
MinCaml:
A Simple and Efficient Compiler
for a Minimal Functional Language

Eijiro Sumii
Tohoku University

Highlights

"Simple and efficient compiler
for a minimal functional language"

Only 2000 lines of OCaml
Efficiency comparable to OCamlOpt
and GCC for several applications
– Ray tracing, Huffman encoding, etc.
Used for undergraduates in Tokyo
since 2001

Outline of This Talk

Pedagogical background
Design and implementation of MinCaml
Efficiency

Computer Science for
Undergraduates in Tokyo

Liberal arts (1.5 yr)
– English, German/Chinese/French/Spanish,

mathematics, logic, physics, chemistry, ...
– Computer literacy, CS introduction,

Java programming, data structures
CS major (2.5 yr) [~30 students/yr]
– Algorithms, OS, architecture, ...
– SPARC assembly, C, C++, Scheme, OCaml,

Prolog

Programming Languages for
CS Major in Tokyo

PL labs (63 hr)
– Mini-Scheme interpreter in Scheme,
– Mini-ML interpreter in OCaml,
– Othello/Reversi competition in OCaml, etc.
Compiler lecture (21 hr)
– Parsing, intermediate representations,

register allocation, garbage collection, ...
PL theory lectures (42 hr)
– λ-calculus, semantics, type theory, ...

CPU/Compiler Labs (126 hr)

CPU lab
– Design and implement original CPUs by

using VHDL and FPGA
Compiler lab
– Develop compilers for the original CPUs

MinCaml is used here!

⇒ Compete by the speed of ray tracing
(5-6 students per group)

Special thanks to Hiraki laboratory

How is MinCaml Used?

Students are given high-level
descriptions of MinCaml
– in Japanese and pseudo-code
Each group is required to implement
them
Every student is required to solve
small exercises
– such as hand compilation

Outcome (1/2)

Students liked ML!

Implemented polymorphism
(like MLton), garbage collection,
inter-procedural register allocation,
etc. without being told
Started a portal site (www.ocaml.jp)
with Japanese translations of the
OCaml manual without being told

Outcome (2/2)

"Outsiders" are also using MinCaml

Somebody anonymous wrote a
comprehensive commentary on MinCaml
Ruby hackers organized an independent
seminar to study MinCaml
Prof. Asai is using MinCaml in
Ochanomizu University

Outline of This Talk

Pedagogical background
Design and implementation of MinCaml
Efficiency

Goals

As simple as possible

but

Able to efficiently execute
non-trivial applications
(such as ray tracing)

MinCaml: The Language

Functional: no destructive update of
variables (cf. SSA)
Higher-order
Call-by-value
Impure
– Input/output
– Destructive update of arrays
Implicitly typed
Monomorphic

Syntax (1/2)

M, N (expressions) ::=
c
op(M1, ..., Mn)
if M then N1 else N2
let x = M in N
x
let rec x y1 ... yn = M1 in M2
M N1 ... Nn (no partial application)
... (cont.)

Syntax (2/2)

M, N (expressions) ::=
...
(M1, ..., Mn)
let (x1, ..., xn) = M in N (cf. #i M)
Array.create M N
M.(N)
M1.(M2) ← M3
()

Literally implemented as
ML data type Syntax.t

Everything else is omitted!

Array boundary checking (easy)
Garbage collection
Data types and pattern matching
Polymorphism
Exceptions
Objects etc.

Optional homework
(≥ 2 compulsory from this year)

MinCaml: The Compiler

TypingParser AlphaKNormal

Const
Fold Inline

Closure

Elim

Reg
AllocVirtual Emit

Lexer
100 168 165 181 46

334634

104 163 262 256

BetaAssoc
3818

Simm13
42

Lexing and Parsing

Written in OCamlLex and OCamlYacc
Given by the instructer
– Algorithms are out of scope
Cf. packrat parsing [Ford 2002]

Type Inference

Based on standard unification
using ML references
– Let-polymorphic version is

already taught in PL lab
Free variables are treated as
external functions (or arrays)
– "Principal typing" [Jim 96] is

automatically inferred

MinCaml: The Compiler

TypingParser AlphaKNormal

Const
Fold Inline

Closure

Elim

Reg
AllocVirtual Emit

Lexer
100 168 165 181 46

334634

104 163 262 256

BetaAssoc
3818

Simm13
42

K-Normalization

a + b + c * d
⇓

let tmp1 = a + b in
let tmp2 = c * d in
tmp1 + tmp2

Nesting is allowed
let x = (let y = M1 in M2) in M3

– Simplifies the normalization and inlining
Cf. A-normalization by CPS

Syntax of K-Normal Form

M, N ::=
c
op(x1, ..., xn)
if x then M1 else M2
let x = M in N
x
let rec x y1 ... yn = M1 in M2
x y1 ... yn
...

Implemented as KNormal.t

Algorithm of K-Normalization:
Pseudo-Code Given to Students

K : Syntax.t → KNormal.t
K(c) = c
K(op(M1, ..., Mn)) =

let x1 = K(M1) in ... let xn = K(Mn) in
op(x1, ..., xn)

K(if op(M1, ..., Mn) then N1 else N2) =
let x1 = K(M1) in ... let xn = K(Mn) in
if op(x1, ..., xn) then K(N1) else K(N2)

K(let x = M in N) = let x = K(M) in K(N)
K(x) = x etc.

α-Conversion (Another
Example of Pseudo-Code)

α : KNormal.t → Id.t Map.t → KNormal.t

α(c)ρ = c
α(op(x1, ..., xn))ρ = op(ρ(x1), ..., ρ(xn))
α(if x then N1 else N2)ρ =

if ρ(x) then α(N1)ρ else α(N2)ρ
α(let x = M in N)ρ = (x' fresh)

let x' = α(M)ρ in α(N)ρ[x→x']
α(x)ρ = ρ(x)

etc.

MinCaml: The Compiler

TypingParser AlphaKNormal

Const
Fold Inline

Closure

Elim

Reg
AllocVirtual Emit

Lexer
100 168 165 181 46

334634

104 163 262 256

BetaAssoc
3818

Simm13
42

β-Reduction

let x = y in M ⇒ [y/x]M

Pseudo-code (similar to previous
examples) is left as an exercise

Nested "Let" Reduction

let y = (let x = M1 in M2) in M3

⇓
let x = M1 in let y = M2 in M3

Resembles A-normalization,
but does not expand "if"

C[if M then N1 else N2]
⇒ if x then C[N1] else C[N2]

Inlining

Inlines all "small" functions

Includes recursive ones
"Small" = less than a constant size
– User-specified by "-inline" option
Repeat for a constant number of times
– User-specified by "-iter" option

Constant Folding and
Unused Variable Elimination

let x = 3 in let y = 7 in x + y
⇓

let x = 3 in let y = 7 in 10
⇓
10

Effective after inlining

MinCaml: The Compiler

TypingParser AlphaKNormal

Const
Fold Inline

Closure

Elim

Reg
AllocVirtual Emit

Lexer
100 168 165 181 46

334634

104 163 262 256

BetaAssoc
3818

Simm13
42

Closure Conversion

Local function definitions (let rec)
+ function applications

⇓

Top-level function definitions
+

Closure creations (make_closure)
Closure applications (apply_closure)
Known function calls (apply_direct)

Example 1:
Closure Creation/Application

let x = 3 in
let rec f y = x + y in
f 7

⇓
let rec ftop [x] y = x + y ;;

let x = 3 in
make_closure f = (ftop, [x]) in
apply_closure f 7

Example 2: Known Function Call

let rec f x = x + 3 in
(f, f 7)

⇓
let rec ftop [] x = x + 3 ;;

make_closure f = (ftop, []) in
(f, apply_direct f 7)

Example 3:
Unused Closure Elimination

let rec f x = x + 3 in
f 7

⇓
let rec ftop [] x = x + 3 ;;

apply_direct f 7

MinCaml: The Compiler

TypingParser AlphaKNormal

Const
Fold Inline

Closure

Elim

Reg
AllocVirtual Emit

Lexer
100 168 165 181 46

334634

104 163 262 256

BetaAssoc
3818

Simm13
42

Virtual Machine Code
Generation

SPARC assembly with:
Infinite number of registers/variables
Top-level function definitions and calls
(call_closure, call_direct)
Conditional expressions (if)

Tuple creations/accesses
and closure creations are

expanded to stores and loads

Register Allocation

Greedy algorithm with:
Look-ahead for targeting

let x = 3 in let y = 7 in f y x
⇒ let r2 = 3 in let r1 = 7 in f r1 r2

Backtracking for "early save"
let x = 3 in
...; f (); ...; x + 7

⇒ let r1 = 3 in
save(r1, x); ...; f (); ...; restore(x, r2); r2 + 7

13-Bit Immediate Optimization

Specific to SPARC
“Inlining” or "constant folding"
for integers from -4096 to 4095

set 123, %r1
add %r1, %r2, %r3

⇓
add %r2, 123, %r3

Assembly Generation

Lengthy (256 lines)
but easy

Tail call optimization
Stack map computation
Register shuffling
– Somewhat tricky but short (11 lines)

Outline of This Talk

Pedagogical background
Design and implementation of MinCaml
Efficiency

Environment

Machine: Sun Fire V880
– 4 Ultra SPARC III 1.2GHz
– 8 GB main memory
– Solaris 9
Compilers:
– MinCaml (32 bit, -iter 1000 -inline 100)
– OCamlOpt 3.08.3 (32 bit, -unsafe -inline 100)
– GCC 4.0.0 20050319 (32 bit and 64 bit, -O3)
– GCC 3.4.3 (32 bit "flat model", -O3)

Applications

Functional
– Ackermann
– Fibonacci
– Takeuchi
Imperative
– Ray tracing
– Harmonic function
– Mandelbrot set
– Huffman encoding

Execution Time of Functional Programs
(min-caml = 1)

0

1

2

3

4

5

6

7

ack fib tak

min-caml
ocamlopt
gcc -m32
gcc -m64
gcc -m32 -mflat

Execution Time of Imperative Programs
(gcc -m32 = 1)

0

0.5

1

1.5

2

2.5

3

3.5

raytrace harmonic mandelbrot huffman

min-caml
ocamlopt
gcc -m32
gcc -m64
gcc -m32 -mflat

Summary

"Simple and efficient compiler
for a minimal functional language"

Future work:
Improve the register allocation
– By far more complex than other modules
– Too slow at compile time
Retarget to IA-32
– 2-operand instructions (which are

"destructive" by definition) and FPU stack

http://min-caml.sf.net/

