
A Bisimulation for
Type Abstraction and Recursion

Eijiro Sumii
Benjamin C. Pierce
University of Pennsylvania

Main Result

l Based on bisimulations
l No restriction to inductive or predicative types
l No domain theory or category theory required
l No admissibility or TT-closure required

The first sound, complete, and
"elementary" proof method

for contextual equivalence in
λ-calculus with full recursive,

existential, and universal types

Overview of the Talk

l Background
l Previous methods and their problems

– Logical relations
– Applicative bisimulations

l Our method, step by step
l Related work and future work

Background

l Abstraction or information hiding is crucial for
developing complex systems
– Including computer programs!

l Type abstraction is the primary method of
information hiding in programming languages
– Born in early 70's [Liskov 73, Morris 73, etc.]

– Evolved to more sophisticated mechanisms
such as modules, objects, components, etc.

A Classical Example

(* in ML-like pseudo-code... *)
interface Complex =

type t
fun make : real × real → t
fun mul : t × t → t
fun re : t → real

end

An Implementation

(* by Cartesian coordinates *)
module Cartesian : Complex =

type t = real × real
fun make(x,y) = (x,y)
fun mul((x1,y1),(x2,y2)) =
(x1 × x2 − y1 × y2, x1 × y2 + y1 × x2)

fun re(x,y) = x
end

Another Implementation

(* by Polar coordinates *)
module Polar : Complex =

type t = real × real
fun make(x,y) =
(sqrt(x × x + y × y), atan2(y,x))

fun mul((r1,θ1),(r2,θ2)) =
(r1 × r2, θ1 + θ2)

fun re(r,θ) = r × cos(θ)
end

Abstraction as Equivalence

l The two implementations Cartesian and
Polar are contextually equivalent under the
interface Complex

├ Cartesian ≡ Polar : Complex
I.e., they give the same result under

any well-typed context in the language
– In this talk, "result" means only the final output value

(or divergence)
l Ignoring timing, energy, rounding errors, etc.

Question: How to Prove it?

⇓
Proof methods have been studied:
l Logical relations
l Bisimulations

Direct proof is difficult
because of infinite number of

"well-typed contexts"

Overview of the Talk

l Background
l Previous methods and their problems

– Logical relations
– Applicative bisimulations

l Our method, step by step
l Related work and future work

Logical Relations for Type
Abstraction [Reynolds 83, Mitchell 91]

– Constants are related iff they are equal
– Tuples are related iff the elements are related
– Functions are related

iff they map related arguments to related results
– Values of abstract type α can be assigned an

arbitrary relation ϕ(α) as long as all the other
conditions are satisfied

Relations between programs,
defined by induction on their types

Logical Relations for Type
Abstraction: Example

Let
ϕ(Complex.t) =

{ ((x,y),(r,θ)) |
{ x = r × cos(θ), y = r × sin(θ) }

Then
ϕ ├ Cartesian ~ Polar : Complex

Contextual equivalence follows
from soundness of logical relations

Problems with Logical Relations

l Become complex with recursion
– Recursive functions complicate the soundness proof

[Reynolds, Pitts]

– Recursive types complicate the definition of logical
relations [Birkedal-Harper-Crary]

u Problematic since these also constrain contexts!

⇓
Requires non-trivial argument

about continuity (called admissibility)
for each use, not just in the meta theory

Intuition: The gap between initiality and terminality

Overview of the Talk

l Background
l Previous methods and their problems

– Logical relations
– Applicative bisimulations

l Our method, step by step
l Related work and future work

Another Approach:
Applicative Bisimulations

l Adopted from bisimulations in process calculi
to untyped λ-calculus [Abramsky 90]

l Also adopted for (polymorphic) object calculi
[Gordon-Rees]

Applicative Bisimulations:
Definition

(for cbv λ-calculus without type abstraction)

A bisimulation is a relation between values s.t.
1. Bisimilar constants are equal
2. Bisimilar tuples have bisimilar elements
3. Bisimilar functions return bisimilar results

when applied to the same argument

Problems with
Applicative Bisimulations

l Soundness proof is difficult [Howe 96]

l Cannot prove any interesting equivalence of
abstract data types
– Cartesian.re and Polar.re do not return the

same real number when applied to the same
argument

This Work

l Sound and complete bisimulations for
λ-calculus with full recursive, existential, and
universal types

l Soundness proof simpler than Howe's method
– Price: stronger condition for functions

(necessary for existential types）

Overview of the Talk

l Background
l Previous methods and their problems

– Logical relations
– Applicative bisimulations

l Our method, step by step
l Related work and future work

First Try

l Bisimilar functions return bisimilar results
when applied to bisimilar arguments

We are not done yet:
This is not sound because contexts can
"compose" bisimilar values to make up
more complex arguments

Second Try

l Bisimilar functions return bisimilar results
when applied to C[v1,...,vn] and C[v1',...,vn']
– for any bisimilar v1,...,vn and v1',...,vn', and

– for any value context C of appropriate type

Example: "Bisimulation" between
Cartesian and Polar

R = { (Cartesian, Polar, Complex),
R = { (Cartesian.make, Polar.make,
R = { (real × real → Complex.t),
R = { (Cartesian.mul, Polar.mul,
R = { (Complex.t × Complex.t → Complex.t),
R = { (Cartesian.re, Polar.re,
R = { (Complex.t → real) }
R ∪ { ((x,y),(r,θ), Complex.t) |
R ∪ { x = r × cos(θ), y = r × sin(θ) }
R ∪ { (z, z, real) | z : real}

Last Problem

Counter-example: The union of
l The previous bisimulation R between
Cartesian and Polar, and

l Its inverse R−1 (i.e., the bisimulation between
Polar and Cartesian)
– Wouldn't be even type-safe in general!

Union of bisimulations is
no longer a bisimulation!

⇓
Standard co-induction does not work

n Intuition: Each relation in a bisimulation
represents a "world"

Solution

E.g., for the previous R between Cartesian and Polar,
l { R } is a bisimulation
l { R−1 } is another bisimulation
l { R, R−1 } is yet another bisimulation
l { R ∪ R−1 } is not a bisimulation

Consider sets of relations
as bisimulations

Formal Definition (1/2)

l A concretion environment ∆ is a partial map
from abstract types α to pairs (σ,σ') of concrete
types
– Represents the implementations of abstract types in

the lhs and rhs of equivalence

l A typed value relation R is a set of triples (v,v',τ)

Formal Definition (2/2)

l A bisimulation X is a set of pairs (∆, R)
with conditions for each type of values

E.g., for every (∆, R)∈X, if
(pack σ,v as ∃α.τ, pack σ',v' as ∃α.τ, ∃α.τ)∈R
then we have

(∆∪{(α,σ,σ')}, R∪{(v,v',τ)})∈X
– Accounts for the generativity of existential types

(i.e., opening the same package twice yields
incompatible contents)

Example

X = { (∅,R0), (∆,R1), (∆,R2), (∆,R3) }
where

R0 = { (pack int,(3,even) as ∃α.α×(α→bool),
{ (pack bool,(true,not) as ∃α.α×(α→bool),
{ (∃α.α×(α→bool)) }

∆ = { (α, int, bool) }
R1 = R0 ∪ { ((3,even), (true,not), α×(α→bool)) }
R2 = R1 ∪ { (3, true, α) } ∪ { (even, not, α→bool) }
R3 = R2 ∪ { (false, false, bool) }

Intuition: Knowledge of the context
increased by observations

Soundness and Completeness

l Generalize contextual equivalence to a
"set of relations" as well

l Then, it coincides with the largest bisimulation
(bisimilarity)
– Completeness: by straightforward co-induction
– Soundness: from the fact that evaluation preserves

"bisimilar values in a context"
l Much simpler than Howe's method, thanks to the stronger

condition on functions (which is necessary for existential
types)

Summary

l Sound and complete bisimulation for λ-calculus
with universal, existential, and recursive types

n Other examples in the paper include:
– Object encoding

(using non-inductive recursive types)
– Generative functors

Overview of the Talk

l Background
l Previous methods and their problems

– Logical relations
– Applicative bisimulations

l Our method, step by step
l Related work and future work

Related Work (1/2)

l Traditional logical relations and applicative
bisimulations

l Logical relations for simply typed λ-calculus
with dynamic sealing (a.k.a. perfect encryption)
[Sumii-Pierce 01]

l Bisimulations for untyped λ-calculus with
dynamic sealing [Sumii-Pierce 03]

– Present work concerns static type abstraction
instead of dynamic sealing, requiring careful
treatment of type variables

Related Work (2/2)

Bisimulations for π-calculi with information hiding
[Pierce-Sangiorgi-97, Abadi-Gordon-98, Abadi-Fournet-01, etc.]

n Similar spirit, different results because of the
difference between π and λ
– Our formalism is more "uniform" and "monolithic"

because functions are terms in λ (while processes
are not messages in π)
l Cf. higher-order π-calculus and context bisimulation

[Sangiorgi-92]

– Completeness is trickier in π since the language is
more imperative and low-level
uEither (i) incompleteness known, (ii) "proof" found wrong,

or (iii) no proof published

Future Work

l Applications to other forms of information
hiding
– E.g. secrecy typing [Abadi-97, Heintze-Riecke-98]

l Fully abstract encoding between various forms
of information hiding
– E.g. from polymorphic λ-calculus to untyped λ-

calculus with perfect encryption
[Pierce-Sumii 00, Sumii-Pierce 03]

l Programming language mechanisms based on
these connections?

