
HORSes: format, termination and confluence

Jean-Pierre Jouannaud
INRIA-LIAMA and Tsinghua Software Chair

Joint on-going work with
Jianqi Li

School of Software, Tsinghua University

Project CoqLF
TNList Cross-discipline Foundation 2011-9

September 28, 2011



Outline

1 Objectives of the CoqLF project

2 Examples

3 Term representation

4 Format for HORSes

5 Confluence properties

6 Termination



Our interest and non-interest in lambda-calculus

Question: is a given term SN ?
Answer: our interest is in proving SN
theorems, NOT in analyzing the control flow
of a particular term to prove it is SN.
Question: does finite development hold ?
Answer: can be seen as a control flow pb for
a restricted form of beta-reduction. I can
also turn it into the SN property of all terms
of a modified system. YES, I am interested.
Question: show that simply typed lambda
calculus is SN.
Answer: YES, of course.

And, I want formal proofs and machine support.



Objectives of CoqLF
To equip Coq with libraries allowing users to
specify logical systems (or programming
languages) via HOAS approach and carry out
meta-theoretical studies with automated tools
for:

defining typing systems declaratively as a
term language, a type language, a set of
typing rules and a set of computational rules
(Beluga, FreshML, Cαml, UNBOUND, etc.)
showing burocratic lemmas,
showing type preservation,
showing confluence,
showing strong normalization.



This talk

In this talk, we concentrate on the rewrite rules:
format
confluence
termination

First-order rules on first-order syntax and
higher-order rules on higher-order syntax
should be two different instances of a same
mechanism, so as to have generic tools.



Nipkow’s HOR
All symbols are higher-order constants. We use
Krivine’s style for λ-expressions on this slide.

× : R → R → R
diff : (R → R)→ R → R
sin, cos : R → R
F : R → R

Rewrite rule for differentiation:

diff (λx . sin (F x))(y)→ cos (F y)× diff (F )(y)

of which diff(λx . sin(x))(y)→ cos(y) is an
instance (replace F by λx .x and normalize).

Note: β is used both as an equation and rule.



Nipkow’s HOR
All symbols are higher-order constants. We use
Krivine’s style for λ-expressions on this slide.

× : R → R → R
diff : (R → R)→ R → R
sin, cos : R → R
F : R → R

Rewrite rule for differentiation:

diff (λx . sin (F x))(y)→ cos (F y)× diff (F )(y)

of which diff(λx . sin(x))(y)→ cos(y) is an
instance (replace F by λx .x and normalize).

Note: β is used both as an equation and rule.



Nipkow’s differentiation revisited

diff : (R → R)⇒ (R → R)
sin, cos : R ⇒ R
F : ⇒ R → R
× : (R → R)→ (R → R)⇒ (R → R)

diff(λx . sin(F x))→ λx . cos(F x)× diff(F )

Higher-order matching is still necessary.
Confluence is harder to prove.



Algebraic differentiation: choose your types!

diff : (R → R)⇒ (R → R)
sin, cos : ⇒ R → R
F : ⇒ R → R
◦,× : (R → R)→ (R → R)⇒ (R → R)

A rewrite rule for differentiation:

diff(sin ◦ F )→ cos× diff(F )

of which diff(sin)→ cos is an instance
(replace F by identity and normalize w.r.t.
identity rules for composition and product).



Recursors on polymorphic finite lists

α : ∗
list : ∗ → ∗
H : α
F : α→ α
nil,T : list(α)
cons : α× list(α)⇒ list(α)
map : list(α)× (α→ α)⇒ list(α)

map(nil,F ) → nil
map(cons(H,T ),F ) → cons((F H),map(T ,F ))

(Plain) first-order matching suffices, because
matching is on (free) constructor expressions.



Idempotent Abelian groups

G : ∗
+ : G→ G⇒ G
−1 : G⇒ G
0 : ⇒ G

Inv : x + x−1 → 0
Z : x + 0 → / = x
I : x + x → / = x

A : (x + y) + z = x + (y + z)
C : x + y = y + x

Matching is modulo ACZI on terms in normal
form: Z , I are used as both equations and rules.



Manifesto

These examples share a common structure.
The first/higher-order characteristic is not
relevant.
We need a rule format
emphasizing the structure of computation,
and a representation of terms
hiding their syntactic differences.
We like a rule format
with good operational behaviour
(pattern-based lhs !, safe rhs ?)



Term representation

There are two different styles of
representations:

canonical representations: locally nameless
(De Bruijn numbers), or locally canonically
named (Sato, Sato-Pollack)
non-canonical representations with explicit
α-conversion.

Canonical reps are superior for reasonning:
renaming is built-in the induction principle.
Non-canonical are superior for computing:
renaming is by need.
Our choice: both !



Rules, equations and simplifiers

We distinguish three kinds of sets:

A set of rules R used for rewriting only:
differentiation or Inv ,
A set of equations E used for matching only:
α-conversion or AC,
A set of simplifiers S used for normalization
and matching:
βη or I.



Normal rewriting

u−→p
RSE↓

(u[rσ]p)↓SE
if

u = u↓SE

u|p =S∪E lσ for some l → r ∈ R

v −→p
SE

v [dθ]p if
v |p =E gθ for some g → d ∈ S

General assumptions for normal rewriting
(a) S is Church-Rosser modulo E ,
(b) RS∪E ∪ SE is terminating,
(c) rules in R are SE -normalized,
(d) RSE↓ is Church-Rosser modulo S ∪ E .



Normal rewriting

u−→p
RSE↓

(u[rσ]p)↓SE
if

u = u↓SE

u|p =S∪E lσ for some l → r ∈ R

v −→p
SE

v [dθ]p if
v |p =E gθ for some g → d ∈ S

General assumptions for normal rewriting
(a) S is Church-Rosser modulo E ,
(b) RS∪E ∪ SE is terminating,
(c) rules in R are SE -normalized,
(d) RSE↓ is Church-Rosser modulo S ∪ E .



Confluence analysis: critical pairs



Coherence analysis: extension rules

Assume

a rule l → r
an equation g = d

such that (g|p)σ = lσ for mgu σ

Extension rule g[l ]p → g[r ]p

Assume + is AC and consider rule a + b → r .
(a + b) + c is not in normal form
a + (c + b) is in normal form

Both rewrite to r + c with a + b + x → r + x .



Coherence analysis: extension rules

Assume

a rule l → r
an equation g = d

such that (g|p)σ = lσ for mgu σ

Extension rule g[l ]p → g[r ]p

Assume + is AC and consider rule a + b → r .
(a + b) + c is not in normal form
a + (c + b) is in normal form

Both rewrite to r + c with a + b + x → r + x .



Checking (d)

Theorem

Let R,S,E satisfy:
properties (a), (b), and (c),
(S′,S′′) is a splitting of S, i.e., SE↓= S′E↓ S′′E↓.
Then, normal rewriting is Church-Rosser (d) if

(i) R is closed wrt normalized E ∪ S-extensions
(ii) R is closed under forward pairs with S′′,
(iii) S′↓ shallow critical pairs in SCPE(R,S′) are
strongly E-joinable
(iv) S′↓ critical pairs in CPSE(R) are E-joinable,



Nipkow’s rewriting and variations
α-conversion: nothing to do.

η is used as a reduction: no forward pairs;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

η is used as an expansion: no extension;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

β is used as a reduction
when the rules in R are of base type, their
lefthand side cannot unify with an abstraction.
non-base type case:
For each rule λx .l → r , add l → app(r , x) ↓.
no shallow critical pairs:
Since rules are in β-normal form, no subterm of
a rule can unify with a β-redex.



Nipkow’s rewriting and variations
α-conversion: nothing to do.

η is used as a reduction: no forward pairs;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

η is used as an expansion: no extension;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

β is used as a reduction
when the rules in R are of base type, their
lefthand side cannot unify with an abstraction.
non-base type case:
For each rule λx .l → r , add l → app(r , x) ↓.
no shallow critical pairs:
Since rules are in β-normal form, no subterm of
a rule can unify with a β-redex.



Nipkow’s rewriting and variations
α-conversion: nothing to do.

η is used as a reduction: no forward pairs;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

η is used as an expansion: no extension;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

β is used as a reduction
when the rules in R are of base type, their
lefthand side cannot unify with an abstraction.
non-base type case:
For each rule λx .l → r , add l → app(r , x) ↓.
no shallow critical pairs:
Since rules are in β-normal form, no subterm of
a rule can unify with a β-redex.



Nipkow’s rewriting and variations
α-conversion: nothing to do.

η is used as a reduction: no forward pairs;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

η is used as an expansion: no extension;
for app(l , x)→ r with x 6∈ Var(l), add l → λx .r

β is used as a reduction
when the rules in R are of base type, their
lefthand side cannot unify with an abstraction.
non-base type case:
For each rule λx .l → r , add l → app(r , x) ↓.
no shallow critical pairs:
Since rules are in β-normal form, no subterm of
a rule can unify with a β-redex.



Rule format

Minimize the amount of computations:
Rules in R of the form:
F (l)→ r
where F is a graded higher-order constant.

Make rewriting and unification feasible:
F (l) is a pattern in the sense of Miller.

Type of rules is arbitrary.



Termination proofs

Requirement: powerful but easy to use.
Challenge: a painless version of
Girard’s “reducibility candidates”
Approach:
1. define well-founded orderings on the
abstract syntax of terms and types ;
2. use Girard’s method to prove their
well-foundedness ;
3. incorporate semantic termination
arguments to strengthen these orderings.



CPO: s�X t iff

Case 1: s = f (s) with f ∈ FS and t ∈ X or
1 u : θ�TS t : τ for some u such that u : θ ∈ s
2 t = g(t) with f >F g ∈ FS ∪ {@} and s�X t
3 t = g(t), f =F g ∈ F and s�X t , s(�TS )statf t
4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v ,w) and
1 t = @(u, r) and (v ,w)(�X

TS )mul(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α' β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t

Case 4: s = u → v and v � t or t = u′ → v ′ and
{u, v}�lex{u

′, v ′}
Case 5: s = ∗ and t = ∗



CPO: s�X t iff

Case 1: s = f (s) with f ∈ FS and t ∈ X or
1 u : θ�TS t : τ for some u such that u : θ ∈ s
2 t = g(t) with f >F g ∈ FS ∪ {@} and s�X t
3 t = g(t), f =F g ∈ F and s�X t , s(�TS )statf t
4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v ,w) and
1 t = @(u, r) and (v ,w)(�X

TS )mul(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α' β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t

Case 4: s = u → v and v � t or t = u′ → v ′ and
{u, v}�lex{u

′, v ′}
Case 5: s = ∗ and t = ∗



CPO: s�X t iff

Case 1: s = f (s) with f ∈ FS and t ∈ X or
1 u : θ�TS t : τ for some u such that u : θ ∈ s
2 t = g(t) with f >F g ∈ FS ∪ {@} and s�X t
3 t = g(t), f =F g ∈ F and s�X t , s(�TS )statf t
4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v ,w) and
1 t = @(u, r) and (v ,w)(�X

TS )mul(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α' β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t

Case 4: s = u → v and v � t or t = u′ → v ′ and
{u, v}�lex{u

′, v ′}
Case 5: s = ∗ and t = ∗



CPO: s�X t iff

Case 1: s = f (s) with f ∈ FS and t ∈ X or
1 u : θ�TS t : τ for some u such that u : θ ∈ s
2 t = g(t) with f >F g ∈ FS ∪ {@} and s�X t
3 t = g(t), f =F g ∈ F and s�X t , s(�TS )statf t
4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v ,w) and
1 t = @(u, r) and (v ,w)(�X

TS )mul(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α' β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t

Case 4: s = u → v and v � t or t = u′ → v ′ and
{u, v}�lex{u

′, v ′}
Case 5: s = ∗ and t = ∗



CPO: s�X t iff

Case 1: s = f (s) with f ∈ FS and t ∈ X or
1 u : θ�TS t : τ for some u such that u : θ ∈ s
2 t = g(t) with f >F g ∈ FS ∪ {@} and s�X t
3 t = g(t), f =F g ∈ F and s�X t , s(�TS )statf t
4 t = λx .u with x 6∈ X and f (s)�X∪{x} u

Case 2: s = @(v ,w) and
1 t = @(u, r) and (v ,w)(�X

TS )mul(u, r)
2 v = λx .u and u{x 7→ w}�X t

Case 3: s = λx : α.u and
1 t = λx : β.v , x 6∈ X , α' β and u�X∪{x} v
2 u = @(v , x), x 6∈ Var(v) and v �X t

Case 4: s = u → v and v � t or t = u′ → v ′ and
{u, v}�lex{u

′, v ′}
Case 5: s = ∗ and t = ∗



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



recursor on lists

map(cons(H,T ),F )→ cons((F H),map(T ,F ))

Goal: map(cons(H,T ),F )�TS cons((F H),map(T ,F ))

Subgoal 1: map(cons(H,T ),F )� @(F , H)
Subgoal 11: map(cons(H,T ),F )� F
Subgoal 111: F �TS F
Subgoal 12: map(cons(H,T ),F )�H
Subgoal 121: cons(H,T ) : list(α)�TS H : α

Subgoal 1211: list(α) : ∗�TS α : ∗
Subgoal 12111: ∗� ∗
Subgoal 12112: α�TS α

Subgoal 1212: H �TS H
Subgoal 2: map(cons(H,T ),F )�map(T ,F )
Subgoal 21: {cons(H,T ),F}(�TS )mul{T ,F}
Subgoal 211: cons(H,T )�TS T
Subgoal 211: T �TS T



Size changing principle

Here is how we prove Neil’s (first-order)
example (RPO would be enough here):

f (o, y) → y
f (Sx , y) → g(y , y ,0)

g(su, v ,0) → f (u, v)
g(u,Sv ,Sx) → g(u, v , s3(x))

use RPO with
f ≡ g > S > 0
f ,g lexicographic

Neil’s higher-order example can be proved as
well, with CPO this time.



Further problems

Implementation
Confluence result satisfactory but need for
experiments
Order is the weak piece:
currently restricted to ML-like polymorphism.
CPO can be defined for true polymorphic
types, but no proof of well-foundedness (yet).
dependent types: same.
semantic information (not hard)


	Objectives of the CoqLF project
	Examples
	Term representation
	Format for HORSes
	Confluence properties
	Termination

