A Bisimulation for Type Abstraction and Recursion

Eijiro Sumii Benjamin C. Pierce University of Pennsylvania

Main Result

The first sound, <u>complete</u>, and "<u>elementary</u>" proof method for contextual equivalence in λ-calculus with <u>full recursive</u>, <u>existential</u>, and universal types

- Based on bisimulations
- No restriction to inductive or predicative types
- No domain theory or category theory required
- No admissibility or TT-closure required

Overview of the Talk

Background

- Previous methods and their problems
 - Logical relations
 - Applicative bisimulations
- Our method, step by step
- Related work and future work

Background

- Abstraction or information hiding is crucial for developing complex systems
 - Including computer programs!
- *Type abstraction* is the primary method of information hiding in programming languages
 - Born in early 70's [Liskov 73, Morris 73, etc.]
 - Evolved to more sophisticated mechanisms such as modules, objects, components, etc.

A Classical Example

(* in ML-like pseudo-code... *)
interface Complex =
 type t
 fun make : real ´real ® t
 fun mul : t ´t ® t
 fun re : t ® real
 end

An Implementation

(* by Cartesian coordinates *)
module Cartesian : Complex =
 type t = real `real
 fun make(x,y) = (x,y)
 fun mul((x₁,y₁),(x₂,y₂)) =
 (x₁ `x₂ - y₁ `y₂, x₁ `y₂ + y₁ `x₂)
 fun re(x,y) = x
end

Another Implementation

(* by Polar coordinates *)
module Polar : Complex =
 type t = real `real
 fun make(x,y) =
 (sqrt(x `x + y `y), atan2(y,x))
 fun mul((r₁,q₁),(r₂,q₂)) =
 (r₁ `r₂, q₁ + q₂)
 fun re(r,q) = r `cos(q)
end

Abstraction as Equivalence

 The two implementations Cartesian and Polar are contextually equivalent under the interface Complex

Cartesian [•] Polar : Complex

I.e., they give the same result under any well-typed context in the language

 In this talk, "result" means only the final output value (or divergence)

• Ignoring timing, energy, rounding errors, etc.

Question: How to Prove it?

Direct proof is difficult because of infinite number of "well-typed contexts"

Proof methods have been studied:

- Logical relations
- Bisimulations

Overview of the Talk

- Background
- Previous methods and their problems
 - Logical relations
 - Applicative bisimulations
- Our method, step by step
- Related work and future work

Logical Relations for Type Abstraction [Reynolds 83, Mitchell 91]

Relations between programs, defined by induction on their types

- Constants are related iff they are equal
- Tuples are related iff the elements are related
- Functions are related iff they map related arguments to related results
- Values of abstract type a can be assigned an arbitrary relation j (a) as long as all the other conditions are satisfied

Logical Relations for Type Abstraction: Example

Let
 j(Complex.t) =
 { ((x,y),(r,q)) |
 x = r ^ cos(q), y = r ^ sin(q) }
Then
 j Cartesian ~ Polar : Complex
 Contextual equivalence follows
 from soundness of logical relations

Problems with Logical Relations

Become complex with recursion

- Recursive functions complicate the soundness proof [Reynolds, Pitts]
- Recursive types complicate the definition of logical relations [Birkedal-Harper-Crary]
- Problematic since these also constrain <u>contexts</u>!

ß

Requires non-trivial argument about continuity (called *admissibility*) <u>for each use</u>, not just in the meta theory Intuition: The gap between initiality and terminality

Overview of the Talk

- Background
- Previous methods and their problems
 - Logical relations
 - Applicative bisimulations
- Our method, step by step
- Related work and future work

Another Approach: Applicative Bisimulations

- Adopted from bisimulations in process calculi to untyped λ-calculus [Abramsky 90]
- Also adopted for (polymorphic) object calculi [Gordon-Rees]

Applicative Bisimulations: Definition

(for cbv 1-calculus <u>without</u> type abstraction)

A bisimulation is a relation between values s.t.

- 1. Bisimilar constants are equal
- 2. Bisimilar tuples have bisimilar elements
- 3. Bisimilar functions return bisimilar results when applied to the same argument

Problems with Applicative Bisimulations

- Soundness proof is difficult [Howe 96]
- Cannot prove any interesting equivalence of abstract data types

 Cartesian.re and Polar.re do not return the same real number when applied to the <u>same</u> argument

This Work

- Sound and <u>complete</u> bisimulations for λ-calculus with <u>full recursive</u>, <u>existential</u>, and universal types
- Soundness proof simpler than Howe's method
 - Price: stronger condition for functions (necessary for existential types)

Overview of the Talk

Background

- Previous methods and their problems
 - Logical relations
 - Applicative bisimulations
- Our method, step by step
- Related work and future work

First Try

 Bisimilar functions return bisimilar results when applied to <u>bisimilar</u> arguments

We are not done yet: This is not sound because contexts can "compose" bisimilar values to make up more complex arguments

Second Try

Bisimilar functions return bisimilar results when applied to C[v₁,...,v_n] and C[v₁',...,v_n']
for any bisimilar v₁,...,v_n and v₁',...,v_n', and
for any value context C of appropriate type

Example: "Bisimulation" between Cartesian and Polar

R = { (Cartesian, Polar, Complex), (Cartesian.make, Polar.make, real `real ® Complex.t), (Cartesian.mul, Polar.mul, Complex.t `Complex.t ® Complex.t), (Cartesian.re, Polar.re, Complex.t ® real) } È { ((x,y),(r,q), Complex.t) | x = r `COS(q), y = r `Sin(q) }

 $\mathbf{\tilde{E}} \ \{ (\mathbf{z}, \mathbf{z}, \mathbf{real}) \mid \mathbf{z} : \mathbf{real} \} \$

Last Problem

Union of bisimulations is no longer a bisimulation! ↓ Standard co-induction does not work

Counter-example: The union of

- The previous bisimulation R between Cartesian and Polar, and
- Its inverse R⁻¹ (i.e., the bisimulation between Polar and Cartesian)

– Wouldn't be even type-safe in general!

Solution

Consider <u>sets of relations</u> as bisimulations

Intuition: Each relation in a bisimulation represents a "world"

E.g., for the previous R between Cartesian and Polar,

- { R } is a bisimulation
- { R⁻¹ } is another bisimulation
- { R, R⁻¹ } is yet another bisimulation
- { R È R-1 } is not a bisimulation

Formal Definition (1/2)

- A concretion environment **D** is a partial map from abstract types **a** to pairs (**s**,**s**') of concrete types
 - Represents the implementations of abstract types in the lhs and rhs of equivalence
- A typed value relation R is a set of triples (v,v',t)

Formal Definition (2/2)

A bisimulation X is a set of pairs (D, R) with conditions for each type of values
 E.g., for every (D, R)∈ X, if
 (pack s,v as \$a.t, pack s',v' as \$a.t, \$a.t)∈ R then we have

$(\mathbf{D} \cup \{(\mathbf{a}, \mathbf{s}, \mathbf{s}')\}, \mathsf{R} \cup \{(\mathbf{v}, \mathbf{v}', \mathbf{t})\}) \in \mathsf{X}$

 Accounts for the *generativity* of existential types (i.e., opening the same package twice yields incompatible contents)

Example

 $X = \{ (\mathbf{A}, \mathbf{R}_0), (\Delta, \mathbf{R}_1), (\Delta, \mathbf{R}_2), (\Delta, \mathbf{R}_3) \}$

where

 $\mathbf{D} = \{ (\mathbf{a}, int, bool) \}$

 $R_1 = R_0 \tilde{E} \{ ((3, even), (true, not), a'(a \otimes bool)) \}$

 $R_2 = R_1 \tilde{E} \{ (3, true, a) \} \tilde{E} \{ (even, not, a \otimes bool) \}$

 $R_3 = R_2 \tilde{E} \{ (false, false, bool) \}$

Intuition: Knowledge of the context increased by observations

Soundness and Completeness

- Generalize contextual equivalence to a "set of relations" as well
- Then, it coincides with the largest bisimulation (*bisimilarity*)
 - Completeness: by straightforward co-induction
 - Soundness: from the fact that evaluation preserves
 "bisimilar values in a context"
 - Much simpler than Howe's method, thanks to the stronger condition on functions (which is necessary for existential types)

Summary

 Sound and complete bisimulation for λ-calculus with universal, existential, and recursive types

Other examples in the paper include:

- Object encoding (using non-inductive recursive types)
- Generative functors

Overview of the Talk

Background

- Previous methods and their problems
 - Logical relations
 - Applicative bisimulations
- Our method, step by step
- Related work and future work

Related Work (1/2)

- Traditional logical relations and applicative bisimulations
- Logical relations for simply typed 1-calculus with dynamic sealing (a.k.a. perfect encryption) [Sumii-Pierce 01]
- Bisimulations for untyped 1-calculus with dynamic sealing [Sumii-Pierce 03]
 - Present work concerns static type abstraction instead of dynamic sealing, requiring careful treatment of type variables

Related Work (2/2)

Bisimulations for p-calculi with information hiding [Pierce-Sangiorgi-97, Abadi-Gordon-98, Abadi-Fournet-01, etc.]

- Similar spirit, different results because of the difference between p and l
 - Our formalism is more "uniform" and "monolithic" because functions are terms in 1 (while processes are not messages in p)
 - Cf. higher-order p-calculus and context bisimulation [Sangiorgi-92]
 - Completeness is trickier in p since the language is more imperative and low-level
 - Either (i) incompleteness known, (ii) "proof" found wrong, or (iii) no proof published

Future Work

- Applications to other forms of information hiding
 - E.g. secrecy typing [Abadi-97, Heintze-Riecke-98]
- Fully abstract encoding between various forms of information hiding
 - E.g. from polymorphic 1-calculus to untyped 1calculus with perfect encryption [Pierce-Sumii 00, Sumii-Pierce 03]
- Programming language mechanisms based on these connections?