
The Higher-Order, Call-by-Value
Applied Pi-Calculus

Nobuyuki Sato
Eijiro Sumii
(Tohoku University)

Agenda of the talk

Informal overview of the work
A little technical details
A little more technical details
Conclusion

Main Result

A bisimulation proof technique
for higher-order process calculus

with cryptographic primitives

– Can be used for proving security
properties of concurrent systems
that send/receive programs using
encryption/decryption

Motivation

Higher-order cryptographic systems
are now ubiquitous

– Web-based e-mail clients (e.g. Gmail)
– Software update systems (e.g. Windows Update)

Higher-order: transmitting programs themselves

⇒ Security is even more important
than in first-order systems
• Cryptography is essential

Problem

The theory of
higher-order cryptographic

computation is underdeveloped

Little work for the combination of
higher-order processes and
cryptographic primitives
Cf. Higher-order pi-calculus (no cryptography),

spi-calculus (first-order), ...

A Challenge of Higher-Order
Cryptographic Processes

Consider the process P =⎯c〈Q〉
where Q =⎯c〈encrypt(m,k)〉
⎯c〈 〉 denotes output to the network c
Assume c is public and k is secret

Does P leak m?
1. Yes, because the attacker can receive
Q from c and extract m

2. No, if m is encrypted before Q is
sent to c

Observations

Computation (e.g. encryption) and
computed values (e.g. ciphertext)
must be distinguished
The attacker should be able to
decompose transmitted processes
(but not computed values)

(Recall the previous example P =⎯c〈Q〉
where Q =⎯c〈encrypt(m,k)〉)

Solution

Syntactically distinguish
computation (e.g. encrypt(m,k)) and
computed values (e.g. ^encrypt(m,k))
Extend the calculus with a primitive
to decompose transmitted processes:

match P as x in Q
(bind x to the decomposed abstract

syntax tree of P and execute Q)
– Computed values can not be decomposed

Examples

⎯c〈⎯c〈encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match⎯c〈encrypt(m,k)〉 as y in R
→ [Out(Nam c,Enc(Nam m,Nam k))/y]R

⎯c〈⎯c〈^encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match⎯c〈^encrypt(m,k)〉 as y in R
→ [Out(Nam c,Val ^encrypt(m,k))/y]R

Next Challenge

How do we reason about
higher-order cryptographic processes?

Traditional techniques (bisimulations,
in particular) do not apply
– Most of them are first-order
– Normal bisimulations [Sangiorgi 92] are
unsound for process decomposition

Because they only transmit "triggers"
(i.e. pointers to processes)

Solution

Adopt environmental bisimulations

Devised for λ-calculus with
encryption [Sumii-Pierce 04]
Adapted for various languages
[Sumii-Pierce, Koutavas-Wand, ...]
– Including higher-order pi-calculus
[Sangiorgi-Kobayashi-Sumii 07]

Idea of
Environmental Bisimulations

Traditional (i.e. non-environmental)
bisimulation P ∼ P' means:

P and P' behave the same
under any observer process

Environmental bisimulation P ∼E P' means:
P and P' behave the same
under any observer process

that uses any elements (V,V') of E
– E is a binary relation on values

that represents the observer's knowledge
(called an environment)

Agenda of the talk

Informal overview of the work
A little technical details
A little more technical details
Conclusion

Our Environmental Bisimulations
(1/3)

Binary relation X on processes,
indexed by environments E,
is an environmental simulation
if P XE P' implies:

1. If P reduces to Q, then
P' reduces to some Q'
such that Q XE Q'

2. If P outputs V and becomes Q, then
P' outputs some V' and becomes some Q'
such that Q XE∪{(V,V')} Q'

(cont.)

Our Environmental Bisimulations
(2/3)

X is an environmental simulation
if P XE P' implies:

3. For any V and V' composed from E,
if P inputs V and becomes Q, then
P' inputs V' and becomes some Q'
such that Q XE Q'
– "Composed from" means

for some context C and (V1,V1'),...,(Vn,Vn')∈E,
V = C[V1,...,Vn] and V' = C[V1',...,Vn']

4. P|Q XE P'|Q' for any (Q,Q')∈E
(cont.)

Our Environmental Bisimulations
(3/3)

X is an environmental simulation
if P XE P' implies:

5. P XE∪{(V,V')} P' if V and V' can be
computed from E (by decomposition or
first-order computation)
E.g. suppose:

E = {(k,k'), (^encrypt(V,k),^encrypt(V',k'))}
Then (V,V') can be computed from E

by the first-order context:
C = decrypt([]2,[]1)

6. E preserves equality

Main Theorem

The largest environmental bisimulation
(with appropriate E) coincides with
reduction-closed barbed equivalence

– It exists because the generating
function is monotone [Tarski 55]

The ⊆ direction is proved via
a context closure property of
environmental bisimulations
The ⊇ direction is proved by coinduction

Agenda of the talk

Informal overview of the work
A little technical details
A little more technical details
Conclusion

Our Calculus: Syntax of Terms

M ::= terms
V values
x variables
M(M1,...,Mn) computations

V ::= values
a names
f function symbols
^f(V1,...,Vn) computed values
`P transmitted processes
`M transmitted terms

Syntax of Processes

P ::= processes
0 inaction
M(x).P input
⎯M〈N〉.P output
P|Q parallel composition
!P replication
νx.P restriction
run(M) execution
if M=N then P else Q conditional
match M as x in P decomposition

Labeled Transition Semantics

Parameterized by semantics of terms
– Defined by (strongly normalizing and
confluent) term rewriting system

Key rules:

⎯c〈M〉.P → P
if M rewrites to V ("call-by-value")

run(`P) → P (important!)
match `P as x in Q → [M/x]Q
where M is decomposed AST of P

⎯c〈V〉

τ
τ

Examples (Revisited)

⎯c〈 `⎯c〈encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match `⎯c〈encrypt(m,k)〉 as y in R
→ [Out(Nam c,Enc(Nam m,Nam k))/y]R

⎯c〈 `⎯c〈^encrypt(m,k)〉 〉 |
c(X).match X as y in R

→ match `⎯c〈^encrypt(m,k)〉 as y in R
→ [Out(Nam c,Val ^encrypt(m,k))/y]R

Bisimulation Example

P =⎯c〈 `⎯c〈^encrypt(3,k)〉 〉 and
P' =⎯c〈 `⎯c〈^encrypt(7,k)〉 〉

are bisimilar

Proof outline: Take X as follows (so P XE P')
X = { (E, C[^encrypt(3,k)], C[^encrypt(7,k)]) |

k not free in C }
E = { (D[^encrypt(3,k)], D[^encrypt(7,k)]) |

k not free in D }
and prove it to be an env. bisim.
(by case analysis on C and D)

Non-Bisimulation Example

P =⎯c〈 `⎯c〈encrypt(3,k)〉 〉 and
P' =⎯c〈 `⎯c〈encrypt(7,k)〉 〉 are

not bisimilar
Proof outline:
If P XE P' for some env. bisim. X and E,

then by output we get 0 XE' 0 with
(`⎯c〈encrypt(3,k)〉,`⎯c〈encrypt(7,k)〉)∈E'.

Since (3,7) can be computed from E' by
decomposition, we get 0 XE'' 0 with
(3,7)∈E'', which violates integer equality.

Simplification by
Up-To Context Technique

Problem:
Many environmental bisimulations include
all processes/values of the forms
C[V1,...,Vn] and C[V1',...,Vn']
for some (V1,V1'),...,(Vn,Vn')

Solution:
A "smaller" version of environmental
bisimulations, where processes/values of
the forms C[V1,...,Vn] and C[V1',...,Vn']
can be omitted if (V1,V1'),...,(Vn,Vn') are
included

Example of Environmental
Bisimulation Up-To Context

Consider again:
P =⎯c〈 `⎯c〈^encrypt(3,k)〉 〉
P' =⎯c〈 `⎯c〈^encrypt(7,k)〉 〉

Then
Y = { (E, P, P') }

is an environmental bisimulation
up-to context, where:

E = {(c,c), (^encrypt(3,k),^encrypt(7,k))}

In the paper

Formal definitions of the calculus
and our environmental bisimulations
(and the up-to context technique)
Soundness and completeness proofs
(i.e. proof of coincidence with
reduction-closed barbed equivalence)
More sophisticated examples
– Software distribution system
– Online e-mail client

Agenda of the talk

Informal overview of the work
A little technical details
A little more technical details
Conclusion

Conclusions

Higher-order cryptographic processes
are non-trivial
– Previous theories do not apply
(higher-order pi-calculus, spi-calculus, …)

Environmental bisimulations "scale" well
to such sophisticated calculi
– Including the present one

Future work:
automation, extension, simplification, …

