systems for deadlock-freedom [10,
23], and explain why type reconstruction was difficult. After that, we explain key new ideas that enabled
type reconstruction.

2.1 Why Type Systems for Deadlock-Freedom

In order to explain the necessity of type systems for deadlock-freedom and ideas of Kobayashi and Sumii’s
type system, we use the following subset of the polyadic pi-calculus [13]:



P = PP (executes P; and P, concurrently)
xor, ..., o] (sends a tuple [vy,...,v,] along the channel x)
x?z1,. .., 2. P (receives a tuple [vy, ..., v,] along x and behaves like [z1 — v1,..., 2, = v,]P)
x?*[z1,...,zn). P (repeatedly receives a tuple [v1,...,v,] along
and spawns the process [z1 — v1,..., 2z, = U] P)
(vx) P (creates a channel x and executes P)

if v then P else Q (executes P if v = true and Q if v = false)

Here, x7*[21, ..., 2z,]. P denotes a replication of x7[zy,..., z,]. P: it behaves like a (recursive) process defini-
tion z![Z] = P since, if it is running, the process [z1 — v1,..., 2z, — v,]P is spawned whenever x![vy, ..., v,]
is executed.

A function Az.M can be implemented as a process of the form f?*[x,r]. - - -, which receives an argument
x and a reply channel r, evaluates M and returns the result to r. For example, a function that computes
the factorial can be implemented as the following process Fact:

fact?[n,r]. (if n = 0 then r![1] else (v7') (fact![n — 1,7']|7'?[m].r![m x n]) )

This process receives a pair of an integer n and a channel r along the channel fact and tests whether
n=0. If n =0, then it returns the result 1 (the factorial of 0) to r; otherwise, it computes the factorial of
n — 1 by sending a request to the channel fact, receives the result m along channel 7/, and sends the whole
result m X n to channel r. Readers who are familiar with the continuation passing style implementation of
functions [1] would notice that reply channels (r and r' above) correspond to continuations.

As in the untyped A-calculus, one can easily violate the intended use of the above process in the untyped
m-calculus. For example, by sending a pair [0,2] of integers to fact, execution of the above process gets
stuck with 2![1]. In order to overcome such a problem, earlier type systems for process calculi or concurrent
languages [5, 21, 25] incorporated into channel types information on values communicated along each channel.
Let us write J[r1,...,7,] for the type of a channel for communicating a tuple of values of types 7i,...,7,.
Then, the above process Fact is typed as follows:

fact : Jlint, {[int]] - Fact

This type judgment means that Fact is a good process under the assumption that fact is a channel used
for communicating pairs of an integer and a channel for exchanging integers. Invalid senders like fact![0, 2]
and fact![’a”,r] are rejected by this typing.

However, the type system is still not effective enough to enforce that Fact is used as a function. Since the
assumption fact : {[int,{[int]] only says that fact is a channel for communicating a pair of type [int, J[int]],
it does not forbid an outside process from stealing a request for evaluating the function (i.e., receiving a
pair from the channel fact). It is not powerful enough to help reasoning about the behavior of Fact, either:
Without looking at the code of Fact, we cannot tell from the type judgment that Fact uses the reply channel
r correctly (i.e., it does not try to receive a value from r or send more than one results to r).

In order to overcome these problems, Pierce and Sangiorgi [16] classified channel types according to
whether channels can be used for input, output, or both, and Kobayashi, Pierce and Turner [11] further
classified channel types according to whether channels can be used just once or an arbitrary number of
times. In Pierce and Sangiorgi’s type system, the above judgment is refined to:

fact : L[int,[int]] = Fact



Here, ![7] is the type of channels that can be used only for sending values of type 7. Now the judgment
asserts that Fact uses a reply channel only for sending integers, not for receiving integers. For the outside
processes, fact is given type ![int,![int]], and thus, stealing a request on fact is forbidden. In Kobayashi,
Pierce, and Turner’s linear type system [11], the type judgment is further refined to:

fact : 3¥lint, M [int]] F Fact

Here, $“[7] is the type of channels that can be used many times for communication, and !'[7] is the type
of channels that can be used only once for output, never for input. Thus, the judgment certifies that Fact
uses a reply channel only once for sending an integer. For external processes, fact is viewed as a channel of
type “[int, *[int]].

Even with the linear type system, we miss some important properties of functions. In an ordinary typed
A-calculus, if we have I' = M : int, then M is guaranteed to evaluate to an integer, unless M diverges; in
other words, the evaluation never gets stuck. However, there is no such guarantee in the linear type system
for the m-calculus. For example, (v fact) (Fact| fact![2,7]) is typed as

r: Wint] = (vfact) (Fact | fact![2,7]),

but from this judgment, we cannot tell that an integer will be output on r, because the same judgment
holds also for Fact' = fact?*[n,r]. (vdummy) (dummy?[].r![n]):

r e Wint] - (vfact) (Fact' | fact![2,r]).

Notice that Fact’ waits on dummy forever and never returns an integer. This kind of problem is not
peculiar to encoding of functions. If a semaphore is implemented by using a channel, the type system
cannot guarantee that a process can eventually acquire the semaphore. A method of a concurrent object
implemented by using a m-calculus process is not guaranteed to return the result, either.

These situations can all be regarded as deadlock in a certain sense: In all the above cases, the problem
is that the execution of a process that is required to perform a certain communication gets stuck (i.e., is
blocked forever) and that, as a result, a process waiting for the communication also gets stuck. Based on
this intuition, Kobayashi and Sumii [10, 23] formally defined the notion of deadlock in the m-calculus and
developed type systems to guarantee deadlock-freedom. In their type systems, for example, if z : !I[mt] FP
holds, then it is guaranteed that P will eventually send an integer on z or diverge. This property is
analogous to the property guaranteed by + M : int in an ordinary typed A-calculus (with recursion).
Indeed, the property of the simply-typed A-calculus is recovered in our type system: If - M : int holds
in the simply-typed A-calculus, z : !'[int] - [M], holds in Kobayashi’s type system [10], where [M], is a
process simulating evaluation of M and returns the result to x. So, we can reason that the evaluation of a
well-typed A-term does not get stuck at the level of the m-calculus. We review ideas of the type systems in
the next subsection.

2.2 Ideas of Kobayashi and Sumii’s Deadlock-Free Type Systems
The key ideas of Kobayashi and Sumii’s deadlock-free type systems are as follows:
Generalization of input/output modes and linearity The linear m-calculus [11] is only concerned
with whether channels are used just once or more; it does not care about whether channels are used

twice or more, or about the order in which outputs and inputs are performed. This is fine for reasoning
about processes implementing functions, but is problematic for reasoning about other processes like those



manipulating channels as binary semaphores. Since a channel implementing a binary semaphore is used
many times for input and output, it is given a type *[] in the linear m-calculus. However, it is actually
used in a certain restricted manner: except for the initial output, an output can be performed only after
an input. In order to express this kind of restriction in terms of types, Sumii and Kobayashi [23] refined a
channel type to [7]/U, where an expression U, called a usage, is given by the following syntax:

Uu=0|LU | O.U| (Uy||Us) | U

0 means that the channel cannot be used at all. I.U (O.U, resp.) means that the channel can first be
used for input (output, resp.) and then used according to U. Up||Us means that the channel can be used
according to Uy and Uy concurrently, and U (which was written !U in [23]) means that the channel can
be used according to U an arbitrary number of times (possibly simultaneously). By using usages, we can
express how often and in which order channels should be used for input and output. For example, a channel
used as a binary semaphore is given the type []/(O.0||*I.0.0). A linear channel for communicating integers
is given the type [int]/(O.0||1.0).

Capabilities and obligations When we implement various mechanisms in terms of m-calculus processes,
not all communications are required to eventually succeed. For example, for a channel (like fact above)
corresponding to the location of a function, an output on the channel should eventually succeed, but it
is fine that an input process (like Fact above) is waiting for a request forever. For another example,
consider a channel used as a binary semaphore. An input on the channel should eventually succeed since
an input corresponds to the acquisition (a P-operation, in other words) of the semaphore. However, it is
fine that an output process is waiting forever, since it means that no process tries to acquire the semaphore.
To summarize, some communications are required to succeed (i.e, the process trying to perform those
communications can eventually find their communication partners), while others are not, depending on
programmers’ intention on the use of channels. Similarly, some communications must be provided (even if
they do not succeed) while others need not: A process implementing a function must output a result to
the reply channel, and a process that has acquired the semaphore must release it, while a process need not
acquire the semaphore. In order to make these requirements explicit, Sumii and Kobayashi [23] introduced
capabilities (denoted by c¢) and obligations (denoted by o) as attributes of I and O of the usages. If I (O,
resp.) is annotated with ¢, then an input (output, resp.) on the channel will eventually succeed; in other
words, some other process will perform an output (input, resp.). If I (O, resp.) is annotated with o, then
an input (output, resp.) on the channel must be performed. The type of a binary semaphore channel is
now refined to []/(06.0||%Ic.06.0). Oo.0 indicates that a value must be first put into the channel, and
1..0,.0 indicates that a process can extract a value from the channel (i.e., can acquire the semaphore), and
after having extracted, it must put a value back into the channel. (Note here that the output obligation
in I..0,.0 arises only after an input capability I is consumed.) # indicates that a channel can be used
according to I..0,.0 an arbitrary number of times by an arbitrary number of processes, possibly in parallel.
A linear channel for communicating an integer is now given the type [int]/(Oco.0||Ico.0). The refined usage
Oco-0||Ic0-0 means that the channel must be used once each for input and for output, and that the input
and output will eventually succeed.

What we mean by deadlock is now clear: the deadlock is a state where processes cannot be reduced any
more and either (1) an input or output operation with the obligation attribute has not been performed,
or (2) an input or output operation with the capability attribute is performed, but has not succeeded (the
input or output process remains unreduced). Kobayashi and Sumii’s type systems guarantee that a well-
typed process is free from such deadlock. For example, if = : [int]/0,.0 = P holds and P is reduced to



some irreducible process @, then an integer is being sent on x in @ (in technical terms, @ is structurally
congruent to a process of the form z![n]|Q’).

Usage reliability — channel-wise consistency of capabilities and obligations In order to guaran-
tee deadlock-freedom, we need to require some consistency on the capabilities and obligations associated to
each channel. For example, creating a channel of usage I..0||I¢.0 does not make sense, because input opera-
tions cannot succeed as no output operations are allowed by the usage. So, we must require that if an input
is annotated with the capability attribute c, then there must be a corresponding output annotated with the
obligation attribute o. For example, I..0]|O0.0 and I¢6.0||O¢o.0 are consistent, but neither I..0[|O.0 nor
I..0]|15.0 is. This consistency must be preserved after reductions. Let I.1¢.0||Oo.0 be the intended usage of
a channel. After the channel is used once for communication, it should then be used according to the usage
I..0, obtained by cancelling one I and one O; this usage is inconsistent, since there is no available output
operation. Sumii and Kobayashi [23] called these requirements the reliability of a usage in [23]. The usage
00.0||%1:.05.0 of a binary semaphore channel is reliable, since an input with capability is matched by an
output with obligation, and that condition is kept after reductions (i.e., after cancellation of one I and one
0). In Sumii and Kobayashi’s type system, it is checked whether U is reliable for each usage U appearing
in a channel creation (v : [7]/U) P.

Time tags and tag relations — inter-channel consistency of capabilities and obligations The
reliability of each channel usage is not sufficient to guarantee deadlock-freedom. For example, consider the
following process:

(v : [1/(00.0[|1c.0)) (vy : []/(Oo.0[|Lc.0)) (x?[]. y![]. [y?[]. ![])

The usage Oo.0]|1..0 of = and y are reliable, because the input capability I. is matched by the output
capability O,, and the actual usages of x and y look like conforming with the specified usage (since they are
used once for input and once for output). However, the process actually deadlocks — why? The subprocess
x?[].y![] fulfills the output obligation on y only if the input capability on x is guaranteed, while the other
subprocess y?[]. z![] fulfills the output obligation on z only if the input capability on y is guaranteed.
However, the input capability on x (y, resp.) is guaranteed only if the output obligation on z (y, resp.) is
fulfilled, hence a cyclic dependency among the capabilities and obligations on = and y.

In order to prevent this kind of cyclic dependency, Kobayashi [10] introduced an ordering on usages, so
that a capability to communicate on a channel £ may be used before an obligation to communicate on a
channel y only if the usage of x is less than the usage of y with respect to the ordering. In order to specify
the ordering, Kobayashi annotated channel types with labels, like [7]'/U. Labels are called time tags and an
ordering was called tag relations. The type judgment form is extended by using time tags and tag relations.
For example, a process x?[].y![] is typed as follows:

v ()% /10,y [1% /00 05 {(tas ty) } = 2?[]-91[]-

The tag ordering {(¢,,t,)} indicates that the process may try to use the capability to receive a null tuple
on x before fulfilling the obligation to send a null tuple on y. So, x?[].0|y![] is also well typed under the
same assumption:

o [ /1e0,y : [17/00.0; {(tay ty)} F 2?[]. 0 y![]

However, the judgment:
z: ["/06.0,y : [/ 1c.0; {(tz, ty)} F y?[] 2![]



is invalid, since the process tries to use the capability on y before fulfilling the obligation on x. In order to
allow this process, the tag relation must include the pair (t,, ;). So, the following judgment for y?[]. z![] is
valid:

z:[]"/06.0,y : []%/I..0; {(ty,t2)} Fy?[]. 2![]

In order for a parallel composition z?[].y![]. |y?[]. ![] to be typed, the tag relation must contain both
(ty,tz) and (tg,ty):

w1 [1/(00.01|1c.0), y : [1"/(00.0[|1e.0); {(ta: ty), (ty, ta)} = 27 [1. 9! [T y?[]. 2]

Now, the tag relation means that the process can delay fulfillment of the obligation on x until the capability
on y is consumed, and it can also delay the fulfillment of the obligation on y until the capability on x is
consumed, implying that a deadlock may occur. In general, if a type judgment xy : 7,..., 2, : 7,; T F P
holds and the tag relation 7T is a strict partial order, then no deadlock can occur (except for that on free
channels x1,...,z,: external processes will provide necessary communication on those channels).

2.3 Ideas of our type inference algorithm

In Kobayashi and Sumii’s type systems, time tags and the tag relation can be automatically inferred, but
other type information such as usages must be explicitly specified by programmers. For example, in order to
create a channel = representing the location of a function of type (int — int) — (int — int), a programmer
must write (vx : [[int, [int]/Oe.0] /%O¢.0, [[int, [int] /O6.0]/%O¢.0]/O0.0] / (%O¢.0||%15.0)) - --. Although some
type annotation is certainly necessary for specifying the programmer’s intention, it is often cumbersome to
write all type annotations. So, it would be useful if programmers specify type information only when they
want to do so, and the unspecified types can be automatically recovered by a type inference algorithm.

The main difficulty of the type reconstruction was that Kobayashi and Sumii’s type systems did not
have the principal typing property. For example, for a process x?[]. y![], there are the following valid type
judgments, but neither seems more general than the other:

x:[]/15.0,y : []%/0c.0;0 - 27[]. y![]
z: ) /1.0,y 2 [1%/)06.0; {(ts, ty)} F 2?[]. y![]

For another example, consider a process x?[]. x![]: it has the following valid type judgments, but again,
neither seems more general than the other.

r:[]%/(15.0]|0c.0); 0 F 2?[]. 2![]
x: [ /(I6.0c.0); 0 & 2?[]. 2![]

We summarize below the key new ideas of this paper that enable type reconstruction.

Constraint-based type system One of the key ideas is to use a constraint-based type system, following
Igarashi and Kobayashi’s type reconstruction algorithm [8] for the linear 7-calculus. By introducing variables
ranging over types, usages, etc. and constraints on them, we can express all the possible typing for a process
P by a generalized judgment of the form I';7;C F P where I' may contain variables and C' is the set of
constraints on the variables. For example, all the possible typings for the process x?[]. y![] can be represented
by:

z: (]I, -cnl|a2),y : []%/(Oa,-03llas); T; {0 € ay = (¢ € az At Tty), noob(v),- - -, noob(ay)} F x?[]. y![]



Here, os are variables ranging over usages and a, and a, are variables ranging over attributes of usages. A
constraint o € a (c € a, resp.) means that a contains at least an obligation (a capability, resp.), i.e., a is
either o or co. noob(a) means that the usage a is not annotated with an obligation. Each type judgment
is obtained by solving the set of constraints, and substituting a solution for the variables.

Subusage relation To make the above constraint-based system work, we need to introduce an appropriate
relation on usages. Recall the type judgments for the process x?[]. z![]. In a certain sense, I5.0||O¢.0 allows
a more liberal usage than I,.0..0: the former usage means that the output capability may be used before
the input obligation is fulfilled, while the latter one means that the output capability may be used only
after the input obligation is fulfilled. So, it is OK to use a channel of the former usage according to the
latter usage, but the converse is not allowed. In order to express this kind of relationship between usages,
we introduce a subusage relation Uy < Us: if Up < Us holds, then a channel of the usage Uy may be used as
that of the usage Us.
By using the subusage relation, the possible typings for the process x7[]. z![] is expressed by:

(] /a; T {a < 1,,.0,,.0} - 27[]. 2![]

Recursive usages In addition to the introduction of the subusage relation, we also need to generalize the
usages. Consider, for example, a channel that is used for input an arbitrary number of times sequentially.
There are infinitely many usages that can be assigned to the channel: *I.0, I.x1.0, I.I.x1.0,... However,
none is the most general (i.e., the greatest with respect to the subusage relation). We, therefore, introduce
recursive usages of the form reca.U. rec a.U is intended to satisfy reca.U = [a — rec a.U]U. We can
now express the greatest usage of the above channel as rec a.(l.«). In order to deal with recursive usages,
we define the subusage relation co-inductively, by using familiar techniques for defining process equivalence
in terms of bisimulation [12].

Annotations for specifying programmers’ intention By using the above ideas, we can now develop
a type reconstruction algorithm, which inputs an unannotated process, outputs the most general type judg-
ment with a set of constraints, and decides whether the constraint set is actually satisfiable. However, this
is not so useful, because, without any type annotation, we can always assume that there are no capabilities
and obligations — then, the typability of a process breaks down to its typability in the simply-typed -
calculus [5]. What we actually want to do is to let a programmer specify his or her intention on the uses of
channels, and to check whether it is indeed observed by the program. One way for doing so would be to let
programmers specify the types of channels partially. Instead of doing so, in order to simplify the problem
of type reconstruction, we let programmers annotate each input/output operation with a capability and/or
an obligation if necessary. For example, x7°[]. P indicates that this input operation must be guaranteed to
succeed (so, some external process must output on z). y?[].x!°[].0 indicates that the output on = must
be performed (so, the input on y must succeed). We reformalize the type system, so that such annotations
are respected by any well-typed processes. In the new type system, if a closed process (vx) (x?¢[]. P| Q)
is well typed and @ does not diverge, then @) is guaranteed to eventually send a value on z, so that the
input 27¢[]. P can succeed. Recall the example of the factorial function. In order to call the function, a
programmer can write (vr) (fact![3,7]|r?¢[n]. P). Then, it is guaranteed that the result will eventually
be received on r. (Note here that fact![3,7] need not be annotated with c¢. Programmers need to attach
annotations only to the output/input operations they are concerned with; obligations and capabilities of
the other output/input operations are automatically inferred.)



3 Usages, Types, and Processes

We now introduce the formal syntax of usages, types and processes, and then define an operational semantics.

3.1 Usage

Attributes of usages are defined below. As explained in Section 2, ¢ denotes a capability and o denotes an
obligation. They are used for annotating usages and processes.

Definition 3.1 [usage attributes]: usage attributes are subsets of co = {c,o0}. We often write just ¢ and
o for {c} and {o} respectively.

We use a metavariable a for usage attributes.
Definition 3.2 [usages]: The set U of usages is given by the following syntax.
U:=0|al|0,.U|L.U|(U]|Us) | Ui MU | reca.U | U
Here, a ranges over a countably infinite set of variables called usage variables.

Notation 3.3: reca.U binds « in U. Usage variables that are not bound are called free usage variables.
We assume that a-conversions are implicitly applied so that bound variables are always different from each
other and from free variables. [« — U’]U denotes the usage obtained from U by replacing all free occurrences
of a with U’'. We write UV (U) for the set of free usage variables appearing in U. We often omit 0 and
write O, for O,.0 and I, for 1,.0.

We give a higher precedence to prefixes (I,., O,., reca.) than to || and M. We also give a higher
precedence to MM than to ||. So, I,.U1||0,.Uz MUs means (I,.U1)||((Oq.Uz2) M Us).

0 denotes the usage of a channel that cannot be used for input or output at all. O,.U denotes the
usage of a channel that can be first used for output, and then used according to U. If the attribute a
contains ¢, then the output is a capability: if the output is performed, it will eventually succeed (i.e., some
other process will eventually receive the output value). If the attribute a contains o, then the input is an
obligation: the input must be performed. I,.U denotes the usage of a channel that can be first used for
input, and then used according to U. Similarly to the case for output, a indicates whether the input is a
capability and/or an obligation. Up||U, denotes the usage of a channel that can be used according to U;
and Us concurrently. For example, if x is a channel of the usage Ij.0||Oy.0, then any of the following uses is
allowed: (i) one process performs an output on x while another process performs an input on z in parallel,
(ii) one process performs an output on x and then performs an input on x, or (iii) one process performs
an input on x and then performs an output on x. Note that in the case of the usage I3.0y.0, only (iii) is
allowed. U; MUz denotes the usage of a channel that can be used according to either Uy or Us. For example,
if x is a channel of the usage 1;.0M0y.0, then x can be used either for input or for output, but not for both.
rec .U denotes the usage of a channel that can be used according to the infinite expansion of rec a.U by
reca.U = [a— reca.UJU. For example, rec a.ly.ov denotes the usage of a channel that can be used for
input an infinite number of times sequentially. *U denotes the usage of a channel that can be used according
to U by infinitely many processes. U is almost the same as rec a.(«||U), but we keep them separate for a
subtle technical reason (see Remark 4.5).

Example 3.4: The usage of a binary semaphore is denoted by O,.0||*I¢.00.0, meaning that there must be
one initial output, and there can be infinitely many input processes on the channel.

10



Example 3.5: The usage of a channel used as the location of a function is denoted by:
*I5.0[|%Oc.0.

3.2 Types

As explained in Section 2, time tags introduced below are used for expressing in which order the capability
of each channel can be used the obligation must be are fulfilled.

Definition 3.6 [time tags]: T is a countably infinite set of elements called time tags.

We use a metavariable ¢ for a time tag.

Definition 3.7 [types]: The set of types is given by the following syntax.
7= bool | [T1,...,a]t/U

[T1,...,7]" /U denotes the type of a channel that can be used for communicating a tuple of values of types
Ti,...,Tn. The channel must be used according to the usage U. t expresses in what timing its capabilities
can be used and its obligations must be fulfilled. (The timing is determined by the time tags of other
channels and a tag ordering introduced later in Section 4.)

3.3 Processes

We use the following subset of the m-calculus processes.

Definition 3.8 [processes]: The set of processes is given by the following syntax.

P:= 0|z21%v,...,00). P|2?y1,....un]. P | (P|Q) | (va) P
| if v then P else Q | *P
vu= true | false | x

Here,  and y;s range over a countably infinite set of variables.

Notation 3.9: As usual, y1,...,y, in 2?[y1,...,ys]. P and x in (vx) P are called bound variables. The
other variables are called free variables. We assume that a-conversions are implicitly applied so that bound

variables are always different from each other and from free variables. [z — v1,..., 2, > v,]P denotes a
process obtained from P by by replacing all free occurrences of x1,...,x, with vy,... ,v,. We write ¢ for a
sequence yi,...,Yn. We often write x!%[g] for x!?[g]. 0. We often omit the empty attribute () and just write

2[7]. P and 2?[j]. P for !°[§]. P and x7?%[§]. P respectively.

0 denotes inaction. x!*[vy,...,v,]. P denotes a process that sends a tuple [v1,...,v,] on x and then (after
the tuple is received by some process) behaves like P. If a contains ¢, then once this process is scheduled
and the tuple is sent, the tuple must be received. If ¢ contains o and if this process is blocked by input or

output prefixes on other channels (for example, if it appears in the form Q = y?[]. 2!*[v1,..., v,]. P and the
entire process @ is scheduled), then it must be scheduled and the tuple must be sent on z. ?*[y1,...,yn|. P
denotes a process that receives a tuple [vq,...,v,] on = and then behaves like [y1 — v1,...,y, = v,]P.

P | Q denotes a concurrent execution of P and @, and (vx) P denotes a process that creates a fresh channel
x and then behaves like P. if v then P else () behaves like P if v is true and behaves like @ if v is false;
otherwise it is blocked forever. *P represents infinitely many copies of the process P.
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3.4 Operational Semantics

Following the standard reduction semantics for the m-calculus [13], we define an operational semantics by
using two relations: a structural congruence relation and a reduction relation.

We first give the structural congruence relation below. For some technical reason, unlike in the standard
semantics, we do not have xP = P|*P. Instead, we will introduce a rule for the reduction relation (the
(R-REP) below) that allows *P to be reduced in the same way as P |*P.

Definition 3.10: The structural congruence relation = is the least congruence relation closed under the
following rules:

rPjo=r (SCONG-ZERO)

PlQ=Q|P (SCoNG-ComMMUT)
P|(Q|R)=(P|Q)|R (SCoONG-ASSOC)

(vx) (P|Q) = (vzx) P|Q (if = is not free in Q) (SCONG-NEW)

Following the operational semantics of the linear w-calculus [11], we define the reduction relation as a

ternary relation P LN Q. [ indicates on which channel the reduction is performed: [ is either e, which
means that the reduction is performed by communication on an internal channel or by the reduction of a
conditional expression, or x, which means that the reduction is performed by communication on the free
channel z.

Definition 3.11: The reduction relation — is the least relation closed under the following rules:

v, ..., 0. P x?“'[zl, ey 2] Q 5 Pz = 01y, 20 0] Q (R-Cowm)
!
P—
%Q (R-PAR)
PIR-5% QIR
P
Q (R-NEW1)

(vx) P - (vx) Q

P00 1+

; (R-NEW2)

(ve) P — (vz) Q
if true then P else Q —— P (R-IFT)
if false then P else Q —— Q (R-IFF)

!

P|xP — R

P19 . (R-REP)
*P|Q — R
p=pP P-LqQ Q=9

(R-CoNG)

P-4

12



4 Typing

This section defines a type system for our process calculus. We first redefine the reliability of usages (which
was first introduced in [23]) in Section 4.1. As explained in Section 2, the reliability expresses channel-wise
consistency of capabilities and obligations. Second, we define a subusage relation U; < Us and a subtyping
relation 71 < 7o in Section 4.2. The subusage relation Uy < U, is defined to hold if a channel of the usage U
may be used as a channel of the usage Us. By using those relations, we give typing rules in Sections 4.3 and
4.4. Finally, we show in Section 4.5 that the type system is sound in the sense that a well-typed process does
not deadlock: a input/output process having a capability will eventually find its communication partner
and be reduced (unless the whole process diverges).

4.1 Reliability of Usages

We first introduce a relation U; > Us, which means that the usage Us is obtained by the expansion of
a recursive usage, a choice of Uy or Uy from U M Us, etc. Readers who are familiar with the reduction
semantics of the m-calculus [13] would notice that > plays a role similar to that played by the structural
congruence of processes.

Definition 4.1: > is the least reflexive and transitive relation satisfying the following rules:
U =U|0

Ur||Us = Us||Uy
(U|U2)]|Us = Un[|(U2||Us)
Ur||(U2||Us) = (U||U2)[|Us

UynU, =U;
rec.U = [a — reca.U|U
WU = +U||U

Ur=W" Uy = Vs
Up||Uz = V3|V

Remark 4.2: The rule Ui ||(Uz||Us) = (U1]|Us2)||Us is actually unnecessary. It is derivable by:
Ur]|(Ue]|Us) = (U2||Us)[|Ur = Us||(Us||UL) = (Us||U1)[|Uz = Us||(U:]|Uz) = (Us]|U2)]|Us

The unary relation oby(U) below means that the usage U contains an input obligation and that there is
no way to discard the obligation. We need a relation =’, which is slightly different from >.

Definition 4.3: =’ is the least reflexive and transitive relation satisfying the following rules:
U =" U0
Ur||Uz =" Usl|Uy
(U1]|U2)[|Us =" Th]|(U2]|Us)
Ur|[(Ue||Us) =" (U1]|U2)||Us
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Uy Uy = U;
reca.U ¥’ [a — rec a.UJU
«xU =" «U||U
U ='W Uy =" Vy
Ul||Uz =" Vi[|Va
U~V
U > +V

Definition 4.4: Unary predicates oby, 0bo(C U) on usages are defined by:
ObI(U) < VUl.(U E, U, = Ela, UQ, U3.((U1 > Ia.U2||U3) A (0 C a)))
Obo(U) < VUl(U EI Uy = da, Us, U3((U1 > Oa.U2||U3> VAN (0 C a)))

For example, 0by(I,.0) holds, but 0by(I,.0M1;.0) does not hold: I;.0 can be chosen from the usage 1,.0M1.0,
so that the input obligation can be discarded. 0b1(Iy.1,.0) does not hold either, because the input obligation
arises only after a channel of the usage is used for input. The definition for recursive usages is subtle:
obi(rec a.(I,.0 M «) is defined to hold, because it contains an input obligation and the obligation remains
even after the righthand side of M is chosen.

Remark 4.5: 0by(xU) and oby(rec a.(a||U)) may be different. Let U = I,.0 M 0. Then, oby(+xU) does not
hold because «U =’ %0. On the other hand, obj(rec a.(||U)) does hold. This is the reason why we keep x
as a primitive usage constructor.

Next, we define the consistency of a usage. Intuitively, a usage being consistent means that if the usage
is offering an input/output capability, it must be imposing the corresponding output/input obligation.
Definition 4.6 [consistency]: A usage U is consistent, written con(U), if it satisfies the following condi-

tions:

1. fU = I,.Uy||Uz and ¢ C a, then 0bo(Us).
2. IfU = 0,.U1||Uz and ¢ C a, then 0by(Us).

The consistency defined above is only concerned with the current consistency between capabilities and
obligations; it does not care about the state after the channel is used for communication. For example, the
usage I¢.1:.0]|O00.0 is consistent although a channel of the usage is used as that of I..0 after the channel
is used for communication. Following the previous type system [23], we refer to the consistency of a usage
during the whole reduction by a term reliability. We define the reliability after introducing a reduction
relation U — U’ on usages. Intuitively, U — U’ means that a channel of the usage U may be used as
that of U’ after the channel is used for communication.

Definition 4.7: U — U’ is the least relation closed under the following rules:
Ial.U1||Oa2.U2||U3 — U1||U2||U3
Uy = U Uy — U Uy = U,
Uy — Us

—* is the reflexive and transitive closure of —.

Definition 4.8 [reliability]: A usage U is reliable, written rel(U), if con(U’) for every U’ such that U —*
U'.
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4.2 Subusage and subtyping

A channel of one usage may be used as that of another usage. For example, a channel of the usage Ij.0||7;.0
can be used as that of the usage Ij.1;.0, because the former usage expresses a more liberal use of the channel.
In this section, we define such a relation as a subusage relation U; < Us, and also define an induced relation
on types as a subtype relation 71 < 7o.

We first define a sub-attribute relation a; < ay, meaning that input/output with the attribute a; may be
viewed as that with the attribute as. For the consistency of capabilities and obligations, a capability may
be ignored but an obligation must not.

Definition 4.9 [sub-attribute]: The relation < is the least partial order satisfying ¢ < () and co < o.

We now define a subusage relation. We define it co-inductively, using the following usage simulation. It
is inspired from a standard definition of process equivalence in terms of bisimulation (see [12] for example).
It also resembles Jim and Palsberg’s definition for subtyping recursive types using simulations [9].

Definition 4.10 [usage simulation]: A binary relation R(C U xU) on usages is called a usage simulation
if the following conditions are satisfied for each (U,U’) € R:

1. If U’ = I,.U{||US, then there exist Uy, Us, and a such that (1)U = I,.U3||Usa, (ii) U2 RUS,
(iii) (U1 | [U2)R(U{||US), and (iv)a < '

2. H U = Oy,.U{||US, then there exist Uy, Us, and a such that (1)U > O,.U1||Us, (ii)UsRUS,
(i) (U1 ||U2)R(UY||US), and (iv)a < d'.

3. If U' — Uq, then there exists Uy such that U — Uy and U; RUj.
4. 0by(U) implies oby(U").
5. obo(U) implies ob(U").

The first and second conditions mean that in order for U to simulate U’, U must allow any input/output
operations that U’ allows. The fourth and fifth conditions mean that U’ must provide any obligations that
U provides. The third condition means that such conditions are preserved even after reductions.

Definition 4.11 [subusage]: A subusage relation < on usages is J{R | R is a usage simulation.}.

It is straightforward that < is the largest usage simulation. It is also trivial from the definition that < is a
preorder (i.e., a reflexive and transitive relation).

Example 4.12: I..U < 0 holds because the relation

{(I..U,0)}

is a usage simulation. On the other hand, I,.U < 0 does not hold: The pair (I,.U,0) does not satisfy the
fourth condition of Definition 4.10.

Example 4.13: 1..0]|1..0 < I..I..0 holds because the relation:
{(1.0||1¢.0,1¢.1..0)} U {(0]|[c.0,U) | Ic.0 = U} U{(Lc.0,U) |0 = U} U{(U1,Uz) | 0 = Uy AO = U}

is a usage simulation. On the other hand, I,.0||¢.0 < I..I,.0 does not hold, because the pair (15.0||¢.0, I¢.I5.0)
does not satisfy the fourth condition of Definition 4.10.
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Based on the subusage relation, we can also introduce a subtype relation. We could introduce structural
subtyping as in [16], but we don’t do so for the simplicity; such an extension is discussed in Section 7.

Definition 4.14 [subtyping]: The subtyping relation < is the least relation closed under the following
rules:

bool < bool (SuBT-Boor)

U<U'
[T1,. .yt JU < [71,. .. 7]t/ U’

(SUBT-CHAN)

The unary predicates noob(U) and noob(7) below means that U and 7 is representing no input/output
obligations. In other words, if x has type 7 such that noob(7), x need not be used.

Definition 4.15: noob(U) is defined to hold if and only if U < 0. noob(7) is defined by:
noob (1) <= (1 = bool) V (1 = [11, ..., )" /U A noob(U)).

We write 0b(U) (0b(7), resp.) if noob(U) (noob(), resp.) does not hold.

Lemma 4.16: noob(U) holds if and only if neither oby(U) nor obo(U) holds

Proof: If noob(U), i.e., U < 0 holds, then the pair (U,0) must satisfy the conditions of Definition 4.10.
Since neither 0by(0) nor 0b1(0) holds, by the fourth and fifth conditions, it must also be the case that neither
0b1(U) nor 0obo(U) holds.

On the other hand, suppose that neither oby(U) nor 0bo(U) holds. Then, U < 0 holds, because the
relation {(U,0)} is a usage simulation. O

Properties of the Subusage Relation <

In the rest of this subsection, we study properties of the subusage relation. Readers who are not interested
in proofs can safely skip to Section 4.3.

We first introduce a proof technique, which corresponds to a familiar proof technique of “bisimulation
up to” in process calculi.

Definition 4.17 [usage simulation up to]: A binary relation R(C U xU) on usages is a usage simulation
up to < if the following conditions are satisfied for each (P, Q) € R,

1. U’ = I,.U{||U), then there exist Uy, Us, and a such that ())U = I,.U1||Us, (ii)Us <R < US,
(i) (U 1U5) < R < (U1|U3), and (iv)a < o

2. U = O,.U{||US, then there exist Uy, Us, and a such that ())U = O,.U1||Us, (ii)U; < R < UJ,
(i) (U1 ||U2) < R < (Uf||U3), and (iv)a < .

3. If U' — Uy, then there exists Uy such that U — Uy and U; < R < Uj.
4. oby(U) implies oby(U").

5. 0bo(U) implies obo(U").
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The following theorem implies that in order to show U; < Us, it suffices to prove that there exists a
usage simulation up to < containing the pair (Uy, Us).

Theorem 4.18: If R is a usage simulation up to <, then R C<.
Proof: This follows from the fact that R U (< R <) is a usage simulation. 0

We now check several properties of < by using Theorem 4.18. Among others, important properties are
(1) the subusage relation is closed under usage constructors such as I,., O,., ||, M, and % (Lemmas 4.21
and 4.23), (2) Uy M Us is the least upper bound of U; and U, with respect to the subusage relation (the 4th
and 5th properties of Lemma 4.24), (3) rec .U is a fixpoint of Aa.U, with respect to the least equivalence
relation containing < (the 6th property of Lemma 4.24), and (4) if U is reliable and U < U’, then U’ is also
reliable (Lemma 4.27).

Lemma 4.19: If U = U’, then U < U'.

Proof: It suffices to show that R =< U{(Uy,Us) | Uy = Uy} is a usage simulation. Assuming Uy RUs, we
show each condition in Definition 4.10. The case for Uy < Us is trivial. So, assume Uy > Us. The conditions
1-3 are trivial. Suppose 0by(Uy) and U, = Uj. Since Uy = Us = Uj, we have U), = 0,.Us||Us and o < a for
some a, Us, and Uy. So, we have oby(Us). Similarly, the condition 5 also holds. O

Lemma 4.20: 0bo(1,.U) never holds. 0bo(O,.U) holds if and only if o C a. 0bo(U1||Uz) holds if and only
if 0bo(U1) V 0bo(Usz) holds. 0bo(Uy M Usz) holds if and only if 0bo(U1) A 0bo(Uz) holds. 0bo(xU) holds if
and only if 0bo(U) holds. Similar properties hold also for obj.

Proof: Trivial by the definition of obo and o0bj. O

Lemma 4.21: < is closed under the usage constructors I,., O,., || and M, i.e.,
o U< U implies I,.U < .U,
e U < U’ implies 0,.U < 0,.U’,
e Uy < Uj and Uy < U, imply Uy||Usy < Uj||US, and
o Uy <U{ and Uz < U5 imply Uy MU, < Uy NMUS.
Proof: It suffices to show that the relation

R= <
U{(0..U, 0,.U") | U < U}
U{(L.U,1,.U") | U < U"}
U{(Th||U2, U7||U3) | Uy < UY and Uz < Us}
U{(Ul M Us, U{ M Ué) | Ui < U{ and Uy < Ué}

is a usage simulation up to <. We need to show the conditions in Definition 4.17 for each pair (U,U’) in R.
Since the cases where (U,U’) is in the first, second, or third set is trivial, we show only the other cases.

e Case where (U,U’) is in the fourth set: It must be the case that U = Uy||Us, U’ = Uj||Us, and U; < U/
fori=1,2.
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— Condition 1: Suppose U’ = I.Us||Uj. Then, U; = I,.Us||Us and Ug||U; = Uy for (i, j) = (1,2) or
(2, 1). Since UZ' S Ul-l and Uj S UJI», we have U t Ia.U3||(U5||Uj), U5 S Ué, and U3||U5 S Ué“Ué
So, we have Us||UyRU5||Uj < Uy and Usl|(Us]|U;) < (Us||Us)||[UR(U3||[Us)||U; < Usl|Us, as
required.

— Condition 2: Similar to the condition 1.

— Condition 3: Suppose U" — Uj. Then, either ()U] — Uy and Uj||US = Ui, (ii)Uy — Uj and
UillU1 = Us, or (i)Uj = Loy Us|Us, U = Ogy Ug| Uz, and Uy||Us||Ug| U7 = Uy for (i, ) = (1,2)
or (2,1). Because the case (ii) is similar, we show only the case (i) and (iii).

x Case (i): By Uy < Uj and U{ — Uy}, there must exist Uy such that Uy — Uy and Uy < Uj.
Let Us = Uy||Us. Then, we have U = Uy||Uy — Us||Us and Uy||[U2RU||US < Uj as required.
* Case (iii): By assumptions, it must be the case that:

Ui = 1o, .U4||Us
Uj >~ OGQ.U6||U7
Us <UL
U; < U§
Ud||Us < Uy||Usg
Us||Ur < Ug||U;
a; < d}
as < db.

Let U3 = (U4||U5)||(U6||U7) Then, we have U = U1||U2 — U3 and U3R(Ui||U£)||(Ué||U§) S
Ui as required.

— Conditions 4 and 5: Follow immediately from Lemma 4.20.

e Case where (U,U’) is in the fifth set: It must be the case that U = Uy N Uy, U’ = Uy N UJ, and
U; < U/ for i = 1,2. The conditions 1-3 are trivial (Notice that Uy MU, = I,.Us||Uy if and only if
U; = I1,.U3||Us for i =1 or 2. The conditions 4 and 5 follow from Lemma 4.20.

O

Remark 4.22: < is not closed under the recursive usage constructor. For example, let U = «||0,.0 and
U' = 0,.0. Then, U < U’ holds, but rec a.U < rec .U’ does not.

< is also closed under the constructor .
Lemma 4.23: U < U’ implies xU < *U’.
Proof: It suffices to show that the relation
R =< U{(xU||U",«U"|\U") | U, U, U" €ed and U < U"}

is a usage simulation up to <. For each pair (U1, U]) € R, we need to show the conditions in Definition 4.17.
The case where the pair is in the first set is trivial, we show only the case where the pair is in the second
set. In this case, Uy = «U||U" and Uy = «U'||U".
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e Condition 1: Suppose U] > I,.UL||Uj. Then, it must be the case that (i) U > I,.U||U; and
Ui||U; = U3, or (ii) U" = 1,.U5||Uy and «U'||Uy = Us. Since the latter case is trivial, we show only
the former case. By U < U’, there exist U, Uy, and a such that U > I,.Us||Us, a < @', Uy < Uy, and
U2||U4 S UéHUi SO, we have U1 t U||U1 E Ia.U2’|(U1HU4), and

Uh||Us

and

Us||(U1]|Us)

e Condition 2: Similar to the condition 1.

INIA & IA

INIA RININIA

«U||(U"]|Ua)
+U'||(U"][Ua)
Uil|Us

Us,

Ur][(U2]|Uy)

U1 [|(Us]|Uy)
«U|[(U"|U5]|U})
«U'||(U"||U3||UY)
UL [(U3]1UL)
Us||Us.

e Condition 3: Suppose U; — UJ,. Then, one of the following conditions holds.

a) U — Ui and Ui||U! = US.
3 3V 2
(b) U" — U4 and +U'||U} = U3,
(
(d
(e) U'||lU" — U} and Uj||U; = Us.

)
)

¢) U'z Ly Us||Us, U" = Oy Us||Us, and «U"||(Us]|U4]|Us]|Us) = Us.
) U'z Oy Us||Us, U" = Ly U] |Us, and «U'|| (U] [U4]|Us||Ug) = Us.
)

Since the case (d) is similar to the case (¢) and the case (e) is similar to the case (a), we show only

the cases (a), (b), and (c).

— Case (a): In this case, U — Uz and Uz < Uj for some Us. Let Us = Us||U;. Then, we have

U1 — UQ and

as required.

Us

INIA &IAIA

Us| U
«U||(Us][U")
«U'||(U3]1U")
Us||U1

Uy

— Case (b): Let Uy = «U||U5. Then, we have U; — Uy and UsR«U'||Us < Uy as required.

— Case (c¢): In this case, it must be the case that U = I,,.Us||Us, a1 < a}, Uy < Uy, and Us||Uy <
Us||Uy. Let Us = «U||(Us||U4||UZ||Ug). Then, we have Uy — Uz and

Us

as required.

<

<

+U||(Us]|U4]|Us]|Us)
R +U'||(Us]|U4][UsUs)

Uy
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Conditions 4 and 5: Follow immediately from Lemma 4.20.

O
Lemma 4.24: 1. U||0 < U and U < U||0.

2. Uh]|Ux < Usl|Uy

3. Unl|(U2]|Us) < (Uh]|U2)||Us and (Uh]|U2)||Us < Un|(U2||Us)

4. If U < Uy and U < Uy, then U < Uy M Us.

5. f UL MU, < U; fori=1,2.

6. reca.U < [a— reca.U]U and [a — rec a.UJU < reca.U.

7. «#U||U < +U.

8. If U2 S 0, then Oa.UlHUQ S Oa.(UlHUZ) and Ia.UlHUQ S Ia.(UlHUQ).

9. *UIH*UZ S *(U1||U2)

Proof: 1 U < U||0 follows from Lemma 4.19. U||0 < follows from the fact that R =< U{(U||0,U) |
U € U} is a usage simulation.
2, 3, 5 These follow from Lemma 4.19.

4 Suppose U < U; and U < Us. It suffices to show that < U{(U,U;MUs)} is a usage simulation. We only
need to check the pair (U,U; MUsz). The condition 1 follows immediately from the assumption, since
Uy MUy = 1,.Us||Uy implies U; = 1,.Us||Uy for i = 1 or 2. The conditions 2 and 3 follows similarly.
Suppose that oby(U) holds. Then, by the assumption, it must be the case that obr(Uy) and oby(Usz).
Therefore, 0by(U; MUs). The condition 5 follows similarly.

6 reca.U < [a+— reca.UJU follows from Lemma 4.19. [a+— reca.U]U < reca.U follows from the
fact that R =< U{([aw = rec a.U]U,reca.U) | U € U} is a usage simulation. (Notice that rec a.U >
I,.U1||Uy implies [ — rec a.UJU = I,.U1||Us.

7 Similar to 6.

8 It suffices to show that

R= < U{(Oa.UlHUQ,Oa.(UlHUQ)) | U,Uyeld and Us < 0}
U{(Ia.UlHUQ,Ia.(UlHUQ)) | Ui, Uy €U and Uy < 0}

is a usage simulation. Assuming U;RUs, we need to show each condition in Definition 4.10. Since
the case where U; < Us is trivial and the case where (Uy, Us) is in the third set is similar, we show
only the case where (Uy,Us) is in the second set. In this case, Uy = Oy.Us||Us, Uz = O,.(Us||Us), and
Uy < 0. The conditions except for 2 and 5 are vacuously true. Suppose Us = O,.Us||Us. Then, by
the definition of >, it must be the case that a = o/, U5 = Us||Uy, and 0 = Ug. So, Uy = O,.Us||Uy,
Uy < Us, and Us||Uy < Us||Us. Therefore, the condition 2 holds. The condition 5 follows from the
fact that obo(0,.Us||Uy) implies o < a.
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9 It suffices to show that
R =< W{(xUn[[xUs||Us, #(U1||U2)[|Us | Uy, Us, Us € U}

is a usage simulation up to <. Assuming URU’, we show each condition in Definition 4.10. Since the
case where U < U’ is trivial, we show only the case where (U,U’) is in the second set of R. In this
case, U= *U1||*U2||U3 and U' = *(U1||U2)||U3

— Condition 1: Suppose U’ = I,.U4||Us. Then, one of the following conditions hold:
(a) U1 t Ia.U4||U6 and U6||U2||U/ t U5.
(b) U2 t Ia.U4||U6 and U6||U1||U/ t Ué
(C) U3 E Ia.U4||U6 and *(U1||U2)||U6 E U5.
We show only the cases (a) and (c): The case (b) is similar to the case (a).

x Case (a): U = «Uy||xUs||Us = I,.Us||Us||U = I,.Us||(U]|(Us||U2)). Let Uz = U||(Ug||U2).
Then, we have U7RUI||(U6||U2> S U5 and U4||U7 S (U||(Ugl|U4||U6))R(UI||(U2||U4||U6)) S
U4||Us as required.

x Case (c): U = «Uy||xUs||Us = I,.U4||(xUn]||*Us2||Us). We have

(xUr|[xU2||Us )R (+(U1]|U2)||Us) < Us
Ua||(x U |[xUs||Us) < xUr|[xU2||(Ua||Us)
R (U||U2)[|(Us||Us) < U4l|Us

as required.
— Condition 2: Similar to the condition 1.

— Condition 3: Suppose U’ — U,. By the definition of — and the law 7 of this lemma, we have
U1]|U1]|U3||U2||Us — Us and «(U1||Us)||Us < Uy for some Us (since Uy can be obtained from U’
by expanding x(U1||Uz) twice, reducing it, and then contracting x(U1||Us)||(U1]|Uz2) to x(U1]|Us).
So, we have

U > U1||U1||U2||U2||U3||*U1||*U2 — *U1||*U2||U5.

We have
(U |[+Us||Us )R (+(U1||U2)||Us) < Ua
as required.

— Condition 4: Suppose 0by(U). Then, by Lemma 4.20it must be the case that oby(U;) for i = 1,2,
or 3. In either case, we have oby(U").

— Condition 5: Similar to the condition 5.

Lemma 4.25: If Uy < U, and Uy is consistent, then Us is also consistent.

Proof: We check the conditions in Definition 4.6.

e Condition 1: Suppose Us = I,,.Us1||Us2 and ¢ C ay. By the assumption Uy < Us, it must be the case
that U1 i Ial-U11||U12a U12 S U22 and al S a9 for some UH, U12, and ai. From al S a9 and ¢ g as,
we get ¢ C ay. Since Uy is consistent, it must be the case that 0bo(Uy2). By the fact Ujs < Uss, we
have Obo(Uzg).
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e Condition 2: Similar to the case for the condition 1.

Lemma 4.26: If U; < U, and Uy — UJ, then Uy — Uj and Uj < U} for some Uj.
Proof: This follows from the fact that < is a usage simulation. a
Lemma 4.27: If rel(U;) and Uy < Us, then rel(Us) also holds.

Proof: Suppose that rel(Uy), Uy < Us, and Uy —* Uj. It suffices to show that U is consistent. By
Lemma 4.26, there exists U] such that Uy —* U{ and U{ < Uj. By the definition of rel(Uy), U] must be
consistent, and hence so is Uj by Lemma 4.25. O

4.3 Type Environments

This subsection defines type environments as well as a few operations and relations on them.

Definition 4.28 [type environments]: A type environment is a mapping from a finite set of variables to
types.

Notation 4.29: We use a metavariable I' for a type environment. vy:7,...,v,:7, denotes the type en-
vironment I' such that dom(T") = {vy,..., v, }\{true, false} and T'(v;) = 7; for each i € {1,...,n} satisfying
v; & {true, false}. (So, x: T, true: bool denotes the same type environment as x:7.) We write () for the type
environment whose domain is empty. When v ¢ dom(T'), we write I, v : 7 for the type environment I" satis-
fying dom(I") = dom(T') U ({v}\{true, false}), T'(v) = 7, and T'(y) = ['(y) for y € dom(T). T\{x1,..., 2.}
denotes the type environment I such that dom(I") = dom(T')\{x1,...,z,} and I"(x) = T'(x) for each
x € dom(T").

The unary predicate noob on types is extended to that on type environments.
Definition 4.30: A unary predicate noob(T") on type environments is defined by:
noob(xy : T, ..., &y, : T,) <= noob(r;) for each i € {1,...,n}
We write 0b(I") if noob(I") does not hold.

The subtyping relation is extended to the following relation on type environments. Intuitively, I'y < T's
means that a type environment I';y may be regarded as I's.

Definition 4.31: The sub-environment relation I'y < I's holds if and only if the following conditions hold:

1. dom(T'1) 2 dom(T'y)

2. Vx € dom([y).(I'1(x) < Ta(x))

3. Vo € dom(I'1)\dom(T'3).(noob(T'(x)))
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Because deadlock-freedom is sensitive to information on how many times each channel is used for input
and output, a type environment cannot be shared among concurrent processes; instead, as in the linear
m-calculus [11], the type environment of a parallel composition should be a combination of those of its
subprocesses. For example, if a process P is well typed under the type environment x : []'/I..0 and another
process @ is well typed under the type environment x : []'/0.0, then P |Q should be well typed under the
type environment x : []'/(1¢.0]|Oo.0). Such a type environment is computed by the operation + defined
below. + can be regarded as extensions of the operation || on usages to the operations on types and type
environments.

Definition 4.32 [Summation of types and type environments]: The summation of two types, writ-
ten 71 + 7o, is defined by:

bool 4+ bool = bool
[7‘1, o ,Tn]t/Ul =+ [7‘1, o ,Tn]t/UQ = [7’1, o ,Tn]t/(UlHUQ)

71 + 72 is undefined otherwise. The summation of two type environments, written I'y 4+ I'2, is defined only
if T'1(z) + Ty(x) is defined for each x € dom(T'1) Ndom(Ts). It is defined by:

dom(I'y +T'y) = dom (') U dom(I'2)

[i(x) +Da(x) if x € dom(I'1) Ndom(T'y)
(T +To)(z) =< T'i(x) if x € dom(T'1)\dom(T'3)
2(x) if © € dom(I'2)\dom(I'y)

—

The usage constructor * is extended to operations on types and type environments.
Definition 4.33: An operation * on types is defined by:

xbool = bool
AU = (7t )+U

(Here, « is a fresh variable.) * is pointwise extended to an operation on type environments by:
k(L] 1T,y T 2 Ty) = X1 1 KT, ..y Ty KTy
The subtyping relation and sub-environment relation is closed under the operations + and .

Lemma 4.34: Suppose 71 < 71 and 75 < 7. Then 71 + 75 is well defined if and only if 7{ + 74 is well defined.
Moreover, if they are well defined, 71 + 70 < 7] 4+ 75. Similarly, if I'; < T and I's < T, then I'y + Ty is well
defined if and only if I'} +T'% is, and I'; + 'y < T + T’ holds if they are well defined.

Proof: Trivial by the definitions of + and < and Lemmas 4.24 and 4.21. O
Lemma 4.35: If 7 < 7/, then 7 < *7/. If I <T”, then I’ < «I".

Proof: Trivial by Lemma 4.23 and the definitions of 7 and %I O
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Definition 4.36: The operations M on types and type environments are extensions of the operation M on
usages. They are defined by:

bool 1 bool = bool
(711U 0 [7] /U2 = [7] /(U1 N )
dom(T'y MT'y) = dom(I'y) U dom(T's)
Ii(x) MTo(x) if x € dom(T'1) N dom(Ts)

bool if 'y (z) = bool and = & dom(I's)
(T;NTe)(x) =< [FY/(UN0) ifTy(x) =[7]"/U and = € dom(T5)

bool if Tao(x) = bool and = & dom(I'y)

[F]t/(UM0) if Ty(x) = [7]'/U and = € dom(Ty)

Lemma 4.37: T'; M Ty is the greatest lower bound of 'y and I's with respect to <, i.e.,
1. T <T'yand I' <T'9, then I' <T'y MTs.

2. TNy <TI; fori=1,2.

Proof: Trivial by Lemma 4.24 and the definition of 'y M Ts. O

4.4 Typing Rules

This subsection introduces the type judgment form and the typing rules for deriving type judgments. Before
introducing typing rules, we need to define a tag ordering, which is used for controlling the order in which
capabilities/obligations of multiple channels are used/fulfilled.

Definition 4.38: A tag ordering, written 7, is a strict partial order (i.e., a transitive and irreflexive binary
relation) on T.

Intuitively, s7t means that capabilities to communicate on a channel with time tag s may be used before
obligations to communicate on a channel with time tag ¢ are fulfilled. In other words, fulfilling obligations
to communicate on a channel with time tag ¢ can be delayed until capabilities to communicate on a channel
with time tag s are used only if s7t holds.

A tag relation 7 is extended to a relation between time tags and types, and that between time tags and
type environments as follows.

Definition 4.39: Let T be a tag ordering. Binary relations ¢7 7 and tTT are defined as the least relations
satisfying the following conditions.

tT bool
tTI7F)Y JU i tTH# VU <0
tTT if tTT(z) for each x € dom(T)

Intuitively, 77 means that capabilities to communicate on a channel with time tag ¢ may be used before
fulfilling obligations on a value of type 7.
We can now introduce type judgments and typing rules.

Definition 4.40 [type judgments]: A type judgment is a triple I'; T - P of a type environment I', a tag
ordering 7, and a process P.

24



0:TFO (T-ZERO)
C,o:[rm,...,m])/U;TEP
aCad tT(vp:m 4+ Fuvy 7+ 1) ob(vy:m+- v +0)=>cCd
v; € {true, false} = 7; = bool for each i € {1,...,n}
iy ) OuU+vy i+ vy i 7 + 05T F 2l%or, ..o 0] P
(T-Our)
Do,/ Uyr o1y o THE P
7; <71/ for each i € {1,...,n}
aCad t7T ob(T)=cCd
(T-1IN)
T,y ey ) /Lo U T =22y, yn] P
I'y;TEP Lo; T+ P
1 1 2 2 (T-PaR)
F1+F2;T}_P1|P2
Coo:fr,...,m)/U; TP o
x:[n Tnl"/ rel(U) (T-NEW)
T F (ve) P
ry7THP Iy T
1 Ly Q (T-I¢)
(I Ty) + v bool; T+ if v then P else Q
;THP
—_ (T-REP)
«; T+ *P
I;TF P b
noob(r) (T-WEAK)
Le:m;TEP

Figure 1: Typing Rules

Definition 4.41 [typing rules]: The set of typing rules for deriving a type judgment are given in Figure 1.
We often just write I'; 7 F P to mean that the type judgment I';7 + P is derivable by using these rules.
We also say that I'; 7 F P is valid if it is derivable by using the typing rules.

FEach typing rule is explained below.
(T-Zero): Because 0 uses no variables, it is well typed under the empty type environment.

(T-Out): This is is one of the key rules. The assumption I,z : [r1,...,7,]'/U; T F P implies that P uses
x according to U. Because the whole process x!“[vy, ..., v,]. P uses x for output before doing so, the total
usage of x is expressed by O4.U. The annotation a on the output indicates that this output operation at
least contains attributes (capabilities and/or obligations) in a; we therefore require the condition a C a’.
Other variables may be used by P or by a receiver on x, possibly in parallel. The former use is expressed by
I, while the latter use is by v : 71+ - -+vy, : 7,. Thus, the type environment of the whole process is given by
v, )t/ O . U+vy : T+ +uy, 0 T+ 1. (Here, we can assume {v1,...,v,} do not contain z because
we do not have recursive types; see Remark 4.42 below for the changes required when we have recursive
types.) We need to require additional conditions regarding capabilities and obligations. If the process P or
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the tuple [v1,...,v,] being sent contains some obligations, i.e., if ob(vy : 71 + -+ + v, : 7, + I') holds, then
the output on = must be a capability; otherwise this output process may be blocked forever without fulfilling
the obligations, causing deadlock. So, we require the condition 0b(vy : 71+ + vy : 7o +T) = ¢ C a’. The
output being a capability is not a sufficient condition. Because this process fulfills the obligations possibly
contained in P and [vy,...,v,] only after using the capability to output on z, the tag ordering 7 must
explicitly allow such dependency. We therefore require the condition t7 (v : 71 + -+ + v, : 7 + T).

(T-In): This is similar to (T-OuT). The assumption I,z : [71,..., 7] /Uy : 7|, styn : 73T = P
implies that P uses x according to U. Because the process x7%[yi, ..., y]. P uses x and then behaves like P,
the total usage of x is expressed by I,,.U. The annotation @ on the input indicates that this input operation
at least contains attributes in a; so, we require the condition a C a/. If P contains some obligations on
channels except for y1,...,yn, then the input on z must be a capability; we therefore require the condition
0b(I') = ¢ C a’. Because the process fulfills the obligations in I" only after the input on x succeeds, we
require the condition ¢7T.

(T-Par): The assumptions imply that P; uses variables as described by T'y, and in parallel to this, P,
uses variables as described by I';. So, the type environment of P | P, should be the combination I'; + I's.
The tag ordering must be shared between P; and P5, so that there is no disagreement on the order in which
capabilities/obligations are used/fulfilled.

(T-New): The usage of the created channel x must be reliable, in the sense that each input/output capa-
bility is matched by the corresponding output/input obligation guaranteeing the capability. The condition
rel(U) is therefore required.

(T-If):  Since if v then P else Q executes either P or @, the uses of channels by the process is estimated
by ' M Ts.

(T-Rep): Since P runs infinitely many copies of P, the type environment should also be replicated by .

(T-Weak): This rule allows to add an additonal binding. It is only allowed when the type do not contain
any obligations.

Remark 4.42: In the presence of recursive types, a process sending a channel through the channel itself
is allowed. For example, z![z].0 is valid if x has a recursive type 7 satisfying 7 = [7]*/U. In this case,
the receiver can use x only after the output on x succeeds. So, we need to generalize the rule (T-OuUT) as
follows:

L;TEP
[Ty, )t /U =T(2) 4+ (v1 : 71+ + vyt ) (T)
aCad tT (v i1 4+ vy 1 +1)\{2} ob((vy i1+ Fv, T+ D)\{2z}) = cCd
v; € {true, false} = 7; = bool for each i € {1,...,n}

[Ty ) Ou U+ (vrimi+ - 40 7 + D)\ {2z T F 2!y, v,). P

(T-Out’)
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Remark 4.43: Originally, we included the following more general rule as (T-WEAK):

ITHP T'<T
I'-7+P

We removed this because it turned out that this rule has a bad interaction with annotations of input or
output processes with obligation attributes.

Example 4.44: Let I' =z : []%* /1.0,y : []*/00.0 and T = {(ts,t,)}. Then, T'; T F 2?%[]. y!°[] is a valid
type judgment.

Example 4.45: A type judgment

Y [17/00.0: {(ta, ty)} F (va) (x?2]].91°[] | 217[])
can be derived as follows:

(T-ZERO)

0; {(ts,ty)} F O (T-WEAK)

e (/0.2 (7 /0: {{tr. 1)} F O
15O (00 (et o] 00w [0 )] O
£ [/ 000, : [/ 1e0: {11} F 2?[]. 4] 2 /000 {(ts, t)} - 7]
y < /000, : [/ (e 01 000): {{tr: 1)} F 2P [J.y°[] | 28]

: [5/00 05 (1)} F () @2[].yto[] 2]

(T-ZERO)
(T-WEAK)
(T-Our)
(T-PAR)

0; {(tz,ty)} - O

(T-NEW)

Example 4.46: A process P = xf?[x,r].r![x] is considered to implement the identity function, since it just
forwards the argument x to the reply address r. A type judgment:
f : [bool, [bool]'" | 04.0]'f /x1.0; T + P

can be derived as follows:

ITFO (T-ZERO)

f : [bool, [bool]tr /0.0 /0,7 : [bool]'" /O; T + 0
f : [bool, [bool]'™ | O6.0]'f /0, : bool,r : [bool]'r /O6.0; T + r![z]
f 1 [bool, [bool]tr /| O6.0]' | I6.0; T & f2[x,r]. r![x]

f i [7, [bool]'r /O6.0]'f /%15.0; T + P

(T-WEAK)
(T-Our)
(T-IN)
(T-REP)

where T is an arbitrary time tag. We know from the judgment (without looking at the process expression)
that P provides infinitely many inputs on f (since the usage of f is *I,.0), and that each time P receives
a pair [x,r] on f, it eventually outputs a boolean value on r (since the usage of the second parameter is
0o.0). From the above judgment, we can also obtain the following judgment:

0:{(ty, ty)} = (f) (P (vy) fitrue, y]. y7°°[2]. 0).

The process f![true, y]. - - - calls the function located at f and waits for a reply. The judgment indicates that
a reply can be eventually received (because the input on y is annotated with the capability attribute c).
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4.5 Type Soundness

We now show the correctness of our type system: if a process is well typed, any subprocess currently trying to
perform communication with the capability attribute can eventually find its communication partner (unless
the process is infinitely reduced). It is formally stated in Theorem 4.49.

In the proof of Theorem 4.49, the following subject reduction theorem plays an important role. It
implies that the well-typedness of a process is preserved by reductions. As in the linear 7-calculus [11],
the type environment changes if the reduction occurs by communication on a free channel. For example, if
the process z?[]. 2?[]. 0] 2![]. #![]. 0 is well typed under x : []*/(1.1.0]|0.0.0), but the process is reduced to
2?[]. 0] 2![]. 0, which is well typed under z : []*/(1.0]|0.0), not under x : []*/(I.1.0||0.0.0).

Theorem 4.47 [Subject Reduction]:
1. HT;THPand P - Q, then I'; 7T F Q and I < T for some I".

2. If D,z : [f/]Y/U;T F P and P -2+ Q, then A; T - Q, U — U’, and (T, 2 : [f]!/U’) < A for some A
and U’

Proof: See Appendix A. O

To state the deadlock-freedom theorem, we introduce the following predicate Waiting. Intuitively,
Waiting(P) means that P is trying to use a capability to input or output on some channel.

Definition 4.48: A predicate Waiting on processes is the least unary relation satisfying the following
conditions: (i) ¢ C a implies Waiting(x!*[0]. P) and Waiting(x?*[g]. P), and (ii) Waiting(P) implies
Waiting(P | Q), Waiting(Q | P), Waiting(xP), and Waiting((vz) P).

Theorem 4.49 [Deadlock Freedom]: If ;7 - P and Waiting(P), then there exists @ such that P —
Q.

Proof: The proof proceeds in the same way as the proof of the deadlock-freedom property of the previous
type system [10]. Basically, we can find a sub-process waiting on a channel with a minimal time tag among
those trying to use an input or output capability and show that there must exists a process fulfilling the
corresponding output or input obligation on the same channel. Because we use Theorem 5.1 in the next
section, we defer a complete proof until Appendix B. |

The above theorem states only about closed process expressions. As for a process containing free vari-
ables, even if it is well typed, an input/output process annotated with ¢ may not be reduced by itself. For
example, z : []//1..0;0 - 27¢[]. 0 is a valid type judgment, but the process cannot be reduced by itself. This
is just because the input on x being a capability depends on the assumption that some external process
fulfills an obligation to perform an output on x. So, if the above process is correctly composed with external
processes so that the whole process is closed and well typed, the input on x will eventually succeed.

We omit statements about the properties guaranteed by the obligation annotation (!° and 7°).

5 Type Reconstruction

We now turn to the main goal of this paper: type reconstruction. The type system has been reformalized
in the previous section for this goal, but there still exists a little hurdle to develop a type reconstruction
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algorithm: The typing rules in Figure 1 are not syntax-directed (i.e., there are more than one applicable rules
for each process expression). We make the typing rules syntax-directed by eliminating the rule (T-WEAK) in
Section 5.1. Then, we define the notion of a principal typing in Section 5.2. As usual, the principal typing of
a process expresses all the possible typings of the process. It will be defined as a pair of a type environment
containing variables and a set of constraints on the variables. After that, we give an algorithm to obtain a
principal typing. The typability of a process is decided by checking the satisfiability of the constraint set.
It is deferred until Section 6.

5.1 Syntax-directed typing rules

We can eliminate applications of the rule (T-WEAK) from a type derivation (except for those at the bottom
of the derivation) by moving applications of (T-WEAK) downwards as far as possible, and then combining
the remaining applications of (T-WEAK) with applications of other rules.

For example, consider the following type derivation:

———— (T-ZERO)
0:T+Ho0
oo (TR
- ’ (T-WEAK)

x:[]t/0,y : bool; T+ 0
x:[]/1,.0,y : bool; T = x?[].0

(T-1IN)

The second application of (T-WEAK) is unnecessary for the application of (T-IN). So, we can move it
downwards and obtain:

———— (T-ZERO)
% (T-WEAK)
: ’ (T-1IN)

x:[)1)1,.0; T +x?[]. 0
x: [/ 1.0,y : bool; T = x?[].0

(T-WEAK)

The first application of (T-WEAK) is necessary for the application of (T-IN), but we can eliminate it by
generalizing (T-IN) to:

0T Fsr P
7; < I'(y;) for each i such that y; € dom(T)
noob(t;) for each i such that y; & dom(T")
[(x)=[r,...,m7) /U or x € dom(T) AU =0
aCad tTT\{z, y1, - Yn} ob(T\{z,y1,...,yn}) = c Cd

T\N{z, 1, s yn by [Ty oy ) L U T Fstr 2%yt - - Yn). P

(ST-IN)

This rule allows the type environment of the body P not to contain a type binding on z. By using the new
rule, we can replace the derivation with:

(T-ZERO)
(T-IN)
(T-WEAK)

570
z:[)/1,.0; T +2?[].0
x:[]/1..0,y : bool; T = x?[].0

Thus, the applications of (T-WEAK) except for the last one have been removed.
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0;T FsTr O (ST-ZERO)
;THEP
T(x)=[r,..., ] /UV (x € dom(T) AU = 0)
aCad tT (vr 14+ op 1 + (D\{2})) ob(vy:m 4+ v+ (O\{2})) =cCd
v; € {true, false} = 7; = bool for each i € {1,...,n}
v, 7] O U+ i+ 4o s 7+ (D\{2}); T F 21%vr, ... 0] P

(ST-Our)

0T Fsr P

7; < I'(y;) for each i such that y; € dom(T)
noob(t;) for each i such that y; ¢ dom(T)
[(x)=[r,...,m7)' /U or x € dom(T) AU =0
a C a tTF\{‘raylaayn} Ob(F\{x7y17ayn}) =cC a (ST IN)
T\N{z,y1,--synby @ [0y oy ) L U T Fstr 2%yt - - yn). P
Ty:T Fsrr P, To:T Fsrr P
1 sTR £1 2 STR 1> (ST-PAR)
Dy + Ty T hstr Pu| Pe

F;Tl—s'rn P

(T(x) = [, ) /U Arel(U)) V & & dom(T) (ST-NEW)
MN\{z};T Fsrr (vx) P
I'isThstr 1 I T kstr P2 (ST-Tr)
(T1NT9) + v booly T Fsrr if v then P else P

;T H P

STR (ST-REP)
[T FsTr *P

Figure 2: Syntax-Directed Typing Rules

Based on the above ideas, we can reformalize the typing rules as shown in Figure 2. By using those rules
and using (T-WEAK) only at the bottom of derivations, we can derive the same type judgments as those
obtained by the rules in Figure 1. We write I'; T Fgyrr P if I'; T F S is derivable by the rules in Figure 2.

Each rule (ST-XX) can be considered a combination of (T-XX) with minimal weakening required to make
(T-xx) applicable. The rule (ST-OUT) can be considered a combination of (T-OuUT) with weakening on x.
(ST-IN) is a combination of (T-IN) with weakening on =, y1,...,y,. The rule (ST-NEW) is a combination of
(T-NEW) with weakening on z. The rule (ST-IF) can be considered a combination of (T-IF) with minimal
weakening required to make the type environments of P; and P» coincide.

The syntax-directed rules are essentially equivalent to the typing rules in Section 4 in the following sense.

Theorem 5.1 [Correctness of Syntax-Directed Rules]:
1. If I'; T F P holds, then there exists IV such that I'; 7T Fsyr Pand T =T", 21 : 71,...,Tpn : Tn.

2. Ty T Fsrr P holds, then I'; 7 F P also holds.
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Proof: Straightfoward induction on type derivation. |

5.2 Principal Typing

Since the typing rules in Section 5.1 are syntax-directed (i.e., there is only one rule that matches each process
expression), by introducing variables expressing types and usage attributes, we can express all the possible
typings as a pair of a type judgment containing those variables and a set of constraints on the variables.
We call the pair a principal typing. The concrete definition of a principal typing follows the definitions of
extended type judgments and constraints.

Definition 5.2 [extended usage attributes, usages, and types]: The sets of extended usage attributes,
extended usages, and extended types are given by the following syntax.

ax:=(|0|c|o|co
U:u=Uof(1)| 0] a|O,.U| LU | (U||Uz) | Uy MUz | reca.U | U
Tu=plbool|[r,..., 7t /U | 71 +7 | 7 M7 | *7

Here, { and p denote variables ranging over attributes and types respectively. Actually, ¢ above is also
a variable ranging over time tags, but in order to avoid introducing so many meta-variables, we do not
distinguish between variables ranging over time tags and time tags.

Uof(7) is an expression representing the outermost usage of 7 if 7 is a channel type. We identify
an expression Uof ([7]'/U) with U. An extended type judgment is obtained by replacing types in a type
environment with extended types. Operations +, 1, * on type environments are naturally extended to those
on extended type environments. For example, (z : p) + (y : bool,x : [7]/U) is defined as z : (p + [7]'/U),y :
bool.

We do not distinguish between two extended types which are instantiated to the same type for any
substitution: for example, we identify [7]*/U; + [7]'/Us and [7]"/(U1||Uz). In the rest of this section, we use
metavariables a, U, 7, and I" for extended attributes, extended usages, extended types, and extended type
environments.

Definition 5.3 [constraints]: The set of constraints, ranged over by ¢, is defined by:

cu=false|c; | cy|ca| e
¢r (constraints on types) i=T1; & 7o | 7y ~ T2 | 71 < 7o | noob(T)
| rel(T) | (00 V-V o,) = ca | tTT
o (obligation predicates) ::= ob(7) | 0b(U)
cy (constraints on usages) ::= Uy < Us | noob(U) | (0b(Uy) V-V ob(Uy)) = ¢q | 0b(U) = ¢ | rel(U)
¢q (constraints on attributes) :=a; < a2 | a1 C a2
¢t (constraints on time tags) ::= ¢, 7 t2

We write C for a set of constraints.

7| & T means that 7 and 7 must be identical. 71 ~ 7™ means that 71 and 7 must be identical except
for the outermost usages (so, when variables in 71 and 7o must be instantiated, 71 + 72 and 71 M 72 are well
defined). rel(7) means that 7 is a channel type [r1,...,7,]!/U and rel(U) holds.

Notation 5.4: We write  for a substitution of types, usages, and attributes for type, usage, and attribute
variables. We write F'V(T') and FV (C) for the sets of variables appearing free in I' and C' respectively.

31



Definition 5.5 [principal typing]: A pair (I', C') of an extended type environment and a set of constraints
is a principal typing of a process P if it satisfies the following conditions:

1. If § and a tag relation 7 is chosen so that dom(#) O FV(I') U FV(C) and 6C is satisfied, then
or; T+ P.

2. If I'; T F P, then there exists a substitution # such that #C and I'" < 6T hold.

5.3 Algorithm for Computing a Principal Typing

By reading syntax-directed typing rules in a bottom-up manner, we can easily construct an algorithm for
computing a principal typing. It is shown in Figure 3. In the figure, Rep(7), ob(T'), tTT,and 'y ~--- ~ T,
are defined by:

ep(p) =

ep(bool) = bool
ep([7]'/U) = [7]'/0
ep(71 + 72) = Rep(1)
ep(11 M 72) = Rep(m1)
ep(*(7)) = Rep()

N YNNI

0b(0) = false
ob(xy :71,...,xn : Ty) = 0b(T1) V-V ob(Ty)

T (12 T1ye ey Tp 2 1) = {tT 711, tT 0}

Fl ~ e AU Fn =
{Rep(m1) ~ Rep(m2) | I';(x) = 7 and I'j(x) = 7 for some x,4, j such that 1 <i < j <n}

Notice that the above definition does not depend on the particular representation of extended types: Al-
though we identify [7]¢/U; +[7]'/Us with [7]¢/(U1||Us), Rep returns the same type for both representations.
It is trivial that PT outputs a principal typing.

Theorem 5.6: Let P be a process expression. Then PT(P) is a principal typing of P.

Proof: The first condition follows by fairly straightforward induction on the structure of P. The second
condition follows by Theorem 5.1 and induction on derivation of I'; T Fsrr P. O

Note that PT outputs a principal typing even for an ill-typed process. Since the constraint set of the output
principal typing is unsatisfiable in that case, the conditions for principal typings are vacuously true. For
example, for an ill-typed process P = x?%[]. (if x then 0 else 0 ), PT(P) is (z : ---,{[]'/a ~ bool,...}),
whose constraint part is unsatisfiable. This kind of process is rejected in the constraint solving phase
described in Section 6. In practice, it would be better to interleave the phase of computing PT(P) and the
constraint solving phase in order to reject ill-typed processes as early as possible.

Note that not all the constraints introduced in Definition 5.3 can be solved. For example, we don’t have
an effective way to solve a type equality constraint p; + p2 = p3 + ps. Fortunately, however, we know that
PT outputs only a certain restricted form of constraint set, so that we can effectively solve it. In fact, the
output of PT satisfies the conditions below. We say C' implies ¢ when ¢ holds for every substitution 6 such
that dom(6) O FV(C) and 0C holds. We write well_defined () when 7 is well defined.
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PT(0) = (0,0)
PT(2!vy,...,v5]. P) =
let (I',Cy) = PT(P)
(Co) = € (D) then (...l ~ RenT(e) 0/ ()
else (0,0
in (z:[p1,...,pn]"/OcU+v1:p1 ++ + v, p + (D\{2}),
CruCyU{aC(ob(vy:pr+---+uvy:p,+ (\{2})) = cC(}
U@ [p1s--s 0] /OcU ~wvptpp~ s~ vyt pp ~ (D\{2}))
UtTor:pr 4+ 4 vnt pp + (T\{z})
U{pi = bool | i € {1,...,n},v; € {true, false}})
(where p1, ..., pn,a,(,t are fresh)
PT(x?"[y1, ..., yn). P) =
let (T, Cy) = PT(P)
(€0 ) =5 € doa() thes ([~ Rep(F ). Lol € (2)
else (0,0
in (O\{z,y1,---,ynts 2zt [p1,--. 7pn]t/IC'U)v
Ci1UCyU{a C ¢ ob(T\{z,y1,...,yn}) = c C(}
U{pi <T(yi), pi ~ Rep(L'(yi)) | yi € dom(T')} U {noob(p;) | yi & dom(L')}
Ut7T\{(L‘, Yiyoovy yn}
(where p1,...,pn, @, (,t" are fresh)
PT (P | P,) =
let (Fl, Cl) = PT(Pl)
(Ty, Cy) = PT(Py)
in (Fl + T, CrUCyU (Fl ~ FQ))
PT((vx) P) =
let (I, C) = PT(P)
in if z € dom(I') then (I'\{z}, C U {rel(I'(z))}) else (I, C)
PT(if v then P, else P, ) =
let (I',C1) = PT(P)
(Ta,Cy) = PT(P)
in (I MT2) + v : bool,Cy UCy U (I'y ~ Ty ~ v : bool))
PT(xP) =
let (T, C) = PT(P)
in (xI", C)

Figure 3: Algorithm for computing a principal typing
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Lemma 5.7: If (I',C') = PT(P), then

1.

For any type expression of the form [rq,...,7,]'/U appearing in T and C, all the extended usages in
Ti,...,Tp are usage variables.
For any constraint 7 =~ 19 € C, all the extended usages in 7 and 7 are usage variables.

For any constraint 71 < 7 € C, all the extended usages in 71 are usage variables. Moreover, 7, contains
no operators +, M, and * on types. Similarly, for any constraint noob(7) € C, all the extended usages
in 7 are usage variables and 7 contains no operators +, M, and * on types.

For any constraint 7 = 7 or 7y ~ 7, contained in C, 71 and 75 contain no operators +, I, and * on
types.

Let C' = {c € C'| ¢ is of the form 71 = 75 or 71 ~ 72}. C’ implies (i) well_defined(7) for every type T
appearing in I and C, (ii) 7 ~ 7/ for any 71 < 7o € C, and (iii) 7 ~ 7' for some channel type 7’ for
any usage expression of the form Uof (1) appearing in in C.

Proof: 1. Trivial by the fact that all the channel types constructed in PT are of the form [p1, ..., p,]*/U,

and the fact that the operations +,MM, and * on type environments only compose existing type expres-
sions with +,M, and *.

Constraints of the form 7 = 7 are only introduced in the case for output expressions, and they are
of the form p = bool.

A constraint of the form 71 < 75 or noob(r) is only introduced in the case for input processes, and 7
in this case is a fresh type variable.

. PT introduces no constraint of the form 7 ~ 7, except for those of the form p =~ bool. Constraints

of the form 7 ~ 7 can be introduced only by either the function ~ on type environments or by
[p1,- -y pn)t/a ~ Rep(T(x)) or p; ~ Rep(T'(y;)) in the cases for output or input processes. In all the
cases, the produced constraints 7, ~ 75 cannot contain operators +, 1, %, by the definition of Rep(7)
and Fl ~ FQ.

This follows from the fact that whenever a new expression is constructed by applying +, M, *, Uof in
PT, appropriate constraints of the form 7, ~ 7 are added to the constraint set.

d

Example 5.8: Let P = (vz) (vy) («![y] | x7¢[z]. 2?[w]. 0). Then, PT(P) is computed as follows (constraints
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of the form false = ¢, are omitted).

= ((@:[py]"= /O, .0,y py), {0 C (o, 0b(py) = € C Cas taT py}).-
-0) = (z: [puw]" /1¢. .0,{D C (=, noob(pw)})
PT((L’?C[z].zl?[w].O) =

(CIZ : [plz]tr/IC;‘Ov {(Z) C ¢, nOOb(pw>7C C C:i:?plz < [pw]tz/ICz'Ovplz ~ [pw]tz /0})
PT( ![y](() | 27¢[z]. 2?[w]. 0) =

(Z) g C:E; 0b(Py> =cC g Cm; thp}p
0 C ., n00b(pw), e C G, pt < [pu]= /1.0, p- ~ [pw]™= /0,
[oy]t= /0 ~ [pL]t= /0})
PT(P) = (0,
{0 C Cay0b(py) = ¢ C CaytaTpy,
0 C ¢.ynoob(pw), e C ¢, ot < [pu)= /1.0, pl, ~ [pw]™ /0,
[py]'= /0 ~ [p.]= /0, rel([py]' /O, .0 + [p.]' /Tc, .0), rel(py) })

6 Deciding Typability by Constraint Solving

The existence of a principal typing does not imply that there is a valid type judgment, because the set of
constraints may not be satisfiable. Indeed, the algorithm described in Section 5.3 always outputs a principal
typing, even for an ill-typed process x7%[y1,y2, y3]. !*[y1, y2]. 0. The typability of a process is decided by
reducing the set of constraints in its principal typing and checking its satisfiability.

We describe below how to reduce the set of constraints step by step. We reduce constraints on types,
those on usages, those on attributes and those on time tags in this order. The algorithm for reducing
constraints on usages is incomplete. As mentioned in Section 1, this is just because we add some extra
constraints when reducing usage constraints in order to reject some well-typed but bad processes.

The typability can be completely decided only when the whole process is given or type information on
the external processes is given. For example, whether or not a process (vy) (x!°[y]. 0| y?¢[]. 0) is well-typed
depends on the behavior of input processes on the channel . Therefore, when we need to incrementally check
the typability of processes, we can only partially apply the transformation rules given below. Although some
processes may be found to be ill-typed and rejected during partial reduction of constraints, the complete
decision of typability of some processes must be deferred until the whole process is given or type information
on all the free variables is given. For simplicity, we assume below that the input process P is closed.

6.1 Reducing Constraints on Types

We reduce constraints on types in two steps: we first reduce constraints of the form 7 = 7 or 7 ~ 7, and
then reduce constraints of the other forms.
We can transform constraints of the form 7 = 7 or 7 ~ 7 by using the transformation rules in Figure 4.

Example 6.1: Let P = (vx) (vy) (2![y] | 27¢[2]. 2?[w]. 0). As given in Example 5.8, PT(P) = (0,C) for

C= {@ C C:L‘) Ob(py) =cC C:c,t:chy?
0 C ¢, noob(pu,)),c C C:;caplz < [pw]tz /ICZ-OZ/)IZ ~ [pw]tz/oa
[y /0 ~ [pL]"= /0, rel([py]* /O, .0 + [p]"= / I¢;.0), rel(py) }
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(T, {false}) ifp#7andpe FV(r)
[p— 7](I,C) otherwise

( (T',{false}) ifp#7andpe FV(r)
[p— 7)(T',C) otherwise

(T, C' U {bool = bool}) ~ (I',C)

EF, C U{bool = [11,...,7)'/U}) ~ (T, {false})

(

<r,cu{pm}>~»{

T,CU{r = p})~

L,CU{[r1,...,m]/a~ [T{,...,T,'l]t’/a') ~fa=dit= (T, CU{n~r,...,Tn=T.})
[,CU{[mn,...,m]"/a = bool) ~ (T, {false})

', CU{p ~ bool}) ~ [p + bool|(T,C)
' - (T, {false}) ifpe FV(r)U---UFV(r,)
L,CU{p~|[r,....,7]"/U}) { o= [11,...,]t/a](T,C) otherwise (« fresh)
I, C U {bool ~ p}) ~ [p — bool|(T, C)
' (T, {false}) ifpe FV(r)U---UFV(r,)
DOV, o ml /U~ ph) ~ { o= [, ]! /a](T,C) otherwise (« fresh)
I', C U {bool ~ bool}) ~ (T, C)

[,CU{bool~ [11,...,7]t/U}) ~ (T, {false})
D,CU{[r,....,m| /U ~[r],.... 7 ) JU") ~ [t » (D, CU{r = 7},...,Tn = 7.}

L,CU{[r1,...,7)'/U ~ 7) ~ (T, {false})
if 7 is bool or a channel type of the form [r],...,7.]" /a’ where m # n

(
(
(
(
(
(
(
(

Figure 4: Rules for reducing type constraints (1)
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(T,Cu{p <p})~ (T,C)
(T, C U {bool < bool}) ~ (T, C)
(F’ cu {[Tb s >Tn]t/U < [Tb s 7Tn]t/Ul}) ~ (F’ cu {U < UI})

(T, C' U {noob(bool)}) ~ (T, C)
(T, C U {noob([r1,...,m]t/U)}) ~ (T,C U {noob(U)})

(T, C U {rel(bool)}) ~ (T, {false})
(T, C U{rel([t,..., 1] JU)}) ~ (T, C U {rel(U)})

(I, CU{(o1 V- Voi—1 Vob(bool) V 0j1 V-V o) = cqa})

~ (T, CU{(01 V--- V01 V0jt1V---Von) = cu})
(T,CU{(o1V---Voi_1 Vob([f]/U) Voit1V---Von) = ca})

~ (I,CU{(o1V---Voi_1 Vob(U)Voit1V---Von) = ca})

(T, C U {tT bool}) ~ (T, C)
(T, C U {tT[7]" JU}) ~ (I,C U {ob(U) = tTt'})

Figure 5: Rules for reducing type constraints (2)

It is transformed by the rules in Figure 4 as follows.

0,C) ~ [te = t,](0,{0 C (u, 0b(py) = € C Cuy tT py,
0 C ¢oyn00b(pw)sc C Cy pl < [pwl'= /16,0, pL ~ [pw]'= /0,
rel([py]'* /O, .0+ [pL]'= [ 11.0), rel(py), py = pl})
(rewriting on [py]™ /0 ~ [p'z]t’w/())
~ oy = pL)te = t5](0,{0 C Coy 0b(py) = € C oy taT py,
0 C ¢z, noob(pw),c C ¢, ph < lpw) /1.0, pl ~ [pw]'= /0,
rel([py]'=/O¢, .0 + [p.]= /1, .0), rel(py) })
(rewriting on p, = p.)
= (0,{0 C (s, 0b(p}) = ¢ C G, t5,T Py
D C (., noob(pw), ¢ C G pl < [pu]* /1.0, oL ~ [pu]"* /0,
rel([p.]"= / (O, .0l|1¢,.0)), rel(p’)})
~ [l e [pw]t [az](0,{0 C ¢, 0b(pl) = € C (o, 5Tl
0 C ¢z, noob(py),c C ¢, 0l < [pw)/Ic..0,
rel([p.]" /(O¢, 0|1, .0)), rel(pl)})
(rewriting on p. ~ [p,]*/0)
= (Q)a {Q) C Ca, Ob([Pw]tZ /QZ) =cC gw,t?rT[pw]tz /aza
0 C ¢y n00b(pw), € C C [pw]™/az < [pu]*= /1.0,
rel([[pw]'s /o] /(Oc, .0||I¢: .0)), rel([pw]® /o) })

Next, we can transform the other constraints on types by using the rules in Figure 5. We implicitly
assume that expressions like [7]/U; + [7]t/Us and Uof ([7]!/U) are simplified as necessary into expressions
like [7]*/(Uy||Uz) and U. So, for example, if bool < bool+ bool is in C, then it is first simplified into bool < bool

37



and the second rule of Figure 5 is applied.

Example 6.2: Let Cy be the last set of constraints in Example 6.1. (), C7) is further rewritten as follows.

0,C1) ~ (0,{0 C (o, 0b(z) = € C Gy 1, T [pu] ™/ az,s

0 C (-, noob(pw), € C G [pw]™/a: < [pu]=/Ic. .0,

rel([[pw]' /)" /(Oc, .0l I, .0)), rel([pw]'= /=) })
(rewriting on ob([py]% /az))

0 C (., noob(pw), e C ¢, [pw]™ /s < [pw]™ /1.0,

rel([[pw]"* /=)' (O, .0|| I, .0)), rel ([pw]' /a2)})
(rewriting on t,7T [pw]t /)

0 C C.,noob(py),c C ¢ a. <I.0,

rel([[pw]' /=] /(Oc, 0] I, -0)), rel([pu]'* /a)})
(rewriting on [py]* /o < [pw]'/1¢..0)

~*(0,{0 C Cuy 0b(az) = ¢ C (uy 0b(az) = T,
0 C (., noob(pw),c C . < I, .0, rel (O, 0|11 .0), rel(c.) })

(rewriting on rel(T))
Rewriting by using the rules in Figures 4 and 5 always terminates.

Lemma 6.3 [termination]: Let P be a process expression. There is no infinite sequence PT(P) ~»
(1,Cp) ~ (L, Ca) ~

Proof: We define the size size-(C) of a constraint set C' by:

sizer({c1,...,cn}) = sizer(c1) + -+ - + sizer(cn)
sizer (11 & o) = size (11 ~ To) = size (11 < o) = sizer(11) + size,(72)
sizer oob( )) = size,(rel(7)) = sizer(T)
size-((01 V-V o) = ¢,) = size-(01) + - -+ + sizer(0y,)
tT7) = sizer (1)

sizer(0b(T)) = szzeT( )
sizer(0b(U)) =
)

sizer(cy) = szzeT(ca) = size,(c) =0

~

(
(n
(
sizer(
(
(
(

sizer(p) =1
sizer(bool) =1
sizer([T1, ..., Ta]t/U) = size,(11) + - - - + size, (1,) + 1

Intuitively, size;(C') denotes the number of type constructors (channel types, bool, and type variables)
appearing in C. The lemma follows from the fact that each rewriting step monotonically decreases the
pair of (1) the number of type variables appearing in C' and (2) size,(C'), with respect to the lexicographic
ordering of pairs (i.e., with respect to the partial order < such that (m,n) < (m/,n’) if and only if m <
m'V (m=m'An<n')). O
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It is easy to see that if (T, C) is a principal typing and (T, C') ~* (I, C") by the rules in Figures 4 and 5,
then (I, C") is also a principal typing. Moreover, all the rules in Figures 4 and 5 preserve the conditions
in Lemma 5.7, unless false is added to the constraint. Therefore, the following conditions hold for (T, C)
obtained by reducing PT(P).

Lemma 6.4: Suppose PT(P) ~* (I',C) +. If false € C, then P is not typable. Otherwise, (I, C) is a
principal typing of P and the following conditions hold (if all expressions in C' have been simplified as far
as possible).

1. C contains no constraint of the form 7 ~ 7.
2. For every constraint 7 ~ 7o € C, both 71 and 7 are type variables.

3. Every extended type appearing in C' is composed of only type variables and operators +, M, * (i.e., it
contains no type expressions of the form bool or [7]'/U).

4. For every constraint of the form 71 < 75 € C or noob(71), 71 is a type variable.
5. An extended usage of the form Uof(7) does not appear in C.

6. If Uy < Uy € C or noob(Uy) € C, then U is a usage variable.

Proof: By Theorem 5.6 and Lemma 5.7, PT(P) is a principal typing of P and it satisfies the conditions of
Lemma 5.7. Because each rule in Figures 4 and 5 preserves the principal typing property (each rule preserves
the satisfiability of the constraint set, and changes the type environment only by applying a substitution
0 such that the constraint set implies p =~ p, 0o = « and 0t = t), (I',C) is also a principal typing. By
the definition of the principal typing, the unsatisfiability of C' implies that there is no valid type judgment
I'sTkFP.

Each rule also preserves the conditions of Lemma 5.7. Therefore, the conditions 1-5 can be checked as
follows.

1. If m; = m € C, then both 71 and 7 are composed only of type variables, bool, and channel type
constructors (the fourth condition of Lemma 5.7). So, one of the rules in Figure 4 must be applicable,
which contradicts with the assumption (I, C') .

2. Similar to the above proof of the condition 1.

3. By the above conditions 1 and 2, and the fifth condition of Lemma 5.7, each type expression appearing
in C' is either a type expression composed only of type variables, bool and channel type constructors
or a type expression composed only of type variables and operators +, 1, . The latter must be the
case since (I', C') .

4. This follows from the above condition 3 and the third condition of Lemma 5.7.

5. By the above conditions 1 and 2, and the fifth condition of Lemma 5.7, Uof(7) € C implies that 7 is
a channel type, which contradicts with the assumption (I, C') %.

6. PT(P) generates no constraint of the form Uy < Uz or noob(Uy). It is introduced only by the third
or fifth rule in Figure 5. By the third condition of Lemma 5.7, it must be the case that U; is a usage
variable.
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Now, if false ¢ C', then the remaining constraints on types are clearly satisfiable: if we instantiate
remaining type variables with []*/0 for a fresh time tag t, then all the constraints on types are satisfied. So,
we only need to check the satisfiability of constraints on usages, attributes, and time tags.

Example 6.5: By substituting []//0 for the remaining type variable p,, in Example 6.2, we can eliminate
the remaining constraint noob(p,,) on types and obtain the following constraints:

{0 C (o, 0b(az) = ¢ C Gy 0b(az) = 1,Tt.,0 C Cye C (o < I 0, 1el(O, 0| .0), rel () }

6.2 Reducing Constraints on Usages, Attributes, and Time tags

Now we describe how to reduce constraints on usages, attributes and time tags. Unlike the transformations
presented so far, the transformation on usages is sound but incomplete: Although an unsatisfiable constraint
set is never accepted, a satisfiable constraint set may be rejected. Because the reduction itself and the reason
why it is not complete are rather complicated, we first give an overview in Section 6.2.1, and then describe
details in the succeeding subsections.

6.2.1 Overview

By applying the rules in Section 6.1, we have constraints on usages of the form « < U, noob(«), (0b(Uy) V
-V ob(Uy,)) = ca, 0b(U) = ¢, or rel(U). Because noob(«) is equivalent to a < 0, and a« < Uy Aa < Us is
equivalent to a < Uy M U,y, we can assume that the constraint set is of the form:

{al SUla"'aa’n SUTU
Ob(VH) VeV Ob(Vlkl) = Cly 0, ob(le) VeV ob(mGm) = Cm,
rel(Vi),...,rel(V})}

Here, c¢1,...,cn is either a constraint of the form ¢ C a or t1Tts. ay,...,a, are mutually different usage
variables. We can also assume that {«, ..., a,} contains all usage variables appearing in the constraint set,
because otherwise we can add a constraint a < « for variables not in {ay,...,an}.

The basic strategy for checking the satisfiability of the above constraint set is to choose a normal solution
(the exact definition will be given later) of {a; < Uy, ..., a, < U,}, obtained from replacing «; < U; with
a; =U; (if a; € FV(U;)) or o = rec;.U; (if a; € FV(U;)), and checking the satisfiability of the other
constraints for the normal solution. If the constraint set is satisfiable for the normal solution, then we can
accept the input process as well-typed. Otherwise, the process is rejected. For the constraint in Example 6.5,
for example, we check

{0 C (y, 0b(ay) = ¢ C (p,0b(ay) = LTt 0 C (., c CCL, rel(O¢,.0|1¢1.0), rel(c. )}

for o, = I, .0. Because this is satisfiable (let (; = o, ¢, = ¢, and ¢. = (), the input process
(vz) (vy) (z!y]| x?¢[z]. 2?[w]. 0) (which was given in Example 5.8) is accepted as well-typed.

The above strategy, however, is sound but incomplete. Even if a constraint set is unsatisfiable for a
normal solution, it may be satisfiable for other solutions. There are the following two cases for this:

1. rel(V;) holds not for the normal solution but for other solutions.
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(CUu{a<U}LO) ~pyr ([a—=U]C 0o aw— Ul ifag FV(U)
(CU{a <U}O) ~y1 ([a— recaU]C, 0o o+ reca.U]) if « € FV(U)

Figure 6: Rules for reducing usage constraints (1)

2. 0b(Vi;) holds for the normal solution, but not for other solutions (so, ¢; need not be satisfied for them).

Actually, the first case is not problematic in practice. Rather, rejecting the first case is preferable: If rel(V;)
does not hold for a normal solution, then even if the input process is well typed, it is a bad process that may
fall into a livelock (i.e., diverge without fulfilling some obligations). So, rather than seeking for a complete
transformation method, we add extra conditions to the constraint set and solve them. It is discussed in
Section 6.2.3.

The second case is indeed problematic. For example, consider the constraint set:

{a < 1,.0,0b(cx) = tTt, rel(1,.0]|Oc.0) }.

Then, the third constraint implies that ¢ must contain o. So, if we choose a normal solution o = 1,,.0, then
ob(a) holds. The second condition then implies ¢7¢, which is unsatisfiable since the tag ordering 7 must be
irreflexive. If we take a non-normal solution a = 011 1,.0 instead, then the constraint set is satisfiable since
0b(«) does not hold.

In order to solve the above problem, we modify the basic strategy so that « constrained by a« < U is
instantiated with a normal solution rec a.U only when ob(«) turns out to be true, and it is instantiated
with a non-normal solution rec «..(U M0) otherwise. This refined strategy is complete with respect to the
strengthened constraint (for rejecting the first case). We describe the refined strategy in Section 6.2.4.

6.2.2 Normal solutions

We first define a normal solution for a system of inequalities {ovy < Uy,...,a < U,}.

Notation 6.6: If §; and 02 are substitutions, we write 61 o 65 for the substitution such that (61 o 63)e
01(f2¢) for any expression e.

Definition 6.7 [normal solutions]: Let aq,...,a, be mutually different variables and {ai,...,a,} 2
FV(Uy)U---UFV(U,). Then, a substitution ¢ is a normal solution of {a1 < Uy,...,a < U,} if ({a1 <
Up,...,a <Uy},id) ~7; (0,0) holds. Here, ~»/q is the least relation closed under the rules in Figure 6.

Example 6.8:

({1 < 1,.0||a2, a2 < a1}, id)
~p1 ({1 < 1,.0[|a1}, oo = aq))
~p1 (0, [ = rec an.(1,.0]|ar), a2 +— rec aq.(1,.0]|a1)])
It is easy to see that a normal solution is indeed a solution of the system of inequalities.
Lemma 6.9: Let o, ..., a, be mutually different variables and {a;,...,a,} 2 FV(U)U---UFV(U,). If
{a1 < Uy, ... ¢ < Uyt id) ~754 (0,0), then 6a; < 0U; holds for each i.

Proof: Trivial by the fact that if § is a solution of [« — rec a.U]C, then 0 o [a — rec a.U] is a solution of
Cu{a<U}. O
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6.2.3 Adding extra conditions

The reason why rel(V;) holds not for a normal solution but for some non-normal solution is that the non-
normal solution over-estimates the obligations fulfilled by a process. For example, consider the constraint
set {a < a||l..0,rel(a)}. rel(a)) does not hold for a normal solution « = rec a.(«||¢.0), but it holds for a
non-normal solution a = rec a.(a||¢.0)||¥0,.0. As explained below, however, no process can actually fulfill
output obligations in this case. Because an over-estimation of obligations results in accepting livelocking
processes, we add extra conditions to avoid it. Let

{al S U1,---,Oén§ Un7
Ob(Vll) VeV Ob(Vlkl) = Clyt ob(le) VeV ob(mGm) = Cm,
rel(Vi),...,rel(V})}

be the original constraint set. Then, we compute a normal solution 6 for {ay < Uy, ...,an < U,}, and add
the constraints oby(a;) = 0b1(fa;) and obo(a;) = 0bo(fa;) for each i. The resulting constraint set is:

{an < Uy,...,cn < Uy,

obo(a1) = obo(faq),...,0bo(an) = obo(Aay),

obi(a1) = obi(fav), ..., obi(an) = ob1(fa,),

ob(Vi1) V-~V ob(Vig,) = c1,- -+, 0b(Vip1) V- - - V 0b(Vink,, ) = Cm,
rel(Vi),...,rel(V))}

More justification for the addition of extra conditions is given below.
First, we note that it is only when « is not guarded by I,,. or O,. in U of a < U that rel(V;) holds not
for a normal solution but for a non-normal solution. It is implied by Lemma 6.11 and Lemma 4.27.

Definition 6.10: The set of top-level usage variables TFV (U) of a usage U is defined by:

TFV(0) = TFV(L,.U) = TFV(0,.U) = 0

TFV (a) = {a}

TFV(U1||U2) = TFV(U1 1 UQ) = TFV(Ul) U TFV(UQ)
TFV (reca.U) = TFV(U)\{a}

TFV(xU) = TFV(U)

We say « is guarded in U if « € TFV(U).
Lemma 6.11: If a is guarded in U, then U; < rec a.U for every usage U; such that U; < [a — U;|U.

Proof sketch: This follows from the fact that the relation < U{([a — U1]Us, [@ — rec a.U)Us) | Uy € U}
is a usage simulation up to <. Details are omitted. O

By the above lemma, the case where rel(V;) holds for some non-normal solution but not for a normal
solution is only when « appears in U at the top level in the constraint o < U.

Looking carefully into the procedure PT, we know that problematic inequalities like @ < «||U are
produced only when there is some process that receives a channel of the usage o and forwards it to itself,
like the following:

[yl (2![y] | P)

For example, the constraint
{rel(U),a < a|I..0}
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is produced from the following process

(va) (vz) (! [2] [ *2?[y]. («![y] [y7°[]. 0))

Let [[]%/a]'= /3 be the type of x. Then, the usage of y in x![y]|y?¢[]. 0 is expressed by al|I¢.0. So, we get
the constraint a < a|I¢.0 from x?[y]. (z![y] |y?¢[]. 0). Although we can derive a valid type judgment for the
whole process by substituting rec 3.(5]|00.0)||rec 5.(5||1c.0) for «, this is clearly an over-estimation: The
output obligation rec 3.(5]|00.0) is actually delegated to itself through the channel x infinitely, and never
fulfilled. Another solution o = rec 3.(f3||1¢.0), which means that no output obligation is performed, gives a
better estimation of the actual usage of the channel y. Although the above process is rejected as a result,
it is indeed a bad process that livelocks and never enables the input capability on y.

In general, when there is an inequality o < U, we can regard rec .U as giving a minimal estimation
of the obligations that are actually fulfilled, among the solutions of a < U. This intuition is justified by
Theorem 6.12 below, which means that if there is a valid type judgment I',x : [7]*=/U;T + P, then P can
perform an input or an output with an attribute a on a channel x only if such a usage is specified by U. For
example, there cannot be the case where U = .0 but P can be reduced to x7°[g]. Q. To put it in another
way, if there is a valid type judgment T',x : [7]'* /U; T F P, then there is no danger that a use of x by P is
overlooked in U. So, although there may be many solutions for a constraint a < U, it is better to choose
rec a.U, as it gives a minimal estimation of the actual usage.

Theorem 6.12: If T,z : [7]'=/U;T + P and P —* (vy) (2!“[0]. Q| R), then U —*>
some Uy, Us,a’ such that a C o'. Similarly, If T,z : [7]'=/U;T + P and P —* (v§) (2?°
U —*= I,.Uy||Uy for some Uy, Us, a’ such that a C o'

O, .Up||Uy for
7.Q

5].Q|R), then

Proof: Suppose I,z : [7]%/U; T F P and P —* (vg) (2!%[0]. Q| R). By the subject reduction theorem
(Theorem 4.47), I,z : [7]*=/U"; T + (vg) (x!“[0]. Q| R) for some I and U’ such that U —* U’. By typing
rules, it must be the case that U’ »= Oy .U1||Uz and a C d' for some a',U;, and Us. The case for input is
similar. O

In the example above, because the process Q = x![z] | xx?[y]. (x![y] | y?°[]. 0) is typed by:
v [[]7/U]*/(0e.0]#16.0), 2« [I" /U5 {(tas 1) } F Q
for U = rec a.(a||I.0), we know that @ never fulfills the output obligation on z.

Remark 6.13: One may expect that all processes that are well typed but rejected by our algorithm fall
into a livelock. However, this is not the case. Consider the following process:

(v) (y![2] [ 27¢[]. 0
| *y? (2] (9! 2] [ w!]2])

| +w?[2]. 2![]
| *w'?[2]. 0
| ul[w] [u![w'])

It creates a fresh channel z, sends it on y, and waits to input on x. Because z is forwarded to channel w by
the process in the second line and received by the process in the third line, a null tuple is output on z. So,
an input on x in the first line always succeeds.

However, if we choose rec .U as a solution of a < U, the above process is rejected as ill-typed. From
the second line, we get the constraint o < a|3, where « is the usage of a channel received by the process
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of the second line, and ( is the usage of a channel received by the process of the third line. Although the
third process always performs an output on the received channel, our type system can only estimate § as
0o.0 M 0: Because w and w' are sent on the same channel (the fifth line), w and w’ must have the same
parameter type. We therefore obtain the inequality o < «||(Oo.0 M 0). If rec a.(a||(O.0 M 0)) is chosen as
its solution, then it is inferred that the output obligation may not be fulfilled and the process is rejected by
our algorithm. The process is still well typed, because if we choose O,.0||rec a.(a|(0o.0 M 0)) as a solution,
it is judged that the output obligation may be fulfilled.

Note, however, that the reason for the above process being rejected should be attributed to the limit
of the type system’s ability to capture flow information: If the type system could infer that x is never
received on w’, then it could estimate the usage a as rec a.(«||O0,.0), and therefore, infer that the output
obligation on z is always fulfilled. (Note that although the problem of this particular example is solved by
introducing subtyping discussed in Section 7.3, it is in general undecidable to statically obtain the exact flow
information.) It is just a coincidence that the process can be judged to be well typed by choosing another
solution Oo.0||rec a.(a||(O.0M0)). Choosing this solution means allowing the output obligation Oo.0 to
be delegated infinitely through channel ¢, which is undesired.

Remark 6.14: Even if we always choose rec a.U as a solution of a < U, we cannot guarantee freedom
from livelock. For example, consider the following process

Fyl | =f?[z]. if true then f![z] else x!°[]

The usage « of z is inferred as rec a.(a M O4.0), so it is inferred that the output obligation on y will be
eventually fulfilled (unless the process diverges). It is true, but only because the process diverges. See
Section 7.8 for more discussions on livelocks.

6.2.4 Reducing inequalities and reliability constraints

Now we can assume that the remaining constraint set is:

{Oél S Ul,...,Oén S Un,

obo(a1) = obo(fay),...,o0bo(an) = obo(fay)

obr(aq) = obr(fay),. .., obr(ay) = obr(fay,)

ob(Vi1) V-V ob(Vig,) = c1,- -+, 0b(Vip1) V- - - V 0b(Vink,, ) = Cm,
rel(Vi),...,rel(V}))}

Moreover, by the definition of PT and the transformations described so far, we can assume that 6a; above are
closed usages (i.e., FV(Aa;) = 0), and that the other usages do not contain the recursive usage constructor
rec a..

The next step is to eliminate reliability constraints of the form rel(V;).

In order to clarify the essence, we first obtain necessary and sufficient conditions for the reliability of a
closed usage. By definition, rel(U) holds if con(U’) holds for every U’ such that U —* U’. Let us define a
constraint con’(U) as follows.

~

Definition 6.15: A binary relation = on usages is the least equivalence relation satisfying the following
laws for the commutative monoid (U, |],0):

Lojju=U

2. Up||Us =2 Uy||Uy
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3. Uh||(U2]|Us) = (Uh]|U2)]|Us

Definition 6.16: con’(U) is defined to hold if and only if (i) U 2 I,.U1||Us and ¢ C a imply 0bo(Uz) and
(ii) U = 0,.U1]|Uz2 and ¢ C a imply 0by(Us).

Because con’(U;||Us) holds if and only if con’(Us||U1) holds, we extend con’ to a predicate on sets of usages
by: con'({Uy,...,Up}) < con/(Uh]| - ||Up).
Then, rel(U) can be reduced to a set of constraints of the form con’(U’) by the following lemma.

Lemma 6.17: rel(U) if and only if every constraint in {con’(U’) | U —*»= U’} holds.

Proof: Note that by the definition of rel, rel(U) holds if and only if con(U’) holds for every U’ such that
U—>*U'.

Suppose rel(U) holds and U —*> U’. Then, there exists U” such that U —* U” and U” = U’. By
the assumption, con(U") holds. So, con’(U) must hold by the definition of con.

On the other hand, suppose every constraint in {con’(U’) | U —*> U’} holds and U —* U’. Tt suffices
to show that con(U’) holds. If U' > I,.U1||Us, then con'(1,.U1||Us). So, ¢ C a implies 0bo(Uz). Similarly,
U' = 0,.U1]|U; and ¢ C a imply 0bg(Us). Therefore, we have con(U’). O

If U contains no recursive usages, the set {U’' | U —*» U’} is finite, and therefore, we can straight-
forwardly reduce rel(U) to constraints of the form con’(U’), which can further be reduced to constraints
of the forms ¢ C a = 0bo(U’) and ¢ C a = oby(U’). If U contains recursive usages, however, the set
{U" | U —*» U’} may be infinite. The following lemma helps reducing the search space.

Lemma 6.18: For any usages Uy and Us, con/(Uy||Us) if and only if con'(Uy ||Us||Us).

Proof: First, note that obo(U1||U2) (0b1(U1]|Uz2), resp.) holds if and only if 0bo(U1)V 0bo(Uz) (0b1(Uy) V
0b1(Uz), resp.) holds.

=: Suppose con'(U1]|Usz). Suppose also that Uy ||Us||Us 2 I,.Us||Us, and ¢ C a. Then, either (i)U; =
Ia.U3||U5 and U5||U2||U2 = U4, or (11>U2 = Ia.U3||U5 and U1||U5||U2 = U4. In the former case, U1||U2 =
I,.Us||(Us||Uz). So, by the assumption con’(U1||Uz), it must be the case that obo(Us||Uz), which
implies 0bo (Us||Uz||Uz). We therefore have obg(Us). In the latter case, Uy ||Us = 1,.Us||(U1||Us). By
the assumption con’(U;||Us), it must be the case that obo(U;||Us), which implies 0bg (Ui||Us||Us).
So, we have obg(Us). Similarly, Ui ||Us||Uz = O,.Us||Us, and ¢ C a imply oby(Uy). Therefore, we have
COTLI(U1||U2||U2>.

<: Suppose con'(Up||Uz||Uz). Suppose also that Uy||Uy = I,.Us||Us, and ¢ C a. Then, either (1)U; 22
Ia.U3HU5 and U4 = U5HU2 or (ll)U2 = Ia.U3HU5 and U4 = U5HU1 In the former case, U1||U2||U2 =
1,.Us||(Us||U2||Us). By the assumption con'(U1[|Uz||Uz), it must be the case that obo(Us||Uz||Uz)
holds. It also implies 0bo (Us||Uz) by:

Obo(U5HU2HU2) < 0[)0(U5) \% Obo(Ug) V Obo(Ug) < Obo(U5) \Y Obo(Ug) <~ 0[)(U5HU2).

So, 0bo(Uy). In the latter case, Uy||Us||Us =2 1,.Us||(Us||U1 ||Uz). By the assumption con’(Uy||Uz||Us),
it must be the case that obo(Us||U1||Uz). It implies 0obo(Uy) by:

Obo(UE,HUlHUQ) <~ 0[)0(U5||(Ia.U3||U5)||U2) <~ 0[)0(U5) V Obo(Ia.U3) V Ob()(U5) V Ob()(Uz)
<= 0bo(Us) V 0bo(Uz) <= 0bo (Us||U2) <= 0bo(Us)

Similarly, Uy||Us = O,.Us||Uy, and ¢ C a imply 0by(Uy). Therefore, we have con'(Uy||Us).
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The above lemma implies that multiple occurrences of the same usage do not matter. For example,

con' (I, .Ui||14,.U1]|Oqy-Uz||O4, .-Us||O4, .Usz) holds if and only if con’(I,,.U1||O4,.Us) holds. So, let Comp(U)
be the set of usages defined below, from which U can be constructed by using || and 0. Then, rel(U) is
reduced to the set {con'(Comp(U’)) | U —*» U’} of constraints.

Definition 6.19 [atomic usages|: A usage is atomic if it is not of the form 0 or Uy ||Us. We write Uytom
for the set of atomic usages.

Definition 6.20: A mapping Comp from U to 24etom is defined by:

Comp(0) =0

Comp(a) = {a}

Comp(I,.U) ={1,.U}

Comp(0,.U) ={0,.U}

Comp(U1||Uz) = Comp(Uy) U Comp(Us)
Comp(Uy NUz) = {U; N U}
Comp(reca.U) = {reca.U}

Comp (xU) = {xU}

For example, Comp(I,,.U1||1a,.U1||Oay-U2||O4y.Us||Ouy.Us) = {14,.U1, On,.Us}.

Lemma 6.21: rel(U) holds if and only if every constraint in {con’(Comp(U")) | U —*= U’} holds.

Proof: Suppose rel(U) holds. Then, by Lemma 6.17, con/(U’) holds for every U’ such that U —*> U’.
By Lemma 6.18, con’(Comp(U’)) holds for every U’ such that U —*> U".

On the other hand, suppose {con'(Comp(U’)) | U —*»= U’} holds. Then, by Lemma 6.18, con'(U")
holds for every U’ such that U —*= U’. Therefore, rel(U) must hold by the definition of rel. ]

By the above lemma, to reduce rel(U), it suffices to find the set { Comp(U') | U —*» U'}.
Example 6.22: Let U = I,,.0||rec a.(O,,.0||a). Then, {Comp(U') | U —*= U'} is:
{{I4,.0,rec a.(O,,.0||a)}, {14, .0,rec a.(Og,.0||a), O4,.0}, {rec a.(O,.0]|a) }, {rec a.(Og,.0||a), O4,.0} }.
So, rel(U) is reduced to the following set of constraints:

{c C a1 = obo(reca.(0,,.0||a)),

c Ca; = obo(reca.(Og,.0]|a)||0q,.0),
c C az = 0bi(1,,.0]|rec a.(Oq,.0]|a)),
c C az = obi(rec a.(Oq,.0||cr)) },

which can further be simplified to {c C a; = o C ay, ¢ C ay = false} by reducing obo and oby.

Now we turn to the problem of reducing reliability constraints on usages containing free usage variables
aq,...,ap constrained by a < Uy,...,a < U,. Because the set { Comp(U’) | 6U —*> U’} depends on
the substitution @ for free usage variables, we cannot directly use Lemma 6.21 to reduce the satisfiability of
rel(U). We use the following slightly different set.
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Definition 6.23: Let C = {ay < Uy,...,ap, < U,}. =¢ is the least relation closed under the rules for =
and the rules o; =¢ U; for i € {1,...,n}. Deriv(U,C) is the set { Comp(U') | U »=¢ (—>=¢c)*U'}.

The following lemma gives necessary conditions for the satisfiability of reliability constraints.

Lemma 6.24: Suppose FV(V) C {ay,...,a,}. If asubstitution 6 satisfies {rel(V'),a; < Uy,..., o, < Uy},
then 6 must also satisfy con'(S) for each S € Deriv(V,{a; < Uy,...,a, <Uy,}).

Proof: Trivial from Lemma 6.21 and Lemma 4.27. |

Actually, the satisfiability of C'U Deriv(V,ay < Uy,...,a, < U,) is a not only necessary and but also
sufficient condition for C' U {a; < Uy,...,a, < Uy, rel(V)}.

Theorem 6.25: Suppose that 6 is a normal solution of C' = {ay < Uy,...,a, < U,}. Let C; be a set of

constraints:
{an < Uy, ..., 000 < Uy,

obo(a1) = obo(fay),...,obo(an) = obo(fay)

obi(a1) = obi(fan), ..., obi(ayn) = obr(fay,)

ob(Vi1) V-V ob(Vig,) = c1,- -+, 0b(Vip1) V- - - V 0b(Vink,, ) = Cm,
rel(Vi),...,rel(V))}

and Cy be a set of constraints:

{obo(a1) = obo(fa1),...,0bo(an) = obo(fa,)

obr(aq) = obi(fay),. .., obr(ay) = obi(fay,)

Ob(VH) V-V Ob(Vlkl) = C1y 00, ob(le) VeV ob(mGm) = Cm}
U{con'(S) | S € Deriv(V1,C)}

U---U{con'(S) | S € Deriv(V,C)}.

Then, C is satisfiable if and only if C5 is satisfiable.

Proof: The “only if” part follows immediately from Lemma 6.24.
Suppose Cs is satisfiable. Let 61 be a solution of Cy. Then, let us define U7, ..., U], by:

[ Ui if 0b(Oay;)
t U, M0 otherwise

Let f5 be a normal solution of {ay < Uj,...,a, < U} and 65 be (0;\{a1,...,a,}) o f2. We show that 63

is a solution of Cy, which proves the theorem. First, 05 satisfies o; < U;, since 03a; < 03U! < 05U;. Because

0bo (U M0) implies 0bo(U), 65 also satisfies obo (i) = 0bo(fa;). Similarly, 03 satisfies obg(a;) = 0by(Oay).
Next, we show that f3 satisfies the set of constraints:

{Ob(VH) V.oV Ob(Vlkl) = C1y 00, ob(le) V-V Ob(mGm) = Cm}

Because c1, ..., ¢, are constraints on attributes and time tags, 01¢; holds if and only if 03¢; holds. More-
over, the value of 0b(V;;) is monotonic with respect to the values of ob(ay),..., 0b(ay) (Theorem 4.20 in
Section 6.2.5). So, it suffices to show that ob(f3«;) implies 0b(f1c;). Suppose 0b(f3c;) holds. Because 63
is a solution of a; < U}, it must be the case that ob(f3U/) must also hold. Then, by the definition of U}, it
must be the case that U/ = U; and 0b (01 ;).
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Finally, we check 05 satisfies rel(V;) by contraposition. Suppose that 0V; —* V|
Comp(V) = {I,.V',Wy,..., Wi}, and ¢ C a, but that obg(Wi) V ---V 0bo(W},) does not hold. Without
loss of generality, we can assume that none of Wy,..., W} is of the form W' M W”. By the construction of
U/ and 03, it must be the case that there exist V", Wy, ... W] 031,..., 03, such that

Lo V", W1, ..., Wi} € Deriv(Vi,a1 < Uy, ..., a, < Uy)
03a’ = a

63V = V"

Comp (031 WH|| - - (|03, W) = {W1,..., Wi}

93]'041' = 93Ui if 0[)(90@) holds

0350, € {0,03U;} if 0b(foy) does not hold

63;¢ = 03¢ for each attribute variable ¢

Because 6 satisfies con'({I».V", W{,...,W;}) and 6ha’ = 030’ = a 2 c, obo(01W{) V---V 0obo(01W,) must
hold. Because 0bo(031W]|---[|03,W,) does not hold, it must be the case that there exists W; such that
Wi = a;, obo(f1c;), and =0bo(03;0;). Because 0y satisfies obo(a;) = o0bo(fa;), we also have 0bo(0a;).
By —0bo(#3;a;) and obo(fa;), it must be the case that

/ !
{aih ey aiq, Iﬂil“WiD e 7Iair‘W'

)

Ou, Wi, Ou Wi} € Deriv(e;, C)
o Z 91@;1, s 791a;s

—0bo(f1ai1), ..., 70bo(fr1ag)

By replacing each W]’ = @; such that 0bo(#1«;) with the above set
(@it Qg oy Wi, oo Tayy W, Ot W, ..., 0y WY, we obtain {I,.V", Wi, ..., W} € Deriv(V;, C)

such that ¢ C 61a’ but 0bo(Wj) V- -V 0bo(W,,) does not hold, which contradicts with the assumption that
01 is a solution of Cs. O

Example 6.26: Let V = I, .0||a and C = {a < O,,.0||a, 0bo(a) = obo(reca.(Iy,.0||a)), obi(a) =
oby(rec a.(Iy,.0||@)), rel(V))}. Then, Deriv(V,{a < O,,.0]|a}) is:

{{Ial '07 Oé}, {Iﬂl '07 Q, 002'0}7 {a}v {a7 002'0}}'
So, C' can be transformed into:

{obo(a) = obo(rec a.(I,,.0]|a)), obt(a) = obi(rec a.(1,,.0||)),
cCa = ObO(a>7

c Ca; = 0bo(]]|0q,.0),

c C ay = obi(1,,.0]|),

c Cay = obr(a)}.

By Theorem 6.25, we can eliminate inequalities and reliability constraints on usages and obtain a finite set
of constraints on obligation constraints and constraints on attributes and time tags if the set Deriv(U, a; <
Ui,...,an < Up,) is finite. Fortunately, this is always the case, as shown in Lemma 6.30 below.
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Definition 6.27: A mapping SubUEzp from U to 2Yatom is defined by:

SubUEzp(0)
SubUEzp ()
SubUEzxp(1,.U) = {1,.U} U SubUEzp(U)
SubUEzp(0,.U) = {0, U} U SubUEzp(U)
SubUExp (Ui ||Usz) = SubUEzp(Uy) U SubUEzp(Us)

(

(

(

0
{a}

SubUEzp(Uy NUz) = {Uy MU} U SubUExp(Uy) U SubUEzp(Us)
SubUEzp(rec a.U) = {reca.U} U [a + rec a.U]SubUFEzp(U)
SubUEzxp(xU) = {xU} U SubUExp(U)

Lemma 6.28: For any usage U, SubUFEzp(U) is a finite set.
Proof: Straightforward induction on the structure of U. O

Lemma 6.29: Suppose C' = {a; < Uy,...,ap, < Up}. U =¢ U’, then SubUExp((U') C (SubUEzp(U) U
SubUEzp(Uy) U ---U SubUExzp(U,)). Also, if U — U’, then SubUEzp(U') C SubUFEzp(U).

Proof: Straightforward induction on derivations of U =¢ U’ and U — U’. O
Lemma 6.30: For any usage U, the set Deriv(U,{a; < Uy,...,a, < U,}) is finite.

Proof: Let C = {a; < Uy,...,a, < U,}. By Lemma 6.29, U >=¢ (—=¢)*U’ implies SubUEzp(U') C
SubUEzp(U)USubUEzp(Uy)U- - -USubUEzp(U,,). Because Comp(U') C SubUExp(U"), we have Deriv(U, C) C
2SubUBep(U)USubUBzp(Ur)U-USubUBsp(Un) - The result follows, since SubUEzp(U)USubUEzp (U )U- - -USubUEzp(U,)
is finite (Lemma 6.28). O

We can compute the set Deriv(U,C) by reducing it to the reachability problem of Petri nets [4]. Tt is
explained later in Section 6.2.7.

6.2.5 Reducing obligation constraints

The remaining constraints on usages are of the form

{obo(a1) = obo(fa1),...,o0bo(an) = obo(fay,)

obr(aq) = obr(fay),. .., obr(an) = obr(fay,)

ob(Vi1) V-V ob(Vig,) = c1,-- -, 0b(Vin1) V- - - V 0b(Vink,, ) = €m,

c Cay = (obo(Ur1) V-V obo(Uiy,)),-..,c C ap = (0bo(Up1) V-V 0obo(Up,)),
cCay = (oby(Ujy)V---V obo(U{l,l)), oye Cay = (obp(Upyy) VooV ObO(U;/;'l’,))}

where fq; is a closed usage, and in other usages, recursive usage constructors appears only in the form
rec a.(a||U).

The next step is to reduce obligation constraints into those of the form obg(a) or oby(«) and constraints
on attributes and time tags.

Since 0b(U) is equivalent to obr(U) V 0bo(U), we show how to reduce constraints of the form oby(U)
and obg(U). U is either a closed usage or a usage containing no recursive usage constructor.

If U contains no recursive usage constructor, obg (U) and 0bo(U) can be decomposed by using Lemma 4.20.

For a closed usage U, oby(U) and 0bo(U) can be reduced to the constraints 0b(U, id) and obg (U, id)
(recall that id is the identity substitution) defined in Figure 7.
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0b5(0,0) = false
0bg (a, 0
0b5(0,.U,0) =0 Ca
0bo (1,.U,0) = false

(
(
i
ObO(U1||U2, ) = ObO(Ul,Q) \Y 0[)6((]2,9)
(
(
ol

\_/v

= true

Obo Uy N Us, ) = Ob*O(Ul,Q) A Ob*O(UQ,Q)
0bg (rec .U, ) = mayoby (0U) A obg (U, 0 o [a — rec a.0U])
0bo (xU, 0) = oby (U, 6)

U1]|Uz2) = mayobg (Ur) V mayobg (Us)
Uy N Uz) = mayobO(Ul) V mayobg (Uz)

~
Qﬁ )
SB
Il
o
ﬁ
s

U1||U2, ) = 0b}(U1,0) V 0b§ (U3, 0)

U NU,, 9) = Obik(Ul, 9) A Obf(Uz, 9)

rec .U, 0) = mayobi (0U) A obi (U, 0 o [a — rec a.0U])
+U, ) = obi (U, 0)

ObI
ObI
ObI

AAAA/_\A/_\A

mayobi (0) = false
(o) =
1(Oq U = false
mayoby(I,.U) =0 C a

1(U1]|U2) = mayoby(Uy) V mayoby (Us)
mayobi(Uy M Us) = mayobi(Uy) V mayobi(Us)
mayobl(recoz U) = mayobi(U)
mayobi(xU) = mayobi (U)

Figure 7: Functions for reducing obligation constraints
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Theorem 6.31: Let U be a closed usage (i.e., a usage containing no free usage variables) and id be the
identity substitution (i.e., the substitution whose domain is empty). Then, 0obo(U) (0by(U), resp.) holds if
and only if obg (U, id) (0bi(U, id), resp.) holds.

We prove the above theorem after introducing several lemmas. Readers who are not interested in the
proof can safely skip to Section 6.2.6.

Lemma 6.32: Let U; and Us be usages. If mayobg(Usz) does not hold, then mayobg ([ae — Us]Uy) holds if
and only if mayobg(Ur) holds.

Proof: Straightforward induction on the structure of U;. Note that the base case for U; = « follows from
the fact that both mayobg (Uz) and mayobg(«r) are false. O

Definition 6.33: mayoby(U) holds if and only if there exist a, Uy, and Us such that U > I,.U;||Us and
o C a. mayobg(U) holds if and only if there exist a, Uy, and U, such that U = O,.U;||U; and o C a.

Lemma 6.34: Let U be a usage (not an extended usage). mayoby(U) (mayobi(U), resp.) holds if and
only if mayobg (U) (mayoby(U), resp.) holds.

Proof: We show only the case for mayobg. The case for mayoby is similar.
=-: The proof proceeds by induction on the structure of U.

— Case for U is 0, «, or 1,.U": Since mayoby(U) is false, the proposition is vacuously true.

— Case for U = O,.U": If mayob(U) holds, then it must be the case that o C a’. So, the required
result holds for a = o', Uy = U’, and Uy = 0.

— Case for U = U'||U": Suppose mayobe,(U'||U") holds. By the definition of mayobgy, either
mayobg (U') or mayoby(U") holds. Suppose mayobg (U') holds. Then, by induction hypothesis,
there must exist o/, U], and U} such that Uy > O,.U{||Uj and o C a’. Therefore, the required
result holds for a = o', Uy = U{, and Uy = U}||U". The case where mayobg(U") holds is similar.

— Case for U = U’ N U": Similar to the above case.

— Case for U = rec a.U": Suppose mayobg (U) holds. Then, by the definition of mayobg,, mayobg (U”)
also holds. By induction hypothesis, there must exist a’, U;, and U} such that U’ = O, .U{||Uj.
Since U is reca.U’, we have U = [a — UJU' = Oy .[a+ U)U{||[a — UJUS. The required result
therefore holds for a = o/, Uy = [a — U|U{, and Uz = [« — U]Us.

— Case for U = «U": Suppose mayobg (U) holds. Then, by the definition of mayobg, mayobs(U’)
also hold. By induction hypothesis, we have mayobg(U'), which implies mayobg (xU).

<: Because mayobg(0,.U1||Uz) holds, the result follows if we show that U > U’ and mayobg(U') imply
mayobg(U). We prove it by induction on derivation of U = U’ with case analysis on the last rule
used. Since the other cases are trivial or similar, we show only the case for the rule reca.U; >
[a +— rec a.U1]U;. Suppose mayobg ([ — rec a.Ui|U;) holds but mayobg(rec a.Uy) does not hold.
Then, by Lemma 6.32, mayobg(Ur) also holds. By the definition of mayobg, mayobg(rec a.Uy) holds,
hence a contradiction.
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Lemma 6.35: Suppose that U is a usage and that @ is a substitution of closed usages for usage variables
such that FV(U) C dom(#). Then, obo(8U) imply obg (U, 0).

Proof: The proof proceeds by induction on the structure of U.
e Case U is 0 or I,.U: Vacuously true, since 0bg(U) cannot hold.

e Case U = a: Trivial, since obg(a, 0) = true by the definition of 0bg.

e Case U = O,.U": Suppose 0bg(8U) holds. Then, it must be the case that o C a. By the definition of
0bg, 0bg (U, ) holds.

e Case U = U;||Uy: Suppose 0bo(AU) holds. Then, it must be the case that obo(6U1) or 0obo(6Uz). By
induction hypothesis, 0b& (Ui, 0) or obg(Usa, #) must hold. So, we have obg (U, 6) by the definition of
0bg.

e Case U = Uy MUs,: Suppose obo (60U ) holds. Then, it must be the case that 0obg(0U7) and 0bo (0U3).
By induction hypothesis, obg (U1, #) and obg (Usz, #) must hold. So, we have obg (U, 0) by the definition
of 0bg.

e Case U = reca.U’": Suppose 0bo(0U) holds. Then, there must exist a, Uy, and Us such that U =
0,.U1||Uz and o C a. By Lemma 6.34, mayobg (6U) holds, which implies mayobg (8U’) also holds by
the definition of mayobgy. Also, by 0bo (0U) and U = [a +— OUOU’ = (fo[a +— OU])U’ (we can assume
without loss of generality that a & dom(0)), it must be the case that 0bo(6'U’) for 6/ = 0 o [a — OU].
Since €' is a substitution of closed usages for usage variables and dom(6') = dom(8)U{a} D FV(U') =
FV(U)U{a}, we have oby(U',0") by induction hypothesis. Therefore, obg (U, #) holds.

e Case for U = xU'": Suppose 0bo(0U) holds. Then, by Lemma 4.20, it must be the case that obo (0U").
By induction hypothesis, we have obg (U’ 0), which implies obg (U, 0).

Definition 6.36: Up, is the least set closed under the following rules:
(FV(U)=0A30,U'.(U=0U"Aobs(U',0) A\Na € FV(U').0c € Up,)) = U € Up,

Lemma 6.37: Let U; and Us are closed usages, i.e., FV(Uy) = FV(Uy) = 0. It Uy € Up, or Uz € Up,,
then U1[|Us € Uo, .

Proof: If U; € Up,, then Uy is decomposed into QU] such that obg(Uy,0) and fa € Up, for each a €
FV(U{). Then, Uy||U; can be decomposed into 8(Uj||Us). Moreover, obg (Ui ||Us, #) holds by the definition
of 0b. O

Lemma 6.38: If U € Up, and U =' U’, then U’ € Up,.

Proof: The proof proceeds by induction on derivation of U =’ U’, with case analysis on the last rule
used. Because the other cases are similar or trivial, we show only the cases for the rules for M, rec a., and
congruence on ||.
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e Case for the rule U; MUy =’ Uy: In this case, there exist § and Us such that

9U3 = U1 r U2
ob (Us, 0)
Va € FV(Us).(6a € Up,)

Without loss of generality, we can assume that Us is not a variable. (If Us is a variable 3, we can
decompose 03 into (U, 0') by the construction of the set Up,.) So, Us = Uj MU, and OU; = U; for
i =1,2. From 0b§(Us, 0), we get ob (Ui, 0) and obg(Us, 0). So, Uy € Up, as required.

e Case for the rule reca.U; ' [a — rec «.U1|U;: In this case, there exist 6, U, such that

AU> = rec a.Uy
0bo(Us, 0)
Vo€ FV(Us).(fa € Up,)

Without loss of generality, we can assume that Us is not a variable. So, Uy = rec a.U| and U] = Uj.
From ob&(Us, 0), we get obg (Ui, 0 o [a — #'rec a.Uj]). Because §'rec a.U; = reca.U; € Up, and
(0o [+ O'rec a.U{])U| = [a — rec a.Uq]Uy, we have [a — rec a.U1]U; € Up, as required.

e Case for the rule:
U, = Uj

Ur||U2 =" U{||Us

In this case, there exist 8, Us such that

9U3 = U1||U2
ob (Us, 0)
Va € FV(Us).(6a € Up,)

Without loss of generality, we can assume that Us is not a variable. So, Us = Uj||U; and 0U; = U; for
i =1,2. By the definition of 0bg, it must be the case that obg (U/, 6) for either i = 1 or 2. So, either
Uy elUp, orUs € Up,. IfUs € Up,,, then the result follows immediately from Lemma 6.37. If Uy € Up,,
then we have U] € Up, by induction hypothesis, from which the result follows by Lemma 6.37.

Lemma 6.39: If U € Up,, then mayoby(U).

Proof: The proof proceeds by induction on the structure of U.
e Case for U = a: This case cannot happen, since FV(U) = {).

e Cases for U = 0 or I,.U;: This case cannot happen either. Suppose U € Up,. Then, it must be the
case that U can be decomposed into U’ such that obg(U’,0) and U’ is not a variable. This cannot
be the case, however, by the definition of 0bg.
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e Case for U = 0,.Uy: Suppose U € Up,. Then, there must exist 6, U’ such that

QUI = Oa-Ul
obs (U, 0)
Va € FV(U'").(Oa € Up,)

Without loss of generality, we can assume that U' = O,.U] and 0U{ = U;. From ob5(U’,0), we get
o C a. So, mayobg(U) holds.

e Case for U = Uy ||Us: Suppose U € Up,. Then, there must exist 6, U’ such that

OU" = Uy||Us
oty (U 6)
Va € FV(U').(fa € Up,)

Without loss of generality, we can assume that U’ = U{||Uj and OU} = U; for i = 1, 2. From ob(U', 6),
we get oby(Uj,0) or oby(Uy, 0), which implies Uy € Up, or Us € Up,. By induction hypothesis, we
have mayobg(Uy) or mayobg(Us), which implies mayobg (U) as required.

e Case for U = U; MUy or U = xU;: Similar to the above case.
e Case for U = reca.U;: Suppose U € Up,. Then, there must exist 6, U’ such that

AU’ = rec a.U;
0bo (U, 0)
Va € FV(U').(fa € Up,)

Without loss of generality, we can assume that U’ = rec «.U{ and U; = §U|. From ob(U’,0), we get
mayobg (U7 ), which implies mayobg (rec a.fU7). The result follows, since U = U’ = rec a.0U].

Proof of Theorem 6.31: We show only the case for obg. The case for oby is similar.

= A special case of Lemma 6.35.

<: Suppose 0bo(U,id) and U =" U'. Then, by the definition of Up,, U € Up,. By U =" U’ and
Lemma 6.38, U’ € Up,. Lemma 6.39 implies mayoby(U'). Therefore, there exists a, Uy, Us such that
U' > 0,.U||Us and o C a as required.

6.2.6 Checking the satisfiability of the remaining constraints
Now, we can assume that we have only constraints of the form ¢, below:

Cq = C[, = CR

CL = Catom | €L N cr | . V cp, | true | false
CR = ¢t | Catom | CR AN CR | cr V cR | true | false
=11 T1o

Catom "=c Calo Ca|obo(a)| obr(a)
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Note that ¢ C a is represented in the form true = ¢ C a. The satisfiability of a set of constraints of the
form ¢, is clearly decidable. Note that we have only a finite set of attribute variables and each ranges over
a finite set {0, c,0,co}. Note also that since all the constraints on usage variables are of the form 0bg(«)
or oby(ar), we need to assign to each usage variable only a usage in {0, I5.0, 0,.0, I5.0]|00.0} and check the
satisfiability. So, we can try all the possible assignments to attribute variables and usage variables. We can
decide the satisfiability more efficiently as follows.

1. Replace obo(a) and oby(a) with variables ob, and ob., respectively.
2. Assign () to every attribute variable and assign false to ob, and ob.,.

3. If there is a constraint ¢y = cgr such that ¢y, is true, replace ¢, = cg with true = cr and increase
the assignment to variables so that obligation constraints and attribute constraints in cg are satisfied.
If such increase is impossible, fail. Repeat this step.

4. If there is no more constraint ¢y, = cg such that ¢y, is true but some attribute constraints in c¢g are not
satisfied, then extract all the constraints of the form ¢, 7 to from each constraint true = cg, and check
whether there is a strict partial order T satisfying them (by using, for example, a graph algorithm for
cycle detection).

An important fact used in the above algorithm is that both ¢y and cp are monotonic on the variables in ¢,
and cg. So, once ¢y, and cp are satisfied, they remain true afterwards. The above algorithm actually may
not be efficient because the third step may involve backtracking: if cg is 0 C a1 Vo C ay (which is generated
by the reduction of a reliability constraint), then we can either increase aj or ay. If the above algorithm
turns out to be inefficient in practice, we can strengthen the reliability constraint by adding the following
extra condition to Definition 4.6:

3 IfU = Oy, .Ui||14,.Us||Us for some Uy, Us and Us, then (i)if ¢ C aq then o C ay and (ii)if ¢ C ag then
o Cay.

Then, we can reduce usage constraints so that V does not appear in cg. (Details are omitted.)

6.2.7 How to compute the set Deriv(U,C)

Given a usage U and C' = {aq < Uy,...,an < U,}, we construct a Petri net that has a place py for each
element V of SubUEzp(U) U SubUEzp(Uy)U---U SubUEzp(U,,). Then, each usage consisting of elements of
SubUEzp(U) U SubUExp(Uy) U --- U SubUEzp(Uy,) can be mapped to a state of the Petri net as follows.

UtoP(0) =0
UtoP(a) = {pa > 1}
UtOP(Ia V) = {p[a.V = 1}
UtoP(0O,.V) = {po, v +— 1}
(
(
(
(

UtoP(V1||Va) = UtoP (V) + UtoP(V3)
UtoP (Vi M Va) = {pvirv, — 1}

UtoP (rec . V) = {preca V= 1}
UtoP (* ) = {p*V = 1}

We introduce the following transitions into the above Petri net.

55



A transition:

{pr.vi = Lpo,. vy = 1} — UtoP(V1][V2)

for each pair of pr, v; and po_, v, -

Transitions:
{pvinw, = 1} — UtoP (V1)

{pvlmv2 — 1} — UtOP(Vz)

for each py,nv,.

A transition

{preca.v — 1} — UtoP([a > rec a.V]V)

for each preca.v-

A transition

{pey = 1} —s UtoP(xV||V)

for each pyy .

A transition
{Pa; — 1} — UtoP(Uy;)

for each o; < U; € C.

Then, it is trivial that U »=¢ (—=¢)*U’ if and only if UtoP(U") is reachable from the initial state UtoP(U)
by the above Petri net.

Let {V1,...,V,,} be a subset of SubUEzp(U)U SubUEzp(Uy)U---USubUEzp(U,,). Then, {Vi,...,V,} €
Deriv(U, C) if and only if UtoP(Vi||---||V;) is reachable from UtoP(U) by the Petri net obtained by adding
the following transitions to the above Petri net.

{pv, = 1} — 0 (for each i € {1,...,n})

Because the reachability problem of Petri nets is decidable [4], we can compute the set Deriv(U,C).
In the current prototype implementation of our type-inference algorithm, however, we approximate the
above reachability problem by a integer linear programming problem.

7 Extensions

This section discusses extensions of our type system.

7.1 Extension of time tags and tag ordering

Although the treatment of time tags and tag orderings greatly affects the expressive power of the deadlock-
free process calculus, it is very naive in this paper. For example, all channels passed through the same channel
are forced to have exactly the same time tag. As a result, the calculus presented in this paper does not
have enough expressive power. (For processes without annotations on capabilities/obligations, it has almost
the same expressive power as the ordinary simply-typed m-calculus [5] except that ours have no recursive
types, but many useful processes annotated with capabilities/obligation cannot be typed.) Fortunately,
however, it is easy to replace it with the more sophisticated treatment in the previous deadlock-free typed
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calculi [10, 23]. Because an algorithm for automatically inferring time tags and tag orderings has already been
developed, there would be no problem in integrating it with the type reconstruction algorithm developed in
this paper. The resulting deadlock-free process calculus would become more expressive than the previous
calculi [10, 23], which were already shown to be expressive enough to encode the simply-typed A-calculus
with various evaluation strategies, semaphores, and typical concurrent objects.

Because the treatment of time tags and tag orderings in the previous works [10,23] was complex and
ad hoc, we plan to generalize and clarify it before integrating it with the implicitly-typed calculus of this

paper.

7.2 Partial type/usage annotations

We have dealt with an implicitly-typed calculus in this paper, and instead, we provided a way for annotating
each input/output process with capabilities/obligations. However, programmers may still want to explicitly
annotate some parts of their programs with types and/or usages. For example, one may write a functional
process in the following way in order to ensure that the process really behaves like a function:

xf1°[x,r: O6.0]. ---

Partial type/usage annotations like above do not require much modification to the entire structure of our
type reconstruction algorithm, but we need to develop an algorithm that inputs usage constants (i.e., usages
not containing free usage variables) Uy and U, and decides whether Uy < U, holds or not. We have not
yet checked whether U; < Us is decidable or not and if so, whether there is an efficient decision algorithm.
However, even if there doesn’t exist an efficient decision algorithm that works for an arbitrary input, we will
be able to restrict the syntax of usage/type annotations appropriately, so that the decision of U; < U, can
be made efficiently in practice.

7.3 Structural subtyping

It is also possible to introduce structural subtyping, following Pierce and Sangiorgi’s subtyping based
on input-only/output-only channel types [16]. For example, [int]'/I,.0 can be considered a subtype of
[real]/I,.0, and [real]’/O,.0 can be considered a subtype of [int]'/O,.0, provided that int is a subtype of real.
For another example, the type [[]' /(Ic.1..0)]"2/O,.0 can be considered a subtype of [[]*! /(I..0||I..0)]*2/O,.0.
In general, we can introduce the following rule for subtyping;:

(U’ contains O) = (1{ <1y A+ A7, < 1)

(U’ contains I) = (7 S_T{ Ao AT <70)
Uu<u
(1o /U < o, ) /U

We have not checked details, but we think that a type reconstruction algorithm can be developed in a
manner similar to Igarashi and Kobayashi’s development of a type reconstruction algorithm for the linear
m-calculus with I/O subtyping [8].

7.4 Unreliable channels

In Kobayashi’s original deadlock-free process calculus [10], deadlock-freedom was not guaranteed for channels
called unreliable channels; so, even a well-typed process may deadlock. However, if a deadlock occurs, some
sub-process must be trying to communicate on an unreliable channel, causing the deadlock. (That is why
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the original calculus was called “partially” deadlock-free). We can introduce unreliable channels into the
type system of this paper, by not requiring the condition rel(7) in the rule (T-NEW) for the creation of
unreliable channels.

7.5 Other process constructors

It is possible to extend our type system and type reconstruction algorithm to deal with other constructors
of the m-calculus, such as choice P, + P, and matching [14]. For example, a simple way to deal with the
choice is to introduce the following typing rule, which is similar to the rule (T-IF) for conditionals:

F;T"Pl F,Tl_PQ
TP+ P

(T-CHOICE-NAIVE)

However, it may be useful to treat the choice more carefully. For example, consider the process P =
Py + P, where P; = 2?[].0 and P, = z![].0. P; and P, fulfill the obligations to input and output on x
respectively. Indeed, the following judgment is valid in our type system.

x:[]Y/16.0;0 - Py
2:[]t/06.0;0 - Py

However, with the above rule (T-CHOICE-NAIVE), we can obtain only the following judgment for P:
7 :[]'/(Io.0M06.0);0 - P

The type environment means that neither input nor output is guaranteed to be performed by P, because a
usage Uy MU means that the channel may be used according to either Uy or Us indeterministically. Actually,
however, P fulfills both obligations on input and output. In fact, both P|27¢[].0 and P |x!°[]0 can be
reduced.

We can make the process P |x7¢[].0 well-typed by introducing another usage constructor U. U; U Uy
means that the channel can be used according to either U; or Us as in the case for U; MUy, but the choice can
be made by external processes. Readers who are familiar with linear logic [6] may notice that M corresponds
to the additive disjunction &, while LI corresponds to the additive conjunction &. The distinction between
these two kinds of choice have already been made by Takeuchi, Honda, and Kubo [24] (although their type
system does not guarantee the deadlock-freedom in the sense of ours). This distinction will be particularly
useful when our type system is extended to deal with object types as described below in Section 7.7.

7.6 Extending channel types

Channel types in this paper force each channel to be used for passing values of the same type through-
out its lifetime. It may sometimes be too restrictive. For example, if a channel is used according to
I4,.1,,.0]|045.0,,.0, then the first input never interacts with the second output, and therefore it does not
cause an error even if an integer is sent first and then a string is sent along the channel. We can allow such
uses of a channel by changing the syntax of types as follows:

Tou=[11, s Toln, T | [T1s -y Tlo, -7 | (11]m2) | -
Here, [11,...,Tn]1,.7 ([T]lo, T, resp.) expresses the type of a channel that is first used once for receiving
(sending, resp.) a tuple of values of types 71,...,7,, and then used as a channel of type 7. 71||72 expresses
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the type of a channel that is used as a channel of type 71 and, in parallel to that, used as a channel of type
T9. So, usages and types are now integrated, and the operations on usages become those on types. For
example, the type of a channel mentioned above can be expressed as [int]y, .[string],, [|[int]o,, -[string]o,, -
This kind of channel type (which allows different types of values to be passed through the same channel) has
already appeared in other types systems such as the above-mentioned Takeuchi, Honda, and Kubo’s type
system [24] and Yoshida’s graph types [26] (although combinations with capability /obligation attributes are
new).

Some type expressions like [int]r,||[bool]o, (which means that a channel is used for sending a boolean
value and for receiving an integer) are of course invalid. They can be excluded out by imposing appropriate
consistency conditions, such as “For each subexpression [r1,..., 7], 71 < T1,...,7, < 7, must hold for
every subexpression [71,...,7,]o, that may be used in parallel.”

7.7 Object types

We can encode typical concurrent objects into our deadlock-free process calculus or its extensions mentioned
above, as demonstrated in [10]. However, it may be useful to extend the type system to handle concurrent
objects and their types directly.
One way to encode concurrent objects in the 7-calculus is to express a concurrent object as a pair of (1)
a channel to store the current state and (2) a set of processes each of which executes each method [10, 17].
An object identity is expressed as a record of channels for receiving requests. For example, a counter object
with a method inc to increment the counter and a method read to read the counter is expressed as the
following process:
(vstate) (

state![1]

| xinc?[reply]. state?®[n]. (reply![]| state![n + 1])

| xread?[reply]. state?[n]. (reply![n] | state![n])

The channel state holds the counter value, and the processes xinc?[reply]. - - - and xread?[reply]. - - - respec-
tively executes the methods inc and read. The identity of a counter object is expressed as a record {inc =
inc,reply = reply} ({inc and reply are field names, and inc and reply are the corresponding field values).
The type of a counter object is therefore represented by a record type {inc : [[]*/0,.0]"2/*O..0,read :
[[int]’3/00.0]% /%O,.0} (see [10] for more details). The type means that method requests are eventually ac-
cepted (which follows from the usage *O,.0) and that a reply to each request is also eventually sent (which
follows from the usage O,.0).

In the above encoding of concurrent objects, the order in which method requests are accepted can be
captured only indirectly through time tags. This is problematic for certain objects like one-place buffer
objects, which can execute a put method and a get method only alternately. We can express the behavior
of such objects by introducing object types as primitives, instead of encoding them in terms of record types
and channel types. For example, object types can be defined as the following extension of the channel types
in Section 7.6:

7= M[r,...,%],.7 | M[m1,....T]o,-7 | (11]|72) | -+~

Here, M denotes a method name. M|[ry,...,7,]1,.7 expresses the type of a concurrent object which accepts
a request for the method M and then behaves as specified by type 7. M7, ..., T,]o,-T expresses the type of
a concurrent object for which some process sends a request for the method M and then behaves as specified
by type 7. The behavior of a one-place buffer object for storing an integer can be expressed by a recursive
type 7 such that 7 = Put[int]|, .Get[int];,.7. From a user of the object, the object can be viewed as having
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type 7' such that 7/ = Put[int]o,.Get[int]o..7’. Concrete definitions of a deadlock-free concurrent object
calculus and its type system based on the above idea are left for future work.

7.8 Detecting Livelock

Our type system cannot guarantee freedom from livelocks, i.e., situations in which a process diverges with-
out fulfilling obligations or with keeping a subprocess that is trying to use a capability waiting forever.
Guaranteeing freedom from livelocks corresponds to ensuring termination in functional languages. It is
therefore unrealistic to develop a type system guaranteeing livelock-freedom for a general purpose concur-
rent programming language: It would restrict the expressive power too much or impose too heavy a burden
on the programmer by requiring explicit annotations of complex types. However, for some special purposes
for which less expressive power is necessary or livelock-freedom is extremely important, it may be useful to
guarantee freedom from livelock by restricting recursive processes to primitive recursive ones (analogues of
primitive recursive functions), or by requiring complex type annotations.

One compromise applicable to general purpose languages would be to guarantee livelock-freedom only
for certain channels. For that purpose, for example, we can introduce a constructor () for usages, which
expresses the passage of time. For example, ()0,.0 means that an output must be performed only after the
passage of some time. Then, we can infer that the output obligation in rec av.(a M O,.0) is eventually fulfilled
even in a divergent process (under some fair scheduling), but that the output obligation in rec a.(Qa M O,.0)
may not.

8 Related Work

A number of advanced type systems have recently been proposed for process calculi or concurrent object
calculi. However, we are not aware of any other advanced typed process calculi that are equipped with
type reconstruction algorithms, except for Igarashi and Kobayashi’s type reconstruction algorithm [8] for
the linear m-calculus [11]. We discuss Igarashi and Kobayashi’s work in Section 8.1.

In addition, we compare our deadlock-free process calculus with other typed concurrent process/object
calculi in Section 8.2. We have already discussed some of them in the previous papers [10, 23], but thanks to
the generalization of our type system in this paper, it became easier to compare them with our type system.

8.1 Type reconstruction for the linear pi-calculus

Our type reconstruction algorithm can be considered an extension of Igarashi and Kobayashi’s type recon-
struction algorithm [8] for the linear m-calculus.

In Igarashi and Kobayashi’s type system [8], channel types are of the form [r,...,7,]"*2). k| and
ko range over the set of elements 0,1, w called uses and indicate how many times (zero times, once, or an
arbitrary number of times) channels may be used for input and output respectively. As in this paper, the
operations +,M and a relation < on types and uses are introduced. For example, + is defined by:

[7-1’ o ’Tn](nu,mz) + [7-1’ o ,Tn](fcm,mz) — [7-1, o ,Tn](H11+H21,H12+H22)
ky k1 =0

K1+ Ko = k1 ifke=0
w  otherwise

So, a pair (k1,k2) corresponds to a usage in this paper. (Formally, we might be able to show the corre-
spondence through the existence of a homomorphism from the algebra of usages to the algebra of pairs of
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uses.) Type reconstruction proceeds in a manner similar to our type reconstruction: a principal typing is
first obtained as a pair of a type environment containing variables and a set of constraints on the variables,
and then the constraint set is reduced step by step.

Igarashi and Kobayashi’s algorithm can also deal with Pierce and Sangiorgi’s structural subtyping based
on input-only /output-only channel types [16]. So, as mentioned in Section 7, we expect that we can extend
our type reconstruction algorithm also to handle structural subtyping.

8.2 Other related type systems

We compare below other related type systems for process or concurrent object calculi. Type reconstruction
algorithms for them have not been developed to our knowledge, and therefore, they are not directly related
to the aim of this paper. However, it would be useful to clarify relationships between them and our
type system in the terminology of usages, capabilities, obligations, etc., because most of them have been
independently developed and have not been compared enough in a meaningful way. Clear connections would
help development of type reconstruction algorithms for those type systems and also integration of them.

Yoshida’s graph types [26] Yoshida [26] proposed a type system that can guarantee deadlock-freedom
in a sense slightly different from ours. In her type system, a channel type is a directed graph, whose vertices
express information on each use of the channel (whether it is used for input or output and what kind of value
is passed) and whose arrows express the order of the uses. For example, the graph | [z,y] = x| [] = v T[]
(— represents an arrow of the graph; | and 1 are parts of node labels) expresses the type of a channel that
is used for receiving a pair of channels, receiving a null tuple through the first channel and then sending a
null tuple through the second channel. There are some similarities between her type system and ours. A
vertex corresponds to the part [r1,...,7,] and the part I/O of a channel type in our type system, and an
edge corresponds to a tag ordering and the sequencing operator “.” on usages in our type system. Two
processes accessing the same channel can be composed only if their uses of the channel are represented by
mutually complementary graphs (in the sense that one is obtained from the other by exchanging 1 of each
vertex with |). This corresponds to the reliability and the relation ~ in our type system.

In our terminology, differences can be explained as follows. Her type system has only two classes of
channels: one is the class of channels of the usage */;.0|*0y.0, which can be used in an arbitrary manner
but for which neither capabilities nor obligations are guaranteed, and the other is the class of channels whose
usages are always annotated with the attribute co. No subusage relation like ours is allowed for the usages
of the latter class of channels. Also, unlike our tag ordering, the arrow of her graph types expresses the exact
order of channel uses: if there is an arrow from 7| to 7o, then a channel can and must be used according to
types 71 and 72 in this order. (This can both be an advantage and a disadvantage: see discussions in [10].)
Another difference is that her type system allows a channel to be used for passing values of different types,
as discussed in Section 7.6.

To summarize, Yoshida’s type system can be roughly seen as our type system, plus the extended channel
types in Section 7.6, minus the capability-only/obligation-only attributes and the subusage relation.

Takeuchi, Honda, and Kubo’s type system [24] Some similar ideas are also found in an earlier work
by Takeuchi, Honda and Kubo [24] on a type system for a concurrent object-oriented language. Similarly
to our usages and Yoshida’s graph types [26], channel types are composed by a sequencing operator and
choice operators. Each channel can be shared by two processes, and it is guaranteed by the type system
that the two processes use the channel in a complementary manner. For example, if one uses the channel
for sending an integer and then for receiving a string, then the other uses it for receiving an integer and
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then for sending a string. Deadlock-freedom is not guaranteed, however, because the type system does not
take into account in which order multiple channels are used.

In short, their type system can be roughly seen as our type system, plus unreliable channel types in
Section 7.4, the extended channel types in Section 7.6, and the object types in Section 7.7, minus the
empty /capability-only/obligation-only attributes, the tag orderings, and the subusage relation.

Sangiorgi’s receptive names [22] Sangiorgi [22] also introduced a type system of the 7-calculus which
can guarantee deadlock-freedom in a certain sense. It guarantees that a process is always waiting to input
on certain channels (called receptive names), so that outputs on those channels always succeed. Roughly
speaking, receptive names correspond to channels of the usage I5.0]|Oc.0 or x1,.0||*O¢.0. (Actually, he intro-
duced two versions of receptive names: linear receptive names w-receptive names. The former corresponds
to the usage I,.0]|O.0 and the latter to *I,.0||*O.0.)

There is something that cannot be captured by our type system. Consider the process (vx) a![z]. xx?[y]. P.
In his type system, x is judged to be a (w-)receptive name even if ¢ is not a receptive name. This is because
if the output on a succeeds, xx?[y]. P is executed, and therefore, every process that has received x through
a can successfully performs an output on z, while if the output on a does not succeed, x cannot be used
for output at all. However, in our type system, a must also be a receptive name: According to the rule
(T-OuT) in our type system, the output on a must also be guaranteed to succeed. In order to solve this
problem, we can add another rule for output:

C,o:[r,...,m])/U;TEP
aCad v; € {true, false} = 7, = bool for each i € {1,...,n}
i,y W) Ou U+ (1 :m+ 4 vp 7 + D)0 T F 2%y, ... 0] P

(T-OuT2)

In the above rule, the condition 0b(vy : 71 + -4+ v, : 7, +T) = ¢ C @ of (T-OUT) is removed; instead, the
type environment vy : 7y + -+ - + v, : 7, + [ is weakened to (v : 71+ -+ -+ v, : 7 + 1) M0, reflecting the fact
that v1,...,v, are not used at all and the body P is not executed unless the output on x succeeds. With
this kind of modification, we think that our type system can subsume Sangiorgi’s type system for receptive
names [22].

To summarize, Sangiorgi’s type system [22] can be roughly seen as our type system plus the above
extension, minus usages except for xj.0(|!0y.0, I5.0||O¢.0, and *I,.0||*O¢.0, and the subusage relation.

Nierstrasz’s regular types [15] An idea similar to our usages is also found in an earlier work by
Nierstrasz on regular types [15]. In order to express changing behaviors of a concurrent object, he introduced
types (called regular types) composed of sequencing, choice (like Ll in Section 7.5), and recursion operators,
and formalized a subtyping relation on those types. Nierstrasz [15] has not presented a type system, but his
work can be basically viewed as our type system plus object types in Section 7.7, minus usage attributes,
usage constructors O,., |, and M, and the tag orderings.

Puntigam’s type system for concurrent objects [19] Puntigam [19] extends Nierstrasz’s work [15]
above by giving a type system that can ensure that a concurrent object really provides services specified by
types (similar to regular types) and that users of a concurrent object do not send requests for unavailable
services. In our terminology, every output operation always has a capability attribute, while every input
operation has an obligation attribute. The syntax of object types is rather different from that of Nierstrasz’s
regular types, but we think that Puntigam’s object types essentially express information almost equivalent
to the regular types plus a parallel composition operator (like || of ours). The underlying calculus is different
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from ours in that the message arrival order is FIFO (messages are accepted by an object in the order they are
sent) as in the actor model [7]. We think, however, that this is not an essential difference of the type systems.

In fact, we can introduce the typing rule for an asynchronous, FIFO output operation “z![vi,...,v,]; P”
as a mixture of the rule for an asynchronous output z![vi,...,v,]| P and that for a synchronous output
oy, ..., o). P:

Oy r,...,m) /U T =P
aCd tT (v i1+ 4 vy Th) ob(vy T+ Fv, ) =>cCd
v; € {true, false} = 7, = bool for each i € {1,...,n}

zi[m, . ) Op U4 vr i1+ vy i Ty + DT %o, .o 0,5 P

(T-OuT-FIFO)

The difference from the case for a synchronous output is that the body P can be executed irrespectively
of whether or not the output succeeds, and therefore we need not require that the output has a capability
attribute even if 0b(I") holds.

To summarize, Puntigam’s type system [19] can be regarded as our type system plus the object types,
minus the usage attributes except for the output capability and the input obligation and the tag orderings.
In Puntigam’s recent work [20], a method reply channel corresponding to a channel of the usage O.0]|Ic.0
and an ordering similar to the tag orderings have been introduced.

Boudol’s type system [3] Boudol [3] proposed a kind of deadlock-free type system for the blue calcu-
lus [2]. It is conjectured that the type system guarantees deadlock-freedom in the sense that output processes
are not blocked forever. For that purpose, the order of communications is expressed by using sequencing,
parallel composition, recursion operators on types, which are somewhat similar to the corresponding oper-
ators on the usages of our type system. We still have some difficulties in making clear connections, but our
current understanding is that his type system corresponds to our type system plus the extended channel
types in Section 7.6, minus the input capability and the output obligation, the usage constructor M, and the
subusage relation.

9 Conclusion

We have extended our previous type systems for deadlock-freedom [10, 23] and developed its type reconstruc-
tion algorithm. A prototype type inference system is available at http://www.yl.is.s.u-tokyo.ac.jp/
“shin/pub/.

There remain a number of issues in applying our type system and algorithm to real concurrent program-
ming languages [18,21], such as whether the type system is expressive enough, how to make the algorithm
efficient, and how to present the result of type reconstruction to programmers. We plan to perform experi-
ments using existing CML or Pict programs to answer these questions. Future work also includes extensions
discussed in Section 7, in particular, the generalization and clarification of the time tags and tag orderings
mentioned in Section 7.1 and the object types discussed in Section 7.7.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

63



2]

3]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

Gérard Boudol. The pi-calculus in direct syle. In Proceedings of ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages, pages 228-241, 1997.

Gérard Boudol. Typing the use of resources in a concurrent calculus. In Proceedings of ASIAN’97,
volume 1345 of Lecture Notes in Computer Science, pages 239-253. Springer-Verlag, 1997.

J. Esparza and M. Nielsen. Decidability issues for petri nets - a survey. Journal of Information
Processing and Cybernetics, 30(3):143-160, 1994.

Simon J. Gay. A sort inference algorithm for the polyadic w-calculus. In Proceedings of ACM SIG-
PLAN/SIGACT Symposium on Principles of Programming Languages, pages 429-438, 1993.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence, 8:323—
364, 1977.

Atsushi Igarashi and Naoki Kobayashi. Type reconstruction for linear pi-calculus with I/O subtyping.
Information and Computation. To appear. A preliminary summary appeared in Proceedings of SAS’97,
LNCS 1302, pp.187-201.

Trevor Jim and Jens Palsberg. Type inference in systems of recursive types with subtyping. Manuscript,
available at http://www.cs.purdue.edu/homes/palsberg/publications.html, 1999.

Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions on Programming
Languages and Systems, 20(2):436-482, 1998. A preliminary summary appeared in Proceedings of
LICS’97, pages 128-139.

Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914-947, 1999. Preliminary summary
appeared in Proceedings of POPL’96, pp.358-371.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

Robin Milner. The polyadic m-calculus: a tutorial. In F. L. Bauer, W. Brauer, and H. Schwichtenberg,
editors, Logic and Algebra of Specification. Springer-Verlag, 1993.

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I, II. Information
and Computation, 100:1-77, September 1992.

Oscar Nierstrasz. Regular types for active objects. In Object-Oriented Software Composition, chapter 4,
pages 99-121. Prentice Hall, 1995. A preliminary version appeared in Proceedings of OOPSLA’93, pp.1-
15.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathematical
Structures in Computer Science, 6(5):409-454, 1996.

Benjamin C. Pierce and David N. Turner. Concurrent objects in a process calculus. In Theory and
Practice of Parallel Programming (TPPP), Sendai, Japan (Nov. 1994), volume 907 of Lecture Notes in
Computer Science, pages 187-215. Springer-Verlag, 1995.

64



[18] Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-calculus.
Technical Report CSCI 476, Computer Science Department, Indiana University, 1997. To appear in
Proof, Language and Interaction: FEssays in Honour of Robin Milner, Gordon Plotkin, Colin Stirling,
and Mads Tofte, editors, MIT Press, 1999.

[19] Franz Puntigam. Coordination requirements expressed in types for active objects. In Proceedings of
ECOOP’97, volume 1241 of Lecture Notes in Computer Science, pages 367-388, 1997.

[20] Franz Puntigam and Christof Peter. Changeable interfaces and promised messages for concurrent
components. In Proceedings of the 1999 ACM Symposium on Applied Computing, pages 141-145, 1999.

[21] John H. Reppy. CML: A higher-order concurrent language. In Proceedings of the ACM SIGPLAN’91
Conference on Programming Language Design and Implementation, pages 293-305, 1991.

[22] Davide Sangiorgi. The name discipline of uniform receptiveness (extended abstract). In Proceedings of
ICALP’97, volume 1256 of Lecture Notes in Computer Science, pages 303-313, 1997.

[23] Eijiro Sumii and Naoki Kobayashi. A generalized deadlock-free process calculus. In Proc. of Workshop
on High-Level Concurrent Language (HLCL’98), volume 16(3) of ENTCS, pages 55-77, 1998.

[24] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its typing sys-
tem. In Proceedings of PARLE’9/, volume 817 of Lecture Notes in Computer Science, pages 398-413.
Springer-Verlag, 1994.

[25] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic m-calculus. In CON-
CUR’93, volume 715 of Lecture Notes in Computer Science, pages 524-538. Springer-Verlag, 1993.

[26] Nobuko Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, volume 1180 of Lecture
Notes in Computer Science, pages 371-387. Springer-Verlag, 1996. Full version as LFCS report, ECS-
LFCS-96-350, University of Edinburgh.

A Proof of Theorem 4.47
Lemma A.1: If T,z : 7;7 b P and x is not free in P, then noob(7) and T'; T = P hold.

Proof: This follows by straightforward induction on derivation of I',x : 7; 7 F P (notice that x : 7 can be
introduced only by (T-WEAK)). O

We write 71 <g 70 when 71 < 7 and 0b(71) implies 0b(72). We extend <g to a relation between type
environments by: 'y <g I'y if and only if (i)dom(I'1) D dom(T'9), (ii)Vx € dom([).(I'1(z) <g I's(x)), and
(iii)Ve € dom(T1)\dom(T3).(noob(T'1(x))). We write I; T F' P if A;T + P and T' <g A for some A. We
also write I'; 7 H P when A; 7T F P and I' < A for some A.

Lemma A.2: Suppose P = Q. If I'; T " P, then if and only if I'; 7 ' Q.

Proof: The proof proceeds by induction on derivation of P = @), with case analysis on the last rule used.
Since the induction steps (cases where the last rule is a rule for congruence, symmetry, and transitivity)
are trivial, we show only the base cases (except for the cases for the rule of reflexivity and (SCONG-ZERO),
which are also trivial) and the induction step for the congruence on (vz).
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e Cage for (SCoNG-CoMMUT): Suppose I'; T " P| Q. By Theorem 5.1, we have I'1; T+ P, T'9; T + Q,
and I' <g I'y + I'y. By using (T-PAR), we obtain I's +T'1; 7 - Q| P. By the fact I'1 + T2 <g 'y +T'y,
we obtain T'; T H' Q| P.

e Case for (SCONG-ASsOC): Similar to the above case (notice that I't + (I's +T's) <g (I't +T'2) + '3
holds).

e Case for (SCONG-NEW): Suppose I'; 7 H (vz) (P|Q) and z is not free in Q. By Theorem 5.1, it

must be the case that
r'yTHP

I'y;THQ
rel((I'1 + T'2)(x))
' <g (T1+T2)\{z}

for some I'; and I's. By Lemma A.1, we have I'2)\{z}; T F Q and noob(I'2(z)). So, we have rel(I';(z))
by Lemma 4.27 and the fact noob(Uz) = U;||Uy < U;. So, by using (T-NEW), and (T-PAR), we
obtain T'; T+ (va) P | Q.

On the other hand, suppose I'; T H" (vz) P| Q and x is not free in Q). By Theorem 5.1, it must be the

case that
Iy,z:7; TP
I'y;THQ
rel(7)
['<sT1+T2

By Lemma A.1, To\{z}; 7T F @ and T's < T's\{z}. So, by using (T-PAR) and (T-NEW), we obtain
LT H (vr) (P Q).

e Case for the congruence rule on (vx): Suppose I'; T ' (vx) P'and P’ = Q'. By the former assumption,
O,z :7; T F' P and rel(r) for some 7. By induction hypothesis, we have ',z : 7; T F" @Q'. So, there
exists TV, 7/ such that T,z : 7; T F Q', T <g I'", and 7 <g 7’. By Lemma 4.27, we have rel(7’').
Therefore, we have T'; T F (vz) Q" and T <g I'" as required.

Lemma A.3: If ;7 F P, then I'; T+ P|«P.

Proof: Suppose I'; 7 F «P. By Theorem 5.1, there exist I'y such that I'1;7 F P and T’ < #I'y. By using
(T-PAR), we obtain I'y + «['1; 7 F P|«P. By Lemma 4.19, we have «I'; < I'y 4+ *I';. Therefore, we can
obtain I'; T ' P|«P. O

Lemma A.4: If ;7 F P and = &€ dom(T"), then z is not free in P.
Proof: Straightforward induction on derivation of I'; 7 + P. a

Lemma A.5 [Substitution Lemma]: If T,z : 7;7 - P and ' + v : 7 is well defined, then T'+ v : 7; T
[z +— v]P holds.

Proof of Lemma A.5: We show the following stronger property by induction on type derivation, with
case analysis on the last rule used.
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“UUT,z:7;T F P holds and ' 4+ v : 7 is well defined, then '+ v : 7; T " [ — v]P.”
e Case (T-ZERO), case (T-PAR), (T-NEW), (T-IF), and (T-WEAK): Trivial by induction hypothesis.

e Case (T-OuT): In this case, it must be the case that:

P =z1%wy,...,w,]. Q
Fl,Z: [7—17"'77—n]t/U;T|_Q
aCad

tT (w1 + - Fwy 7y + 1)
ob(wy i1+ +w, 1 +T1)=>cCd
o7 <gz:[m,. .o s]/OuU+wi 7 ++w,: 7 + T

The only nontrivial cases are the case where z = x and v € dom(T'1) and the case where z = v and
x € dom(I'1): the other cases are trivial by induction hypothesis. Suppose z = x and v € dom(I'y), i.e.,
[y =T9,v:[r,...,7) /U By the types of x, w1, ..., w,, none of wi, ..., w, can be x or v (note that
we do not have recursive types). By induction hypothesis, we have 'y, v : [r1,..., 7]/ (U||U1); T H'
[# — v]Q. So, there exists A and U such that A, v : [ry,..., 7] /U T F [z v]Q, Ty <g A, and
Ul||Uy <g Us. From the facts t7 (wy : 71+ 4wy, : 7+T1) and ob(wy : 114 - -+wy, : 7o+T1) = ¢ C d/,
we also get t7 (w1 : 71 4+ +wp : 7 + A) and ob(wy : 71 + -+ wp : T + A) = ¢ C d'. So, by
using (T-OUT), we obtain v : [11,..., 7" /Ou.Us + w1 : Ty + -+ + wp : T + A; T F [x — v]P. By the
condition ¢7 (wy : 71+ - +wy : o + 1), it must be the case that t7 (v : [11,...,7]"/Ui). Since T is a
strict partial order, it must be the case that U; < 0. So, we have (O, .U)||U1 < Oy .(U||U1) < Onp.Us
by Lemma 4.24. We also have 0b(O,.U||U;) <= o C o' <= O,.U;. Therefore, we have '+ v : 7 <g
Vil ey ) /O Us +wy i 7 + -+ +wp : T+ A, from which T + v : 7; T F [x +— v]P follows.

The case where z = v and x € dom(I';) is similar.
e Case (T-IN): Similar to the above case.

e Case (T-REP): It must be the case that P = xQ, (I',x : 7) <g «I';, and I';; T F Q. If 2 & dom(T'),

then it must be the case that [z +— v]Q = @ (by Lemma A.4), noob(r), and I' <g xI[';. From
Lemma 4.34 and the second and third facts, we get I' + v : 7 <g ' + § <g *I'1. So, we obtain
I'+v:7;TFH" [x— v]P by using (T-REP).
Suppose x € dom(I';) and I'y = '}, : 7/. Then, we have I' <g «I'} and 7 <g *7'. Since ' + v : 7
is well defined, so is T} + v : 7. (Notice that if 71 < 79 holds, then 71 and 7 can differ only in their
usage.) So, by induction hypothesis, we have A such that A; 7 F [z — 0]Q and T} + v : 7/ <g A.
By using (T-REP), we obtain *A;7T F [z — v]P. The required result follows, because I' + v : 7 <g
«) + 07" <g %(T) +v:7") <g *A (the second relation follows from Lemma 4.24).

d

Proof of Theorem 4.47: The proof proceeds by induction on derivation of P SN Q, with case analysis
on the last rule used.
e Case for (R-CoM): It must be the case that
P = z!°[8]. Py | 2?7 [3]. Py
Q:P1|[2l—>1~)]P2
l==x
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Assuming T,z : [7]'/U; T F P, we need to show I',x : [7]'/U’; T F Q for some U’ such that U — U’.
By Theorem 5.1, we have

Fl,CIZ‘ : [%]t/Ul,T}_ P1

Do,z (7] /U, 2: 7, T+ P

Coo: [ /U< Ti+v:7 4+ v T+ Doyt [F]Y/ (Lay . Ur]|Ouy . Uz)
7 <7, <71,

By the substitution lemma (Lemma A.5), we have Lo+wvy : 7|+ -+, : 7,2 : [7]'/Us; T H' [Z2 = 0] P.
By using (T-PAR), we obtain I',x : [7]/(U1]|Uz2); T H Q. By the fact U < I,,,.U1||Og,.Us — Uy||Us,
there exists U’ such that U — U’ and U’ < U;||Us. So, we get I,z : [7]'/U"; T H Q and U — U’ as
required.

Case for (R-PAR): In this case, it must be the case that P = P;|R, Q = Q1| R, and P, BN Q1.
Suppose I',x : [7]'/U; T + P and [ = x. By Theorem 5.1 and Lemma A.1, we can assume without loss
of generality that

Fl,LL‘ : [%]t/Ul,Tl_ P1

To,2: [7]'/Us; THR

r<ry+r,

U < Uy||Us

for some Uy, Uy, T'1, and T's. By induction hypothesis, Uy — U{ and Ty, : [7]*/U{; T ' Q for some
Uj. By using (T-PAR), we obtain I,z : [7]"/(U{||U2); T +' Q1 | R. By the fact U < Uy||Uy — U{||Us,
there exists U’ such that U — U’ and U’ < U{||Us. So, we obtain I',x : [7]'/U; T H Q and U — U’
as required. Case for | = ¢ is similar.

Case for (R-NEW1): In this case, it must be the case that P = (va) Py, Q = (vz) Q1, and P; - Q.
Assuming I'; 7 + P, we shall show I'; 7 F Q. By Theorem 5.1, it must be the case that

Fl,x : [%]t/U,Tl_ P1
I'<1Iy
rel(U)

By induction hypothesis, there exists U’ such that U — U’ and 'y, x : [7]'/U"; T ' Q1. So, there
exists A, U” such that A,z : [F]//U";T F Q1, T < A, and U’ < U”. By the definition of rel and
Lemma 4.27, rel(U") also holds. So, we can obtain A;7 F @ by using (T-NEW), from which I'; 7 H @
follows.

Case for (R-NEW2): Trivial by induction hypothesis.

Case for (R-IFT): In this case, P = if true then Q else Q' . Assuming I'; 7 F P. we must show
;7 H Q. By Theorem 5.1, it must be the case that T' < (T'y M) + true : bool, T1; T F Q and
Lo; T F Q. Since (I'y M) + true : bool < Ty, we obtain I'; 7 H Q as required.

Case for (R-IFF): Similar to the above case.

Case for (R-REP): In this case, it must be the case that P = Py | R and P | P | R N Q. Suppose
;7 F P. Tt suffices to show that I'; 7 F «Py | Py | R holds (because the result follows by induction
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hypothesis). By Theorem 5.1, we have

Fl;Tf_Pl
FQ;T}_R
I'<xI'y + 1

From these, we can obtain «I'1 +I'1+T'2; T F Py | P1 | R. By using the fact I' < «['1 4T < «['1+T'1 4T,
we get I'; T H «Py | Py | R, as required.

e Case for (R-CoONG): Trivial by induction hypothesis and Lemma A.2

B Proof of Theorem 4.49

Definition B.1: A process is guarded if it is an inaction, an input, an output, or a conditional expression.

Lemma B.2: For every process P, there exists a set {(Pi,...,P,)} of guarded processes such that P is
obtained by combining Py, ..., P, with process constructors |, (vz), and .

Proof: Trivial by the syntax of processes. O

Proof of Theorem 4.49: Suppose ;7 F P and Waiting(P). Then, there must exist a set of guarded
processes {Q1,...,Q,} such that P is obtained by combining Qq,...,Q, with process constructors |,
(vy), and *. Moreover, by the assumption Waiting(P), Q; is of the form z!°[?]. Q) or x?%[g]. Q} for some
i € {1,...,n} and a(D c). Without loss of generaility we can assume i = 1. Suppose Q; = z!*[?]. Q}
(the other case is similar). By Theorem 5.1 and the assumption (; 7 F P, there exist I'y,..., T, such that
(i) Ti; T Fsrr Qi for each i € {1,...,n} and (ii) the empty type environment () can be obtained from
I'y,...,T, by only applying the operations +, x and removing a binding w : 7 such that rel(7).

If some ; is a conditional expression if b then R; else R , then b must be true or false by the typing
rules. So, @; can be reduced, which implies that the whole process (v2) (z!°[0]. P | Q) can also be reduced.

Otherwise, each (); must be an inaction, an input, or an output process. Let S be the following subset

of {1,....,n} x T:
{(i,t;) | Q; is of the form y!*[v/]. Q}, T;(y) is of the form [7]% /O,.U, and ¢ C a'}
t4

|
U{(i,t;) | Qi is of the form y?*[w]. Q}, T;(y) is of the form [7]%/I,,.U, and ¢ C a'}

Intuitively, S is the set of pairs of the index of a process trying to use a capability on a channel and the
channel’s time tag. S at least contains the pair (1,%;), since Q1 = z!*[0]. Q] and ¢ C a.

Let (9, t;,) be an element of S such that ¢;, is minimal (i.e., there is no time tag that is less than ¢;,) with
respect to 7 among the time tags in S. (Such t;, always exists since T is a strict partial order.) Suppose
Qi, 1s an output expression y!“[&’]. Q;, (the case for input is similar). By the condition (ii) of the type
environments I';,...,I',, and the definition of the reliability predicate rel, there must exist j € {1,...,n}
such that I';(y) is of the form [7]% /U and ob1(U). Because t;, is a minimal time tag among those in S, by
I';; T F Q; and the typing rules, it must be the case that Q; is of the form y?7e" [@]. Q;. Therefore, @Q;, and
(Q; can be reduced together, which implies that the whole process P can also be reduced.
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