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Abstract. Type systems for programming languages help reasoning about
program behavior and early finding of bugs. Recent applications of type
systems include analysis of various program behaviors such as side ef-
fects, resource usage, security properties, and concurrency. This paper
is a tutorial of one of such applications: type systems for analyzing be-
havior of concurrent processes. We start with a simple type system and
extend it step by step to obtain more expressive type systems to reason
about deadlock-freedom, safe usage of locks, etc.1

1 Introduction

Most of modern programming languages are equipped with type systems, which
help reasoning about program behavior and early finding of bugs. This note is
a tutorial of type systems for concurrent programs.

Functional programming language ML [30] is one of the most successful ap-
plications of a type system that are widely used in practice. The type system of
ML automatically infers what type of value each function can take, and checks
whether an appropriate argument is supplied to the function. For example, if
one defines a function to return the successor of an integer, the type system of
ML infers that it should take an integer and return an integer:

fun succ x = x+1;
val succ = fn : int -> int

Here, the line in the italic style shows the system’s output. If one tries to apply
the function to a string by mistake, the type system reports an error before
executing the program:

f "a";
Error: operator and operand don’t agree ...

Thanks to the type system, many bugs are found in the type-checking phase.
Type systems for concurrent programming languages have been, however,

less satisfactory. For example, consider the following program in CML [36].

fun f(x:int) = let val y=channel() in recv(y)+x end;

1 This is an extended and revised version of the paper published in Proceedings of
UNU/IIST 20th Anniversary Colloquium, Springer LNCS 2757, pp.439-453.



Function f takes an integer as an argument. It first creates a new communication
channel y (by channel()) and then tries to receive a value from the channel. It
is blocked forever since there is no process to send a value on y. This function
is, however, type-checked in CML and given a type int → int .

To improve the situation above, type systems for analyzing usage of con-
currency primitives have been extensively studied in the last decade [3, 6–8,
15, 16, 19, 23, 31–33, 49]. Given concurrent programs, those type systems analyze
whether processes communicate with each other in a disciplined manner, so that
a message is received by the intended process, that no deadlock happens, that
no race condition occurs, etc.

The aim of this tutorial note is to summarize the essence of type systems for
analyzing concurrent programs. Since concurrent programs are harder to debug
than sequential programs, we believe that type systems for concurrent programs
should be applied more widely and play more important roles in debugging and
verification of programs. We hope that this paper serves as a guide for those
who are interested in further extending type systems for concurrent programs or
incorporating some of the type systems into programming languages and tools.

We use the π-calculus [28, 29, 40] as the target language of type systems in
this paper. Since the π-calculus is simple but expressive enough to express various
features of real concurrent programming languages, it is not difficult to extend
type systems for the π-calculus to those for full-scale programming languages.

Section 2 introduces the syntax and operational semantics of the π-calculus.
In Sections 3–11, we first present a simple type system, and extend it step by
step to obtain more advanced type systems. Section 12 concludes this paper.

2 Target Language

We use a variant of the π-calculus [28, 29, 40] as the target language. The π-
calculus models processes interacting with each other through communication
channels. Processes and communication channels can be dynamically created,
and references to communication channels can be dynamically exchanged among
processes so that the communication topology can change dynamically.

Definition 1 (processes, values). The sets of expressions, process expres-
sions, and value expressions, ranged over by A, P , and v respectively, are defined
by the following syntax.

A ::= P | v
P ::= 0 | x![v1, . . . , vn]. P | x?[y1 : τ1, . . . , yn : τn]. P | (P |Q)

| (νx : τ) P | ∗P | if v then P else Q
v ::= x | true | false

In the definition above, τ denotes a type introduced in later sections. The type
information need not be specified by a programmer (unless the programmer
wants to check the type); As in ML [30], it can be automatically inferred in
most of the type systems introduced in this paper.



Process 0 does nothing. Process x![y1, . . . , yn] sends a tuple [v1, . . . , vn] of
values on channel x. Process x?[y1 : τ1, . . . , yn : τn]. P waits to receive a tuple
[v1, . . . , vn] of values, binds y1, . . . , yn to v1, . . . , vn, and behaves like P . P |Q
runs P and Q in parallel. Process (νx)P creates a fresh communication channel,
binds x to it, and behaves like P . Process ∗P runs infinitely many copies of P
in parallel. Process if v then P else Q behaves like P if v is true and behaves
like Q if v is false. For simplicity, we assume that a value expression is either
a boolean (true, false) or a variable, which is bound to a boolean or a channel
by an input prefix (x?[y1, . . . , yn]. ) or a ν-prefix.

A sequence v1, . . . , vn is often abbreviated to ṽ. We often omit trailing 0 and
write x![ṽ] for x![ṽ].0.

We write P −→ Q if Q is reduced to P in one step (by a communication
or reduction of a conditional expression). The formal operational semantics is
found in the literature on the π-calculus [28, 40].

We give below simple examples, which we will use later to explain type
systems. In some of the examples, we use integers and operations on them.

Example 1 (ping server). The process ∗ping? [r]. r![ ] works as a ping server. It
waits to receive a message on channel ping and sends a null tuple on the received
channel. A typical client process is written as: (νreply) (ping ![reply ] | reply?[ ]. P ).
It creates a fresh channel reply for receiving a reply, checks whether the ping
server is alive by sending the channel, waits to receive a reply, and then executes
P . Communications between the server and the client proceed as follows:

∗ping? [r]. r![ ] | (νreply) (ping ![reply ] | reply?[ ]. P )
−→ ∗ping? [r]. r![ ] | (νreply) (reply ![ ] | reply?[ ]. P )
−→ ∗ping? [r]. r![ ] | (νreply) P

In the second line, (νreply) denotes the fact that the channel reply is a new
channel and known by only the processes in the scope.

Example 2 (recursive processes). Recursive processes can be defined using repli-
cations (∗P ). Consider a process of the form (νp) (∗p?[x1, . . . , xn]. P |Q). Each
time Q sends a tuple [v1, . . . , vn] along p, the process [v1/x1, . . . , vn/xn]P is
executed. So, the process ∗p?[x1, . . . , xn]. P works as a process definition. We
write let proc p[x1, . . . , xn] = P in Q for (νp) (∗p?[x1, . . . , xn]. P |Q) below.
For example, the following expression defines a recursive process that takes a
pair consisting of an integer n and a channel r as an argument and sends n
messages on r.

let proc p[n, r] = if n ≤ 0 then 0 else (r![ ] | p! [n− 1, r]) in · · ·
Example 3 (locks and objects). A concurrent object can be modeled by multiple
processes, each of which handles each method of the object [19, 27, 34]. For ex-
ample, the following process models an object that has an integer as a state and
provides services to set and read the state.

(νs) (s![0] | ∗set?[new]. s?[old]. (s![new] | r![ ])
| ∗read?[r]. s?[x]. (s![x] | r![x]))



The channel s is used to store the state. The process above waits to receive
request messages on channels set and read. For example, when a request set![3]
arrives, it sets the state to 3 and sends an acknowledgment on r.

Since more than one processes may access the above object concurrently,
some synchronization is necessary if a process wants to increment the state of
the object by first sending a read request and then a set request. A lock can
be implemented using a communication channel. Since a receiver on a channel
is blocked until a message becomes available, the locked state can be modeled
by the absence of a message in the lock channel, and the unlocked state can
be modeled by the presence of a message. The operation to acquire a lock is
implemented as the operation to receive a message along the lock channel, and
the operation to release the lock as the operation to send a message on the
channel. For example, the following process increment the state of the object
using a lock channel lock .

lock?[ ]. (νr) (read! [r] | r?[x]. (νr′) (set![x + 1, r′] | r′?[ ]. lock![ ]))

3 A Simple Type System

In this section, we introduce a simple type system [9, 48] for our language. It pre-
vents simple programming errors like: ∗ping? [r]. r![ ] | ping ![true], which sends a
boolean instead of a channel along channel ping , and ∗ping? [r]. r![ ] | ping ![x, y],
which sends a wrong number of values on ping . Most of the existing programming
languages that support concurrency primitives have this kind of type system.

In order to avoid the confusion between booleans and channels and the arity
mismatch error above, it is sufficient to classify values into booleans and channels,
and to further classify channels according to the shape of transmitted values.
We define the syntax of types as follows.

τ ::= bool | [τ1, . . . , τn] chan
σ ::= τ | proc

Type bool is the type of booleans, and [τ1, . . . , τn] chan is the type of channels
that are used for transmitting a tuple of values of types τ1, . . . , τn. For example,
if x is used for sending a pair of booleans, x must have type [bool,bool] chan. A
special type proc is the type of processes. The programming errors given in the
beginning of this section are prevented by assigning to ping a type [bool] chan.

An expression is called well-typed if each value is consistently used according
to its type. The notion of well-typeness is relative to the assumption about free
variables, represented by a type environment. It is a mapping form a finite set of
variables to types. We use a meta-variable Γ to denote a type environment. We
write ∅ for the typing environment whose domain is empty, and write dom(Γ ) for
the domain of Γ . When x 6∈ dom(Γ ), we write Γ, x : τ for the type environment
obtained by extending the type environment Γ with the binding of x to τ . We
write Γ ≤ Γ ′ when dom(Γ ) ⊇ dom(Γ ′) and Γ (x) = Γ ′(x) for each x ∈ dom(Γ ′).



b ∈ {true, false}
∅ ` b : bool

(ST-Bool)

x : τ ` x : τ (ST-Var)

Γ ′ ` A : σ Γ ≤ Γ ′

Γ ` A : σ
(ST-Weak)

∅ ` 0 : proc (ST-Zero)

Γ ` P : proc
Γ ` Q : proc

Γ ` P |Q : proc
(ST-Par)

Γ, x : τ ` P : proc
τ is a channel type

Γ ` (νx : τ) P : proc
(ST-New)

Γ ` P : proc

Γ ` ∗P : proc
(ST-Rep)

Γ ` x : [τ1, . . . , τn] chan Γ ` vi : τi (for each i ∈ {1, . . . , n}) Γ ` P : proc

Γ ` x![v1, . . . , vn]. P : proc
(ST-Out)

Γ ` x : [τ1, . . . , τn] chan Γ, y : τ1, . . . , y : τn ` P : proc

Γ ` x?[y1 : τ1, . . . , yn : τn]. P : proc
(ST-In)

Γ ` v : bool Γ ` P : proc Γ ` Q : proc

Γ ` if v then P else Q : proc
(ST-If)

Fig. 1. Typing rules for the simple type system

Intuitively, Γ ≤ Γ ′ means that Γ represents a stronger type assumption about
variables.

We write Γ ` A : σ if an expression A (which is either a value expression or a
process expression) is well-typed and has type σ under the type environment Γ .
The relation Γ ` A : σ is defined by the set of inference rules shown in Figure 1.

Most of the rules should be self-explanatory for those who are familiar with
type systems for sequential programming languages. The rule (ST-Weak) means
that we can replace a type environment with a stronger assumption. It is equiv-
alent to the usual weakening rule for adding an extra type binding to the type
environment. We use (ST-Weak) since it is more convenient for extending the
type system later. The rule (ST-New) checks that x is indeed used as a channel
of the intended type in P .

The rule (ST-Out) checks that the destination channel x indeed has a chan-
nel type, and that each argument vi has the type τi, as specified by the type of
x. The rule (ST-In) checks that x has a channel type, and that the continuation
part P is well-typed provided that each formal parameter yi is bound to a value
of the type τi as specified by the type of x. Those rules are analogous to the
rules for function application and abstraction.

The above type system guarantees that if a process is well-typed, there is no
confusion between booleans and channels or arity mismatch error.



4 A Type System with Input/Output Modes

Even if a program is type-checked in the simple type system in the previous
section, the program may still contain a lot of simple programming errors. For
example, the ping server in Example 1 may be written as ∗ping? [r]. r?[ ].0 by
mistake. Then, clients cannot receive any reply from the server. Similarly, a client
of the server may receive a message along ping instead of sending a message
either by mistake or maliciously. In Example 3, a user of the object may receive
a message along the interface channels set and read instead of sending a message.

We can prevent the above-mentioned errors by classifying the types of chan-
nels according to whether the channels can be used for input (receiving a value)
or output (sending a value) [32]. We redefine the syntax of types as follows:

τ ::= bool | [τ1, . . . , τn] chanM

M (mode) ::=! |? |!?

A mode M denotes for which operations channels can be used. A channel of
type [τ1, . . . , τn] chanM can be used for output (input, resp.) only if M contains
the output capability ! (the input capability ?, resp.). The wrong ping server
∗ping? [r]. r?[ ].0 is rejected by assigning to ping the type [[ ] chan!] chan?.

As in type systems for sequential programming languages, we write τ1 ≤ τ2

when a value of type τ1 may be used as a value of type τ2. It is defined as
the least reflexive relation satisfying [τ1, . . . , τn] chan!? ≤ [τ1, . . . , τn] chan?

and [τ1, . . . , τn] chan!? ≤ [τ1, . . . , τn] chan!. It is possible to relax the subtyping
relation by allowing, for example, [τ1, . . . , τn] chan! to be co-variant in τ1, . . . , τn

(see [32]). We do not do so in this paper for the sake of simplicity.
The binary relation ≤ on type environments is re-defined as: Γ ≤ Γ ′ if and

only if dom(Γ ) ⊇ dom(Γ ′) and Γ (x) ≤ Γ ′(x) for each x ∈ dom(Γ ′).
The new typing rules are obtained by replacing only the rules (ST-Out) and

(ST-In) of the previous type system with the following rules:

Γ ` x : [τ1, . . . , τn] chan! Γ ` vi : τi for each i ∈ {1, . . . , n}
Γ ` x![v1, . . . , vn] : proc

(MT-Out)

Γ ` x : [τ1, . . . , τn] chan? Γ, y : τ1, . . . , y : τn ` P : proc
Γ ` x?[y1 : τ1, . . . , yn : τn]. P : proc

(MT-In)

5 A Linear Type System

The type system in Section 4 prevents a ping server from using a reply channel
for input, but it does not detect a mistake that the server forgets to send a
reply. For example, the process ∗ping? [r]. if b then r![ ] else 0 forgets to send
a reply in the else-branch: Another typical mistake would be to send more than
one reply messages: ∗ping? [r]. (r![ ] | r![ ]).



Γ ` P : proc ∆ ` Q : proc

Γ |∆ ` P |Q : proc
(LT-Par)

Γ ` P : proc

ωΓ ` ∗P : proc
(LT-Rep)

Γi ` vi : τi for each i ∈ {1, . . . , n} Γ ` P : proc

(x : [τ1, . . . , τn] chan(?0,!1)) |Γ1 | · · · |Γn |Γ ` x![v1, . . . , vn]. P : proc
(LT-Out)

Γ, y : τ1, . . . , y : τn ` P : proc

(x : [τ1, . . . , τn] chan(?1,!0)) |Γ ` x?[y1 : τ1, . . . , yn : τn]. P : proc
(LT-In)

Γ ` v : bool ∆ ` P : proc ∆ ` Q : proc

Γ |∆ ` if v then P else Q : proc
(LT-If)

Fig. 2. Typing rules for the linear type system

We can prevent the errors above by further classifying the channel types
according to how often channels are used [23]. The syntax of types is redefined
as follows:

τ ::= bool | [τ1, . . . , τn] chan(?m1 ,!m2 )

m (multiplicity) ::= 0 | 1 | ω
Multiplicities m1 and m2 in the channel type [τ1, . . . , τn] chan(?m1 ,!m2 ) describes
how often the channel can be used for input and output respectively. Multiplicity
0 means that the channel cannot be used at all for that operation, 1 means that
the channel should be used once for that operation, and ω means that the channel
can be used for that operation an arbitrary number of times. By assigning to
ping a type [[ ] chan(?0,!1)] chan(?ω,!0), we can detect programming errors like
∗ping? [r]. (r![ ] | r![ ]) and ∗ping? [r]. if b then r![ ] else 0 above.

We define the binary relation m1 ≤ m′
1 as the least partial order that satisfies

ω ≤ 0 and ω ≤ 1. The subtyping relation is re-defined as the least reflexive
relation satisfying the rule:

m1 ≤ m′
1 m2 ≤ m′

2

[τ1, . . . , τn] chan(?m1 ,!m2 ) ≤ [τ1, . . . , τn] chan
(?

m′
1 ,!

m′
2 )

The subtyping relation allows, for example, a channel of type [ ] chan(?ω,!ω) to
be used as a channel of type [ ] chan(?1,!0), but it does not allow a channel of
type [ ] chan(?0,!1) (which must be used once for output) to be used as a channel
of type [ ] chan(?0,!0) (which must not be used for output).

We re-define Γ ≤ Γ ′ by: Γ ≤ Γ ′ if and only if (i) dom(Γ ) ⊇ dom(Γ ′), (ii) for
each x ∈ dom(Γ ′), Γ (x) ≤ Γ ′(x), and (iii) for each x ∈ dom(Γ )\dom(Γ ′), Γ (x)
is bool or a channel type of the form [τ1, . . . , τn] chan(?m1 ,!m2 ) with m1 ≤ 0 and
m2 ≤ 0. Note that x : τ, y : [ ] chan(?0,!1) ≤ x : τ does not hold, since the type
environment in the lefthand side indicates that y should be used for output.

Typing rules are shown in Figure 2 (Only the modified rules are shown:
The other rules are the same as those of the previous type system). Notice the



changes in the rules (LT-Out), (LT-In), (LT-Par), etc. In the rules (XX-Par)
in the previous type systems, a type environment is shared by sub-processes.
The sharing of a type environment is invalid in the linear type system, since
the type environment contains information about how often channels are used.
For example, if x has type [ ] chan(?0,!1) both in P and Q, x is used twice in
P |Q, and therefore x should have type [ ] chan(?0,!ω). The operation Γ |∆ in
rule (LT-Par) represents this kind of calculation. It is defined by:

(Γ |∆)(x) =





Γ (x) |∆(x) if x ∈ dom(Γ ) ∩ dom(∆)
Γ (x) if x ∈ dom(Γ )\dom(∆)
∆(x) if x ∈ dom(∆)\dom(Γ )

bool |bool = bool
([τ1, . . . , τn] chan(?m1 ,!m2 )) | ([τ1, . . . , τn] chan

(?
m′

1 ,!
m′

2 )
)

= [τ1, . . . , τn] chan
(?

m1+m′
1 ,!

m2+m′
2 )

m1 + m2 =





m2 if m1 = 0
m1 if m2 = 0
ω otherwise

The operation ωΓ in rule (LT-Rep) is defined by:

(ωΓ )(x) = ω(Γ (x))
ωbool = bool
ω([τ1, . . . , τn] chan(?m1 ,!m2 )) = [τ1, . . . , τn] chan(?ωm1 ,!ωm2 )

ωm =
{

0 if m = 0
ω otherwise

In rule (T-If), the type environment ∆ is shared between the then-clause
and the else-clause because either the then-clause or the else-clause is executed.

We can check that a ping server does not forget to send a reply by type-
checking the server under the type environment ping : [[ ] chan(?0,!1)] chan(?ω,!0).
On the other hand, the wrong server ∗ping? [r]. if b then r![ ] else 0 fails to
type-check under the same type environment: In order for the server to be well-
typed, it must be the case that if b then r![ ] else 0 is well-typed under the
assumption r : [ ] chan(?0,!1), but the else-clause violates the assumption.

Note, however, that in general the type system does not guarantee that a
channel of type [ ] chan(?0,!1) is used for output exactly once. Consider the pro-
cess: (νy) (νz) (y?[ ]. z![ ] | z?[ ]. (y![ ] |x![ ])). It is well-typed under the type envi-
ronment x : [ ] chan(?0,!1), but the process does not send a message on x because
it is deadlocked. This problem is solved by the type system for deadlock-freedom
in Section 7.

6 A Type System with Channel Usage

As mentioned in Section 2 (Example 3), a channel can be used as a lock. It,
however, works correctly only if the channel is used in an intended manner:



When the channel is created, one message should be put into the channel (to
model the unlocked state). Afterwards, a process should receive a message from
the channel to acquire the lock, and after acquiring the lock, it should eventually
release the lock. The linear type system in Section 5 cannot guarantee such
usage of channels: Since a lock channel is used more than once, it is given type
[ ] chan(?ω,!ω), which means that the channel may be used in an arbitrary manner.
Therefore, the type system cannot detect programming errors like:

lock?[ ]. 〈critical section〉(lock![ ] | lock![ ])

which allows two processes to acquire the lock simultaneously, and

lock?[ ]. 〈critical section〉if b then lock![ ] else 0

which forgets to release the lock in the else-clause.
We can prevent the errors above by putting into channel types information

about not only how often channels are used but also in which order channels are
used for input and output. We redefine the syntax of types as follows.

τ ::= bool | [τ1, . . . , τn] chanU

U (usages) ::= 0 | ρ |?.U |!.U | (U1 |U2) | U1 & U2 | µρ.U

A channel type is annotated with a usage [24, 44], which denotes how channels
can be used for input and output. Usage 0 describes a channel that cannot be
used at all. Usage ?.U describes a channel that is first used for input and then
used according to U . Usage !.U describes a channel that is first used for output
and then used according to U . Usage U1 |U2 describes a channel that is used
according to U1 and U2 possibly in parallel. Usage U1 & U2 describes a chan-
nel that is used according to either U1 or U2. Usage µρ.U describes a channel
that is used recursively according to [µρ.U/ρ]U . For example, µρ.(0 & (!.ρ)) de-
scribes a channel that can be sequentially used for output an arbitrary number
of times. µρ.(?.!.ρ) describes a channel that should be used for input and output
alternately.

We often write ? and ! for ?.0 and !.0 respectively. We also write ∗U and
ωU for µρ.(0 & (U | ρ)) and µρ.(U | ρ) respectively. Usage ∗U describes a channel
that can be used according to U an arbitrary number of times, while usage ωU
describes a channel that should be used according to U infinitely often.

We can enforce the correct usage of a lock channel by assigning the usage
! | ∗?.! to it. We can also express linearity information of the previous section:
(?m1 , !m2) is expressed by usage m1? |m2! where 1U = U and 0U = 0.

Before defining typing rules, we introduce a subusage relation U ≤ U ′, which
means that a channel of usage U can be used as a channel of usage U ′. Here, we
define it using a simulation relation. We consider a reduction relation U

η−→ U ′

on usages, where η is an element of {?, !, τ}. It means that a channel of usage
U can be used for the operation described by η, and then the channel can be
used according to U ′. The reduction relation is defined by the rules in Figure 3.
Basically, usages form a subset of CCS, where ! and ? are regarded as co-actions.



!.U
!−→ U

?.U
?−→ U

U1
!−→ U ′1 U2

?−→ U ′2

U1 |U2
τ−→ U ′1 |U ′2

U1
?−→ U ′1 U2

!−→ U ′2

U1 |U2
τ−→ U ′1 |U ′2

U1
η−→ U ′1

U1 |U2
η−→ U ′1 |U2

U2
η−→ U ′2

U1 |U2
η−→ U1 |U ′2

U1
η−→ U ′1

U1 & U2
η−→ U ′1

U2
η−→ U ′2

U1 & U2
η−→ U ′2

[µρ.U/ρ]U
η−→ U ′

µρ.U
η−→ U ′

Fig. 3. Usage reduction rules

0↓ U1
↓ U2

↓

(U1 |U2)
↓

U1
↓ ∨ U2

↓

(U1 & U2)
↓

([µρ.U/ρ]U)↓

µρ.U↓

Fig. 4. Predicate U↓

We also define the unary relation U↓ as the least relation that satisfies the rules
in Figure 4. Intuitively, U↓ means that a channel of usage U need not be used
at all. Using the above relations, the subusage relation is defined as follows.

Definition 2 (subusage relation). The subusage relation ≤ is the largest re-
lation that satisfies the following two conditions.

1. If U1 ≤ U2 and U2
η−→ U ′

2, then U1
η−→ U ′

1 and U ′
1 ≤ U ′

2 for some U ′
1.

2. If U1 ≤ U2 and U2
↓, then U1

↓.

Basically, U ≤ U ′ holds if U can simulate U ′. For example, the following relations
hold:

U1 & U2 ≤ U1 µρ.U ≤ [µρ.U/ρ]U !.U1 |U2 ≤!.(U1 |U2).

The condition on predicate U↓ ensures that ! ≤ 0 does not hold.
We re-define the subtyping relation so that [τ1, . . . , τn] chanU ≤ [τ1, . . . , τn] chanU ′

if U ≤ U ′. We write Γ1 ≤ Γ2 if (i)dom(Γ1) ⊇ dom(Γ2), (ii)Γ1(x) ≤ Γ2(x) for
each x ∈ dom(Γ2), and (iii)Γ (x) is either bool or a channel type of the form
[τ1, . . . , τn] chanU with U ≤ 0 for each x ∈ dom(Γ1)\dom(Γ2).

The operations | and ω on types and type environments are similar to those
in the previous type system, except that for channel types, they are defined by:

([τ1, . . . , τn] chanU1) | ([τ1, . . . , τn] chanU2) = [τ1, . . . , τn] chanU1 |U2

ω([τ1, . . . , τn] chanU ) = [τ1, . . . , τn] chanωU

The new typing rules are obtained by replacing (LT-Out) and (LT-In) of
the previous type system with the following rules:

Γi ` vi : τi (for each i ∈ {1, . . . , n}) Γ ` P : proc
x : [τ1, . . . , τn] chan!; (Γ1 | · · · |Γn |Γ ) ` x![v1, . . . , vn] : proc

(UT-Out)



Γ, y : τ1, . . . , y : τn ` P : proc
x : [τ1, . . . , τn] chan?;Γ,` x?[y1 : τ1, . . . , yn : τn]. P : proc

(UT-In)

Here, the operation x : [τ̃ ] chanα; Γ (where α ∈ {?, !}) is defined by:

dom(x : [τ̃ ] chanα; Γ ) = {x} ∪ dom(Γ )

(x : [τ̃ ] chanα; Γ )(y) =





[τ̃ ] chanα.U if x = y and Γ (x) = [τ̃ ] chanU

[τ̃ ] chanα.0 if x = y and x 6∈ dom(Γ )
Γ (y) if x 6= y

For example, x?[ ]. x![ ].0 is typed as follows.

∅ ` 0 : proc
x : [ ] chan!.0 ` x![ ].0 : proc

x : [ ] chan?.!.0 ` x?[ ]. x![ ].0 : proc

x?[ ]. if b then x![ ].0 else 0 is typed as follows.

b : bool ` b : bool
x : [ ] chan!.0 ` x![ ].0 : proc

x : [ ] chan!.0&0 ` x![ ].0 : proc
(UT-Sub)

∅ ` 0 : proc
x : [ ] chan!.0&0 ` 0 : proc

(UT-Sub)

x : [ ] chan(!.0&0), b : bool ` if b then x![ ].0 else 0 : proc
(UT-If)

x : [ ] chan?.(!.0&0), b : bool ` x?[ ]. if b then x![ ].0 else 0 : proc
(UT-In)

Example 4. The process lock?[ ]. if b then lock![ ] else 0 is well-typed under
the type environment b : bool, lock : [ ] chan?.(!&0) but not under b : bool, lock :
[ ] chan?.!. It implies that the lock may not be released correctly.

Example 5. The wrong CML program in Section 1 is expressed as:

proc f [x : int, r : [int] chan!] = (νy) y?[n]. r![n + x].

The usage of y is inferred to be ?. Therefore, we know that the process will be
blocked on the input on y forever.

7 A Type System for Deadlock-Freedom

The type systems presented so far do not guarantee that the ping server even-
tually returns a reply, that a lock is eventually released, etc. For example, the
type system in the previous section accepts the process

lock?[ ]. (νx) (νy) (x?[ ]. y![ ] | y?[ ]. (lock![ ] |x![ ])),

which does not release the lock because of deadlock on channels x and y. This is
because channel usage used in the previous type system captures channel-wise
communication behavior, but not dependencies between different channels (x
and y in the above example).



To capture inter-channel dependencies on communications, we introduce obli-
gation levels and capability levels.2 Intuitively, the obligation level of an action
denotes the degree of the necessity of the action being executed, while the ca-
pability level of an action denotes the degree of the guarantee for the success of
the action.

We extend the syntax of types as follows.

τ ::= bool | [τ1, . . . , τn] chanU

U ::= 0 | ρ |?to
tc .U |!totc .U | (U1 |U2) | U1 & U2 | ∗U | µρ.U | ↑tU

t (level) ::= ∞ | 0 | 1 | 2 | · · ·

The two levels to and tc in !totc .U denote the obligation level and the capability
level of the output action respectively. Suppose that a channel has the usage
!totc .U . Its obligation level to means that a process can exercise capabilities of
level less than to before fulfilling the obligation to perform an output on the
channel. For example, if y has usage !2tc

in x?[ ]. y![ ], then the capability level of
the input on x must be 0 or 1. If the obligation level is 0, the channel must be
used for output immediately. If the obligation level is∞, arbitrary actions can be
performed before the channel is used for output (so, there is no guarantee that
the channel is used for output). The capability level tc means that the success
of an output on the channel is guaranteed by a corresponding input action with
an obligation level of less than or equal to tc. In other words, some process has
an obligation of level less than or equal to tc to use the channel for input. If the
capability level is∞, the success of the output is not guaranteed. The meaning of
the capability and obligation levels of an input action is similar. ↑tU is the same
as U , except that input and output obligation levels are lifted to t. For example,
↑1(?0

0 | !20) is equivalent to ?1
0 | !20. Note that capability levels are not affected by

↑t.3

Using the obligation and capability levels, we can prevent cyclic dependencies
between communications. For example, recall the example above:

lock?[ ]. (νx) (νy) (x?[ ]. y![ ] | y?[ ]. (lock![ ] |x![ ])),

Suppose that the usage of x and y are ?t0
t1 | !t1t0 and ?t2

t3 | !t3t2 . From the process
x?[ ]. y![ ], we get the constraint t1 < t3. From the process y?[ ]. (lock![ ] |x![ ]),
we get the constraint t3 < t1. Therefore, it must be the case that t1 = t3 = ∞.
(Here, we define t < t holds if and only if t = ∞.) Since the output on lock is
guarded by the input on y, the obligation level of the output on lock must also
be ∞, which means that the lock may not be released.

Example 6. The usage of a lock is refined as !0∞ | ∗?∞t .!t∞. The part !0∞ means
that a value must be put into the channel immediately (so as to simulate the
unlocked state). The part ?∞t means that any actions may be performed before

2 They were called time tags in earlier type systems for deadlock-freedom [19, 24, 44].
3 Note that ↑t is treated as a constructor rather than as an operator. This is for a

subtle reason that we want to consider usages like ↑tµρ.ρ.



acquiring the lock and that once a process tries to acquire the lock, the process
can eventually acquire the lock. The part !t∞ means that once a process has
acquired the lock, it has an obligation of level t to release the lock. Suppose
that locks l1 and l2 have usages ∗?∞1 .!1∞ and ∗?∞2 .!2∞ respectively. Then, it is
allowed to acquire the lock l2 first and then acquire the lock l1 before releasing l2:
l2?[ ]. l1?[ ]. (l1![ ] | l2![ ]), but it is not allowed to lock l1 and l2 in the reverse order:
l1?[ ]. l2?[ ]. (l1![ ] | l2![ ]). Thus, capability and obligation levels for lock channels
correspond to the locking levels in [7].

Example 7 (linear and affine channels). !nn | ?n
n (where n is a natural number)

describes linear channels on which a communication occurs exactly once. !∞∞ | ?∞∞
describes affine channels that may be used at most once for input and output
(but there is no guarantee that the input and output will succeed).

Example 8. A channel used for server-client connection is given a usage ∗?n
∞ | ∗!∞n .

The part ∗?n
∞ is the usage of the channel by a server, which says that messages

arriving on the channel must be read infinitely often. ∗!∞n is the usage of the
channel by clients, which says that the clients can send messages infinitely often
(to the server), and the messages will be read.

We extend the syntax of processes with marks. If an action marked with
◦ appears at the top-level (i.e., in a position not guarded by input or output
prefixes), then that action is expected to succeed eventually, unless the whole
process diverges. For actions marked with •, there is no such expectation.

P ::= x!χ[v1, . . . , vn]. P | x?χ[y1 : τ1, . . . , yn : τn]. P | · · ·
χ ::= ◦ | •

We often omit •.
The typing rules, shown in Figure 5, are the same as those for the type

system in the previous section, except for the rules (DT-Out), (DT-In), and
(DT-New). In (DT-Out) and (DT-In), the operation x : [τ ] chanαto

tc

; Γ is
defined by:

dom(∆) = {x} ∪ dom(Γ )

∆(x) =

{
[τ̃ ] chanαto

tc
.U if Γ (x) = [τ̃ ] chanU

[τ̃ ] chanαto
tc

if x 6∈ dom(Γ )
∆(y) = ↑tc+1Γ (y) (if y 6= x)

where ↑tτ is defined by:

↑tbool = bool ↑t ([τ̃ ] chanU ) = [τ̃ ] chan↑tU

In (DT-In), x : [τ1, . . . , τn] chan!tcto

; Γ has the effect of lifting all the obligation
levels of the channels in Γ (except for that of x) to to + 1. This is because the
capability of level to is being used before fulfilling the obligations in Γ .

The side condition rel(U) in the rule (DT-New) means that all the obligation
levels and the capability levels in U are consistent. For example, there must not



be the case like ?∞0 | ?1
∞, where there is an input action of capability level 0 but

there is no corresponding output action of obligation level 0.

The definition of the subusage relation U ≤ U ′ is rather involved. We show
only some laws satisfied by the relation in Figure 6. In the figure, U ∼ U ′ means
that both U ≤ U ′ and U ′ ≤ U hold. Interested readers are referred to a full
version of [21] for the formal definition of U ≤ U ′.

The type system guarantees that any closed well-typed process P , is deadlock-
free in the sense that if P is reduced to Q and Q has a marked action at the
top-level, then Q can be further reduced.

bool ≤ bool (DT-SubBool)

U ≤ U ′

[τ1, . . . , τn] chanU ≤ [τ1, . . . , τn] chanU′
(DT-SubChan)

∅ ` true : bool (DT-True)
∅ ` false : bool (DT-False)

x : τ ` x : τ (DT-Var)

Γ ` A : σ Γ ′ ≤ Γ

Γ ′ ` A : σ
(DT-Weak)

∅ ` 0 : proc (DT-Zero)

Γi ` vi : τi (for each i ∈ {1, . . . , n}) ∆ ` P : proc tc = ∞⇒ χ = •
x : [τ1, . . . , τn] chan!0

tc
; (Γ1 | · · · |Γn |∆) ` x!χ[v1, . . . , vn]. P : proc

(DT-Out)
Γ, y : τ1, . . . , y : τn ` P : proc tc = ∞⇒ χ = •

x : [τ1, . . . , τn] chan!0
tc

; Γ ` x?χ[y1 : τ1, . . . , yn : τn]. P : proc
(DT-In)

Γ ` P : proc ∆ ` Q : proc

Γ |∆ ` P |Q : proc
(DT-Par)

Γ, x : [τ1, . . . , τn] chanU ` P : proc rel(U)

Γ ` (νx : [τ1, . . . , τn] chanU ) P : proc
(DT-New)

Γ ` P : proc

∗Γ ` ∗P : proc
(DT-Rep)

Γ ` v : bool ∆ ` P : proc Θ ` Q : proc

Γ | (∆ & Θ) ` if v then P else Q : proc
(DT-If)

Fig. 5. Typing rules of the type system for deadlock-freedom

Example 9. Let Γ be:

lock1 : [ ] chan∗?∞0 .!0∞ , lock2 : [ ] chan∗?∞1 .!1∞ .



t′o ≤ to tc ≤ t′c U ≤ U ′

αto
tc

.U ≤ α
t′o
t′c

.U ′

U1 & U2 ≤ Ui

↑tαto
tc

.U ∼ α
max(t,to)
tc

.U

↑t(U1 |U2) ∼ ↑tU1 | ↑t U2

µρ.U ∼ [µρ.U/ρ]U

Fig. 6. Some Laws on the subusage relation

Then, the process P
def
= lock2?◦[ ]. lock1?◦[ ]. (lock1![ ] | lock2![ ]) is typed as fol-

lows.

lock1 : [ ] chan!0∞ ` lock1![ ] lock2 : [ ] chan!0∞ ` lock2![ ]

lock1 : [ ] chan!0∞ , lock2 : [ ] chan!0∞ ` lock1![ ] | lock2![ ]
(DT-Par)

lock1 : [ ] chan?0
0.!0∞ , lock2 : [ ] chan↑1!0∞ ` lock1?◦[ ]. (lock1![ ] | lock2![ ])

(DT-In)

lock1 : [ ] chan?0
0.!0∞ , lock2 : [ ] chan!1∞ ` lock1?◦[ ]. (lock1![ ] | lock2![ ])

(DT-Sub)

lock1 : [ ] chan↑2?0
0.!0∞ , lock2 : [ ] chan?0

1.!1∞ ` P
(DT-In)

Γ ` P
(DT-Sub)

Example 10. We assume here that the language is extended with integer primi-
tives. Consider the following process:

P
def
= ∗factit?[n, x, r]. if n = 0 then r![x] else factit !◦[n− 1, x× n, r]

Let Γ be:
factit : [int, int, [int] chan!1∞ ] chan∗?0∞.!∞0 .

P is typed as follows.

n : int ` n = 0 : bool r : [int] chan!0∞ ` r![x] Γ3 ` factit !◦[n− 1, x× n, r]
Γ2 ` if n = 0 then · · · else · · · (DT-If)

Γ1 ` if n = 0 then · · · else · · · (DT-Sub)

factit : [int, int, [int] chan!1∞ ] chan?0∞.!∞0 ` P1
(DT-In)

Γ ` P
(DT-Rep)

Here, Γis are:

Γ1 = factit : [int, int, [int] chan!1∞ ] chan!∞0 , n : int, x : int, r : [int] chan!1∞
Γ2 = factit : [int, int, [int] chan!1∞ ] chan0&!00

, n : int, x : int, r : [int] chan!0∞&!1∞
Γ3 = factit : [int, int, [int] chan!1∞ ] chan!00

, n : int, x : int, r : [int] chan!1∞



From the conclusion of the above derivation, we get:

Γ ` P Γ5 ` factit !◦[3, 1, r]. r?◦[x]
Γ4 ` (P | factit !◦[3, 1, r]. r?◦[x])

(DT-Par)

factit : [int, int, [int] chan!1∞ ] chan∗?0∞.!∞0 | !00 ` (νr) (P | factit !◦[3, 1, r]. r?◦[x])
(DT-New)

∅ ` (νfactit) (νr) (P | factit !◦[3, 1, r]. r?◦[x])
(DT-New)

Here,

Γ4 = factit : [int, int, [int] chan!1∞ ] chan∗?0∞.!∞0 | !00 , r : [int] chan!1∞ | ?1
1

Γ5 = factit : [int, int, [int] chan!1∞ ] chan!00
, r : [int] chan!1∞ | ?1

1

From the above derivation, we know that the input on r will eventually succeed
unless the whole process diverges.

Remark 1. The above type system is actually too restrictive for recursive pro-
cesses. For example, consider the following non-tail recursive version of factorial
function server:

∗fact?[n, r]. if n = 0 then r![1] else (νr′) (fact !◦[n− 1, r′] | r′?◦[m]. r![m× n])

It is not well-typed in the above type system (because a finite capability level
cannot be assigned to the input on r′). Kobayashi [21] gives an extension of the
type system to handle recursive processes like the above one. With the extension,
any term of the simply-typed λ-calculus with recursion can be encoded into the
deadlock-free fragment.

8 A Type System for Lock-Freedom

The type system in the previous section can guarantee that a well-typed server
does not get stuck before returning a reply message, but does not guaran-
tee that the server eventually returns a reply. In fact, the following, wrong
variation of the factorial server in Example 10 is well-typed under factit :
[int, int, [int] chan!1∞ ] chan∗?0∞.!∞0 , but it does not return a reply upon receiving
a request factit ![3, 1, r].

∗factit?[n, x, r]. if n = 0 then r![x] else factit !◦[n, x× n, r]

We discuss below a simple modification of the type system in the previous
section so that the resulting type system guarantees that well-typed processes
are lock-free, in the sense that if marked actions appear at the top-level, then
those actions will eventually succeed on the assumption of fair scheduling. The
modification is based on [20]; more sophisticated type systems for lock-freedom
are found in [2, 25].

The key idea of the modification to guarantee lock-freedom is to ensure
that the obligation level of a channel decreases when the obligation is dele-
gated through another channel. In the above example, the obligation to send a
message on r is infinitely delegated through factit .



Let us introduce a new operation ↑U on usages, which increments the obli-
gation level of U by one. For example, ↑?0

2 =?1
2. The operation is extended to

that on types. The only modification to the typing rules for deadlock-freedom is
the following one:

Γi ` vi : ↑τi (for each i ∈ {1, . . . , n}) ∆ ` P : proc tc = ∞⇒ χ = •
x : [τ1, . . . , τn] chan!0tc

; (Γ1 | · · · |Γn |∆) ` x!χ[v1, . . . , vn]. P : proc
(LT-Out)

Note that the value vi sent along x must have type ↑τi, whose obligation
level is one level higher than that of τi, the type expected by the channel x.

Let us reconsider the wrong factorial server above. With the assumption that
the argument type of factit is [int] chan!1∞ , r must have type [int] chan!2∞ in
factit !◦[n, x × n, r]. Therefore, the server above is not well-typed under factit :
[int, int, [int] chan!1∞ ] chan∗?0∞.!∞0 . The server is typed only under factit :
[int, int, [int] chan!∞∞ ] chan∗?0∞.!∞0 , which means that there is no guarantee that
the server will eventually send a reply.

The above type system is very restrictive; the valid factorial server in Exam-
ple 10 is also rejected as ill-typed. In general, if a process has a recursive structure
∗f?[x, r]. (· · · f ![v, r] · · ·), then r’s obligation level must be ∞ in the above type
system. See [2, 25] for more expressive type systems for lock-freedom.

9 A Type System for Termination

In this section, we review the simplest type system of [4] for termination. Other
type systems for termination include [39, 50]. For the sake of simplicity, we re-
strict the syntax so that the replication constructor ∗ can be applied only to
input processes.

Non-termination is introduced only by sending messages to replicated pro-
cesses (of the form ∗c?[x]. P ). Sending a message to ∗c?[x]. P leads to creation of
a copy of P , which in turn may send messages to itself or other replicated pro-
cesses. We can use types to prevent an infinite chain of invocations of recursive
processes.

A simplest way is to assign a level (or a weight, which is a non-negative
integer) to each channel, and require that in any replicated process of the form
∗c?[x]. (· · · d![v] · · ·), the level of d must be smaller than that of c. If a process
(and its subprocesses) satisfy that condition, there cannot be an infinite chain
of invocations of recursive processes, so that the process must terminate.

For example, consider the following process:

∗c?[r]. r![1] | ∗d?[r]. c![r] | d![r′].

Let the levels of c, d, r and r′ be 1, 2, 0, and 0 respectively. Then, the process
satisfies the requirement above, so that the process terminates.



∅ ` 0 : proc (TT-Zero)

Γ `w P : proc Γ `w Q : proc

Γ `w P |Q : proc
(TT-Par)

Γ, x : τ `w P : proc τ is a channel type

Γ `w (νx : τ) P : proc
(TT-New)

Γ ` x : [τ1, . . . , τn] chanm Γ ` vi : τi (for each i ∈ {1, . . . , n})
Γ `w P : proc m < w

Γ `w x![v1, . . . , vn]. P : proc
(TT-Out)

Γ ` x : [τ1, . . . , τn] chanm Γ, y : τ1, . . . , y : τn `w P : proc

Γ `w x?[y1 : τ1, . . . , yn : τn]. P : proc
(TT-In)

Γ ` x : [τ1, . . . , τn] chanm Γ, y : τ1, . . . , y : τn `m P : proc

Γ `w ∗x?[y1 : τ1, . . . , yn : τn]. P : proc
(TT-RIn)

Γ `w v : bool Γ `w P : proc Γ `w Q : proc

Γ `w if v then P else Q : proc
(TT-If)

Fig. 7. Typing rules for the simple type system

The syntax of types is given as follows, where w ranges over the set of natural
numbers.

τ ::= bool | [τ̃ ] chanw

A type judgment is of the form Γ `w P , which implies that P satisfies the
requirement above, and that the level of any output in P unguarded by ∗ is less
than w. The typing rules are shown in Figure 7.

The above type system is actually too restrictive; recursive structures of the
form ∗c?[x]. (· · · c![v] · · ·) is rejected as ill-typed. See [4] for more expressive type
systems for termination.

10 Session Types

In the type systems discussed so far, multiple processes can communicate through
a single channel. In typical distributed programs, on the other hand, communica-
tions often take place only between two processes. For example, in server-client
applications, a client first establishes a connection (called a session channel)
with a server, and then the client communicates with the server through that
connection. Other clients use their own connections with the server. To capture
this kind of communication behavior, session types [45] have been proposed.



The syntax of session channel types is given as follows:4

σ ::= 0 (end of session)
| !τ.σ (send a value of type τ ,

and then use the session channel according to σ)
| ?τ.σ (receive a value of type τ ,

and then use the session channel according to σ)
| l1 : σ1& · · ·&ln : σn (Upon receiving a request for the service li,

use the session channel according to σ)
| l1 : σ1 ⊕ · · · ⊕ ln : σn (Send a request for the service li,

use the session channel according to σ)

Above, li is a label (as in that of variant types), which serves as a selector
for communication mode. For example, (l1:!int.0)&(l2:?int.!int.0) is the type of
session channels on which if l1 is selected, an integer is sent; otherwise (i.e., if l2
is selected), an integer is first received and then an integer is sent back. Here is
a process that uses s according to (l1:!int.0)&(l2:?int.!int.0):

s . l1.s / 1 + s . l2.s . x.s / (x + 1)

Here, we use . and / for input and output operations on session channels,
and + for an external choice.

A nice point about session types is that the behavior of the other side of a ses-
sion of type σ can be described by the dual of σ. For example, the behavior of the
other side of the above process is given by the type (l1:?int.0)⊕ (l2:!int.?int.0).
Here is a process that uses s according to that type:

s / l2.s / 2.s . x.

A type system for session types can be constructed in a manner similar to
the type system for usages in Section 6. In fact, the type [int] chan?.!.0, for
example, corresponds to the session type ?int.!int.0. Main differences are that a
single channel can be used for communicating different types of values in session
types, and that on the other hand, usages can describe communications between
more than two processes. The generic type system of Igarashi and Kobayashi [17]
subsumes both of the type systems.

Actually, session types can be easily encoded into the usage type system
extended with variant types (or, a linear type system extended with variant
types).5 Types can be encoded as follows.

[[0]] = [ ] chan0

[[?τ.σ]] = [τ, [[σ]]] chan?

[[!τ.σ]] = [τ, [[σ]]] chan!

[[l1 : σ1& · · ·&ln : σn]] = [〈l1 : [[σ1]], . . . , ln : [[σn]]〉] chan?

[[l1 : σ1 ⊕ · · · ⊕ ln : σn]] = [〈l1 : [[σ1]], . . . , ln : [[σn]]〉] chan!

4 This is different from the syntax of the original type system [45].
5 The idea of the encoding is essentially the same as that of the encoding of linearized

channels into linear channels discussed in [22].



Here, σ is the dual of σ (obtained by interchanging between !, & and ?,⊕). For
example, (l1:!int.0)&(l2:?int.!int.0) is translated into:

[〈l1 : [int] chan!, l2 : [int, [int] chan!] chan?〉] chan?.

It should be noted that with the above encoding, the subtyping on session
types [10] boils down to the standard subtyping on variant types (combined
with I/O subtyping [32] mentioned in Section 4).

Processes can be encoded as follows.

[[0]]f = 0
[[s / v.P ]]f = (νc) (f(s)![v, c]. [[P ]]f{s 7→c})
[[s . y.P ]]f = f(s)?[y, c]. [[P ]]f{s 7→c}
[[s . l1.P1 + · · ·+ s . ln.Pn]]f =

f(s)?[x].match x with l1(c) ⇒ [[P1]]f{s 7→c} | · · · | ln(c) ⇒ [[Pn]]f{s 7→c}
[[s / li.P ]]f = (νc) (f(s)![li(c)]. [[P ]]f{s 7→c})

Here, a session channel is represented by multiple linear channels. The parameter
f records which linear channel represents each session channel. For example, the
process s . l1.s / 1 + s . l2.s . x.s / (x + 1) is translated into:

c?[x].
match x with

l1(c) ⇒ (νc′) c![1, c′]
| l2(c) ⇒ c?[x, c′]. (νc′′) c′![x + 1.c′′]

Using the above encoding, the type systems for deadlock-freedom and lock-
freedom discussed earlier can be used for analyzing deadlock-freedom, lock-
freedom, and termination of sessions.

Remark 2. To reuse the type system in Section 7 to reason about deadlock-
freedom of sessions, it is better to use the following special rule for processes of
the form (νy) x![ṽ]. P .

Γi ` vi : τi (for each i ∈ {1, . . . , n}) ∆ ` P : proc
Γ1 | · · · |Γn |∆ = Γ, y : [τ̃ ′] chanU rel(U) tc = ∞⇒ χ = •

x : [τ1, . . . , τn] chan!0tc
; Γ ` (νy)x!χ[v1, . . . , vn]. P : proc

(DT-NOut)

11 Putting All Together

In this section, we illustrate how the type systems introduced in this paper may
be applied to programming languages. The language we use below does not exist.
We borrow the syntax from ML [30], Pict [35], and HACL [26].

First, the ping server in Example 1 can be written as follows:

type ’a rep_chan = ’a chan(!o);
proc ping[r: [] rep_chan] = r![];
val ping = ch: ([] rep chan) chan(∗!c)



Here, the first line defines an abbreviation for a type. The part !o is the channel
usage introduced in Section 6 and o means that the obligation level introduced
in Section 7 is finite. In the second line, the type annotation for r asserts that
r should be used as a reply channel. (In the syntax of ML, [] in the type
annotation is unit.) The third line is the output of the type system. It says that
ping can be used an arbitrary number of times for sending a reply channel, and
it is guaranteed that the channel is received (c means that the capability level
is finite) and a reply will eventually come back.

The following program forgets to send a reply in the else-clause:

proc ping2[b, r: [] rep_chan] = if b then r![] else 0;

Then, the system’s output would be:

Error: r must have type [] rep chan
but it has type [] chan(!&0) in expression ”if b then r![] else 0”

The following program defines a process to create a new lock:

type Lock = [] chan(*?c.!o);
proc newlock[r: Lock rep_chan] = (new l)(l![] | r![l]);
val newlock: (Lock rep chan) chan(∗!c)

The process newlock takes a channel r as an argument, creates a new lock
channel, sets its state to the unlocked state, and returns the lock channel through
r. The system’s output says that one can send a request for creating locks an
arbitrary number of times, that the request will be eventually received, and that
a lock will be sent back along the reply channel.

If a lock is used in a wrong manner, the program will be rejected:

(new r)(newlock![r] | r?[l].l?[].0)
Error: l must have type Lock

but it has type [] chan(?) in expression ”l?[].0”

Since the lock l is not released in the program, the usage of l is not consistent
with the type Lock.

12 Conclusion

In this paper, we gave an overview of various type systems for the π-calculus,
from a simple type system to more advanced type systems for linearity, deadlock-
freedom, etc. We have mainly discussed the type systems from a programmer’s
point of view, and focused on explaining how they can help finding of bugs
of concurrent programs. We did not discuss extensions of the type systems
for distributed and open environments: See [13, 37, 41–43, 47] for a variety of
topics on types for distributed processes. Other applications of type systems
include formal reasoning about program behavior through process equivalence
theories [23, 32, 33, 38, 49], analysis of security properties [1, 11, 12, 14] and opti-
mization of concurrent programs [15, 46].



We think that type systems for concurrent programs are now mature enough
to be applied to real programming languages or analysis tools. To apply the type
systems, several issues need to be addressed, such as how to let programmers an-
notate types, how to report type errors, etc. A few concurrent programming lan-
guages and verification tools have been already developed based on type systems
for concurrent programs. Pict [35] incorporates channel types with input/output
modes and higher-order polymorphism, and Flanagan and Freund [8] developed
a tool for race detection for Java. Jeffrey developed a type-based verification
tool for security protocols based on Gordon and Jeffrey’s type systems [11, 12].
Kobayashi [18] developed a tool for analyzing deadlock-freedom, lock-freedom,
information flow, termination, etc.

Integration with other program verification methods like model checking [5]
and theorem proving would be useful and important. Recent type systems [3, 16]
suggest one of such directions.
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