
An Implicitly-Typed Deadlock-Free

Process Calculus

Naoki Kobayashi, Shin Saito, and Eijiro Sumii

Department of Information Science, University of Tokyo
{koba,shin,sumii}@is.s.u-tokyo.ac.jp

Abstract. We extend Kobayashi and Sumii’s type system for the dead-
lock-free π-calculus and develop a type reconstruction algorithm.
Kobayashi and Sumii’s type system helps high-level reasoning about con-
current programs by guaranteeing that communication on certain chan-
nels will eventually succeed. It can ensure, for example, that a process
implementing a function really behaves like a function. However, because
it lacked a type reconstruction algorithm and required rather complicated
type annotations, applying it to real concurrent languages was imprac-
tical. We have therefore developed a type reconstruction algorithm for
an extension of the type system. The key novelties that made it possible
are generalization of usages (which specifies how each communication
channel is used) and a subusage relation.

1 Introduction

General Background. With increasing opportunities of distributed programming,
static guarantee of program safety is becoming extremely important, because
(i) distributed programs are inherently concurrent and exhibit more complex
behavior than sequential programs, (ii) it is hard to debug the whole distributed
systems, and (iii) distributed programs usually involve many entities, some of
which may be malicious. Lack of static guarantee results in unsafe or slow (due to
expensive run-time check) program execution. Among various issues of program
safety such as security, this paper focuses on problems caused by concurrency,
in particular, deadlock (in a broad sense).

Traditional type systems are insufficient to guarantee the correctness of con-
current/distributed programs. Consider the following program of CML [14]:

fun f n = let val ch=channel() in recv(ch)+n+1 end;

The function f creates a new channel ch (by channel()), waits for a value v
from the channel (by recv(ch)), and returns v+ n+1. Since there is no sender
on the channel ch, the application f(1) is blocked forever. Thus, f actually does
not behave like a function, but the type system of CML assigns to f a function
type int → int .

C. Palamidessi (Ed.): CONCUR 2000, LNCS 1877, pp. 489–504, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

490 Naoki Kobayashi et al.

Our Previous Type Systems for Deadlock-freedom and Their Problem. To over-
come problems like above, a number of type systems [6,11,18] have been studied
through π-calculus [9]. Our type systems for deadlock-freedom [5,16] are among
the most powerful type systems: They can guarantee partial deadlock-freedom
in the sense that communication on certain channels will eventually succeed.
In addition to the usual meaning of deadlock-freedom where communications
are blocked due to some circular dependencies, they also detect the situation
like above, where there exists no communication partner from the beginning.
Through the guarantee of deadlock-freedom, they can uniformly ensure that
functional processes really behave like functions, that concurrent objects will
eventually accept a request for method execution and send a reply, and that
binary semaphores are really used like binary semaphores (a process that has
acquired a semaphore will eventually release it unless it diverges).

In spite of the attractive features of the deadlock-free type systems, however,
their applications to real concurrent programming languages have been limited.
The main reason is that there was no reasonable type reconstruction algorithm
and therefore programmers had to explicitly annotate programs with rather
complex types.

Contributions of This Paper. To solve the above-mentioned problem, this pa-
per develops an implicitly-typed version of the deadlock-free process calculus
and its type reconstruction algorithm. Programmers no longer need to write
complex type expressions; Instead, they just need to declare which communi-
cation they want to succeed. (Programmers may still want to partially anno-
tate programs with types for documentation, etc.: Our algorithm can be easily
modified to allow such partial type annotation.) For example, a process that
sends a request to a function server or a concurrent object can be written as
(νr) (s![arg, r] | r?c [x]. ...). Here, (νr) creates a fresh channel r. s![arg, r] sends
a pair [arg, r] to the server through channel s, and in parallel to this, r?c[x]. ...
waits on channel r to receive a reply from the server. The c attached to ? indicates
that this input from r should eventually succeed, i.e., a reply should eventually
arrive on r. If the whole system of processes (including the server process) is
judged to be well typed in our type system, then it is indeed guaranteed that
the input will eventually succeed, unless the whole system diverges.

Our new technical contributions are summarized as follows. (Those who are
unfamiliar with our previous type systems can skip the rest of this paragraph.)

– Generalization of the previous type systems for deadlock-freedom — It is
not possible to construct a reasonable type reconstruction algorithm for the
previous type systems. So, we generalized them by introducing a subusage
relation and new usage constructors such as recursive usages and the greatest
lower bound of usages (which roughly correspond to the subtype relation,
recursive types, and intersection types in the usual type system). A usage [16]
is a part of a channel type and describes for which operations (input or
output) and in which order channels can and/or must be used. It can be
considered an extension of input/output modes [11] and multiplicities [6].

An Implicitly-Typed Deadlock-Free Process Calculus 491

– Constraint-based type reconstruction algorithm — We have developed a
type reconstruction algorithm, which inputs an implicitly-typed process and
checks whether it is well typed or not. The algorithm is a non-trivial exten-
sion of Igarashi and Kobayashi’s type reconstruction algorithm [4] for the
linear π-calculus [6], where a principal typing is expressed as a pair of a type
environment and a set of constraints on type/usage variables.

Limitations of This Paper. The type system and type reconstruction algorithm
described in this paper have the following limitations.

– Incompleteness of the type reconstruction algorithm — The algorithm is
sound but incomplete: Although it never accepts ill-typed processes, it rejects
some well-typed processes. This is just because we want to reject some well-
typed but bad processes that may livelock (i.e., diverge with keeping some
process waiting for communication forever). So, our algorithm is actually
preferable to a complete algorithm (if there is any).

– Naive treatment of time tags — The treatment of time tags and tag rela-
tions, which are key features of the deadlock-free type systems [5,16], is very
naive in this paper. As a result, the expressive power is very limited. This is
just for clarifying the essence of new ideas of this paper. It is easy to replace
the naive treatment of time tags in this paper with the sophisticated one
in the previous papers [5,16] and extend the type reconstruction algorithm
accordingly. The resulting deadlock-free process calculus is more expressive
than the previous calculi [5,16], which have already been shown to be expres-
sive enough to encode the simply-typed λ-calculus with various evaluation
strategies, semaphores, and typical concurrent objects.

The Rest of This Paper. Section 2 introduces the syntax and operational se-
mantics of processes, and defines what we mean by deadlock. Section 3 gives
a generalized type system. Section 4 describes a type reconstruction algorithm.
Section 5 discusses related work, and Section 6 concludes this paper. For the
space restriction, we omit proofs, some definitions, and details of the type re-
construction algorithm. They are given in the full version of this paper [7].

2 The Syntax and Operational Semantics of Processes

Our process calculus is a subset of the polyadic π-calculus [8]. Each input/output
process can be annotated with the programmer’s intention on whether or not
the communication should succeed. After introducing its syntax and operational
semantics, we define what we mean by deadlock.

2.1 Syntax and Operational Semantics of Processes

We first define the syntax of processes. The metavariables x and yi range over a
countably infinite set of variables.

492 Naoki Kobayashi et al.

Definition 1 (processes).

P (processes) ::= 0 | x!b[v1, . . . , vn]. P | x?b[y1, . . . , yn]. P | (P |Q) | (νx)P
| if v then P else Q | ∗P

v (values) ::= true | false | x
b (annotations) ::= ∅ | c

Notation 2. We write ỹ for a sequence y1, . . . , yn. As usual, ỹ in x?b[ỹ]. P and x
in (νx)P are called bound variables. The other variables are called free variables.
We assume that α-conversions are implicitly applied so that bound variables are
always different from each other and from free variables. [x̃ �→ ṽ]P denotes a
process obtained from P by replacing all free occurrences of xi with vi. We often
write x!b[ỹ] for x!b[ỹ].0. We often omit the empty annotation ∅ and just write
x![ỹ]. P and x?[ỹ]. P for x!∅[ỹ]. P and x?∅[ỹ]. P respectively.

0 denotes inaction. A process x!b[ṽ]. P sends a tuple [ṽ] on x and then (after
the tuple is received by some process) behaves like P . The annotation b expresses
the programmer’s intention: If it is c, then the programmer expects that the
output eventually succeeds, i.e., the tuple is received by some process. A process
x?b[ỹ]. P receives a tuple [ṽ] on x, binds ỹ to ṽ, and executes P . P |Q executes
P and Q in parallel, and (νx)P creates a fresh channel x and executes P .
if v then P else Q executes P if v is true and executes Q if v is false. ∗P
executes infinitely many copies of the process P in parallel.

Remark 3. In an earlier version of this paper [7], we included another annotation
o, which means that the annotated input/output operation must be executed.
We removed it because it is not so useful and also because it complicates the
type system.

The operational semantics is fairly standard: It is defined by using two rela-
tions: a structural congruence relation and a reduction relation [8].

Definition 4. The structural congruence relation ≡ is the least congruence re-
lation closed under the rules: (i)P |0 ≡ P , (ii)P |Q ≡ Q |P , (iii)P | (Q |R) ≡
(P |Q) |R, and (iv)(νx) (P |Q) ≡ (νx)P |Q (x not free in Q). The reduction
relation −→ is the least relation closed under the rules in Figure 1.

2.2 Deadlock

We regard deadlock as a state where (i) processes can no longer be reduced, and
(ii) a process is trying to perform an input or output operation annotated with
c, but has not succeeded to do so (because there is no corresponding output or
input process). The latter condition is formally defined as follows.

Definition 5. A predicate Waiting on processes is the least unary relation sat-
isfying the following conditions: (i) Waiting(x!c[ṽ]. P), (ii) Waiting(x?c[ỹ]. P),
and (iii) Waiting(P) implies Waiting(P |Q), Waiting(Q |P), Waiting(∗P), and
Waiting((νx)P).

An Implicitly-Typed Deadlock-Free Process Calculus 493

x!b[v1, . . . , vn]. P |x?b′ [z1, . . . , zn]. Q −→ P | [z1 �→ v1, . . . , zn �→ vn]Q

P −→ Q

P |R −→ Q |R

P −→ Q

(νx)P −→ (νx)Q

if true then P else Q −→ P

P | ∗ P |Q −→ R

∗P |Q −→ R

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

if false then P else Q −→ Q

Fig. 1. Reduction Rules

Definition 6 (deadlock). A process P is in deadlock if (i) there exists no P ′

such that P −→ P ′ and (ii) Waiting(P) holds.

This definition slightly differs from, but subsumes the usual definition of
deadlock, which refers to a state where processes are blocked because of circular
dependencies.

Example 7. Both (νx) (x?c[].0) and (νx) (νy) (x?c[]. y![] | y?[]. x![]) are in dead-
lock because the input from x is annotated with c, but the input cannot succeed.
On the other hand, neither (νx) (x?[].0) nor (νx) (x![] |x?c[].0) is in deadlock.

3 Type System

Now, we give a type system that can guarantee freedom from the deadlock
defined in the previous section. The basic idea of the type system is the same as
that of our previous type system [16]: We augment ordinary channel types with
usages, describing for what operations (input or output) and in which order each
channel is used. To enable type reconstruction, this paper extends usages with
new constructors and a relation between usages.

3.1 Usages

Definition 8 (usages). The set of usages is given by the following syntax.

U (usages) ::= 0 | α | Oa.U | Ia.U | (U1||U2) | U1 � U2 | recα.U | ∗U
a (attributes) ::= ∅ | c | o | co

Here, α ranges over a countably infinite set of variables called usage variables.

Notation 9. recα.U binds α in U . Usage variables that are not bound are
called free usage variables. [α �→ U ′]U denotes the usage obtained from U by

494 Naoki Kobayashi et al.

replacing all free occurrences of α with U ′. We give a higher precedence to
prefixes (Ia.,Oa., recα., and ∗) than to || and �. We also give a higher precedence
to � than to ||.

0 is the usage of a channel that cannot be used at all. Oa.U denotes the usage
of a channel that can be first used for output, and then used according to U .
The attribute c is called a capability and o an obligation. If a contains c (i.e.,
if a is c or co), then the output is guaranteed to succeed. If a contains o, then
the channel must be used for output (even though the output may not succeed).
Similarly, Ia.U denotes the usage of a channel that can be first used for input
with attribute a, and then used according to U . U1||U2 denotes the usage of a
channel that can be used according to U1 by one process and according to U2

by another process, possibly in parallel. U1 � U2 denotes the usage of a channel
that can be used according to either U1 or U2. For example, if x is a channel of
the usage I∅.0�O∅.0, then x can be used either for input or for output, but not
for both. recα.U denotes the usage of a channel that can be used according to
the infinite expansion of recα.U by recα.U = [α �→ recα.U]U . For example,
recα.I∅.α denotes the usage of a channel that can be used for input an infinite
number of times sequentially. ∗U denotes the usage of a channel that can be
used according to U by infinitely many processes. For example, the usage of a
binary semaphore is denoted by Oo.0||∗Ic.Oo.0, meaning that (i) there must be
one initial output, (ii) there can be infinitely many input processes, and (iii) each
input is guaranteed to eventually succeed (unless the whole process diverges),
and it must be followed by output.

Remark 10. One may think that ∗U can be replaced by recα.(α||U). For a
subtle technical reason, however, we need to distinguish between them.

Example 11. In the CML program given in Section 1, the usage of the channel
ch is expressed as Ia.0. Because there is no output use, a cannot be c or co,
which implies that recv(ch)may be blocked forever. For another example, in the
process x?[]. (x![] |x![]), the usage of x can be expressed as Ia1 .(Oa2 .0||Oa3 .0).

The constructors � and recα.U are newly introduced in this paper. Although
they are not necessary for the previous explicitly-typed calculus [16] (they would
only add a little more expressive power), they are crucial for the implicitly-typed
calculus in this paper. Suppose that a process P uses a channel x according to
a usage U1 and Q uses x according to U2. Then, how can we express the usage
of x by the process if b then P else Q? With the choice constructor, we can
express the most general usage of x as U1 �U2. (There is no problem in the case
of type check: In order to check that if b then P else Q uses x according to U ,
we just need to check that both P and Q use x according to U .) Similarly, we do
need a recursive usage, for example, to perform type reconstruction for a process
∗x?[y]. y![]. x![y]. Suppose that x is used to communicate a channel that should
be used according to U . After receiving the channel y on x, the above process
uses y for output, and then send it through x. The channel y will then be used
according to U again. So, we have an equation U = O.U . With the recursive
usage constructor, we can express a solution of this equation as recα.O.α.

An Implicitly-Typed Deadlock-Free Process Calculus 495

U 	 U ||0

U1
 U2 	 Ui

∗U 	 ∗U ||U

U1||U2 	 U2||U1

(U1||U2)||U3 	 U1||(U2||U3)

rec α.U 	 [α �→ recα.U]U

U1 	 V1 U2 	 V2

U1||U2 	 V1||V2

U 	 V

∗U 	 ∗V

Ia1 .U1||Oa2 .U2||U3 −→ U1||U2||U3

U1 	 V1 V1 −→ V2 V2 	 U2

U1 −→ U2

Fig. 2. Usage Reduction

Usage Reduction. The usage of a channel changes during reduction of a process.
For example, a process x?[]. x![] |x![] uses x as I.O.0||O.0. After the commu-
nication on x, however, the reduced process x![] uses x as O.0. To express this
change of a usage, we introduce a reduction relation on usages. Thus, usages
themselves form a small process calculus, which has only one pair of co-actions
I and O.

Following the usual reduction semantics of process calculi [8], we define usage
reduction by using a structural relation on usages. For technical convenience,
however, we do not require that the structural relation is symmetric.

Definition 12. A usage preorder 	 and a usage reduction relation −→ are the
least binary relations on usages closed under the rules in Figure 2. −→∗ is the
reflexive and transitive closure of −→.

Usage Reliability. To avoid deadlock, we must require that the usage of each
channel must be consistent (called reliable) in the sense that each input/output
capability is always matched by a corresponding obligation. For example,
Ic.0||Oo.0 is reliable, but Ic.0||Oc.0 is not. To define the reliability of a usage
formally, we use the following predicate obI(U), which means that the usage U
contains an input obligation and that there is no way to discard the obligation.

Definition 13. Unary predicates obI, obO(⊆ U) on usages are defined by:

obI(U) ⇐⇒ ∀U1.(U 	 U1 ⇒ ∃a, U2, U3.((U1 	 Ia.U2||U3) ∧ (a ∈ {o, co})))
obO(U) ⇐⇒ ∀U1.(U 	 U1 ⇒ ∃a, U2, U3.((U1 	 Oa.U2||U3) ∧ (a ∈ {o, co})))

Definition 14 (reliability). A usage U is reliable, written rel(U), if the fol-
lowing conditions hold for every U ′ with U −→∗ U ′.

1. If U ′ 	 Ia.U1||U2 and a ∈ {c, co}, then obO(U2).
2. If U ′ 	 Oa.U1||U2 and a ∈ {c, co}, then obI(U2).

Remark 15. The reliability of a usage is decidable: It can be reduced to the
reachability problem of Petri nets [3].

496 Naoki Kobayashi et al.

Subusage. Some usage expresses more general use of a channel than other usages.
For example, a channel of the usage I∅.0||I∅.0 can be used as that of the usage
I∅.I∅.0, because the former usage allows two input operations to be executed in
parallel. To express such a relation, we introduce a subusage relation U1 ≤ U2,
meaning that a channel of usage U1 may be used as that of usage U2.

The introduction of the subusage relation is essential for type reconstruction.
For example, the usage of x by a process x?[]. x!c[] can be expressed both as
Ia.0||Oc.0 and as Ia.Oc.0. Thanks to the subusage relation Ia.0||Oc.0 ≤ Ia.Oc.0,
however, we only need to consider the usage Ia.Oc.0 during type reconstruction.

We first introduce a relation a1 ≤ a2 between attributes, which means that
a channel that should be used for an input/output operation with the attribute
a1 can be used for the operation with the attribute a2. Note that c ≤ ∅ holds
but o ≤ ∅ does not: For deadlock-freedom, it is fine not to use capabilities, but
it should be disallowed not to fulfill obligations.

Definition 16 (sub-attribute). The relation ≤ is the least partial order sat-
isfying c ≤ ∅ and co ≤ o.

Because we have recursive usages, we need to define the subusage relation co-
inductively. Because usages themselves are mini-processes, it is natural to define
it using a simulation relation.

Definition 17 (usage simulation). A binary relation R(⊆ U × U) on usages
is called a usage simulation if the following conditions are satisfied for each
(U,U ′) ∈ R:

1. If U ′ 	 Ia′ .U ′
1||U ′

2, then there exist U1, U2, and a such that (i) U 	 Ia.U1||U2,
(ii) U2RU ′

2, (iii) (U1||U2)R(U ′
1||U ′

2), and (iv) a ≤ a′.
2. If U ′ 	 Oa′ .U ′

1||U ′
2, then there exist U1, U2, and a such that (i) U 	

Oa.U1||U2, (ii) U2RU ′
2, (iii) (U1||U2)R(U ′

1||U ′
2), and (iv) a ≤ a′.

3. obI(U) implies obI(U ′), and obO(U) implies obO(U ′).
4. If U ′ −→ U ′

1, then there exists U1 such that U −→ U1 and U1RU ′
1.

The first and second conditions mean that in order for U to simulate U ′,
U must allow any input/output operations that U ′ allows. The third condition
means that U ′ must provide any obligations that U provides. The fourth condi-
tion means that such conditions are preserved even after reductions.

Definition 18. A subusage relation ≤ on usages is the largest usage simulation.

Example 19. Ic.U ≤ 0 and Ic.0||Ic.0 ≤ Ic.Ic.0 hold, but neither Io.U ≤ 0 nor
Io.0||Ic.0 ≤ Ic.Io.0 holds. U1 � U2 ≤ Ui holds for any U1 and U2.

3.2 Types, Type Environments, and Type Judgment

The syntax of types is defined as follows. The metavariable t ranges over a
countable set T of labels called time tags.

Definition 20 (types). τ ::= bool | [τ1, . . . , τn]t/U

An Implicitly-Typed Deadlock-Free Process Calculus 497

[τ1, . . . , τn]t/U denotes the type of a channel that can be used for communicating
a tuple of values of types τ1, . . . , τn. The channel must be used according to the
usage U . As in the previous type systems, the time tag t is used to control
the order between communications on different channels. The allowed order is
specified by the following tag ordering.

Definition 21. A tag ordering, written T , is a strict partial order (i.e., a tran-
sitive and irreflexive binary relation) on T.

Intuitively, sT t means that a process can use capabilities to communicate on
a channel tagged with s before fulfilling obligations to communicate on a channel
tagged with t. For example, if a channel x has type [bool]tx/Ic.0 and y has type
[bool]ty/Oo.0, and if txT ty holds, then a process can wait to receive a boolean
on x before fulfilling the obligation to send a boolean on y.

Type Environment. A type environment is a mapping from a finite set of variables
to types. We use a metavariable Γ for a type environment. If τi = bool for each i
such that vi = true or false, then v1 : τ1, . . . , vn : τn denotes the type environment
Γ such that dom(Γ) = {v1, . . . , vn}\{true, false} and Γ (vi) = τi for each vi ∈
dom(Γ). We write ∅ for the type environment whose domain is empty. When
x �∈ dom(Γ), we write Γ, x : τ for the type environment Γ ′ satisfying dom(Γ ′) =
dom(Γ) ∪ {x}, Γ ′(x) = τ , and Γ ′(y) = Γ (y) for y ∈ dom(Γ). Γ\{x1, . . . , xn}
denotes the type environment Γ ′ such that dom(Γ ′) = dom(Γ)\{x1, . . . , xn}
and Γ ′(x) = Γ (x) for each x ∈ dom(Γ ′).

Type Judgment. A type judgment is of the form Γ ; T � P . It means that P uses
each channel as specified by Γ , and that P obeys the constraints on the order of
communications specified by T . For example, let Γ = x : []tx/Ico.0, y : []ty/Oco.0
and T = {(tx, ty)}. Then, Γ ; T � x?c[]. y!∅[] is a valid judgment, but neither
Γ ; T � x!c[]. y!∅[] nor Γ ; T � y!c[]. x?∅[].0 is: The process x!c[]. y!∅[] wrongly
uses x for output, and y!c[]. x?∅[].0 communicates on x and y in a wrong order.

Operations and Relations on Types and Type Environments. Constructors and
relations on usages are extended to operations and relations on types and type
environments, as defined in Figure 3. Note that binary operations on types are
partial: For example, bool||[τ̃]t/U is undefined.

Intuitively, the type environment Γ1||Γ2 indicates that channels can be used
according to Γ1 by one process and used according to Γ2 by another process in
parallel. So, if P1 uses channels according to Γ1 (i.e., P1 is well typed under Γ1)
and P2 uses them according to Γ2, then P1 |P2 uses them according to Γ1||Γ2

in total. Similarly, if true then P1 else P2 and ∗P1 use channels according to
Γ1 � Γ2 and ∗Γ1 respectively.

The relation tRΓ means that a process is allowed to use a capability on a
channel tagged with t before fulfilling obligations contained in Γ .

498 Naoki Kobayashi et al.

– Unary/binary operations (op = ||,
)

∗bool = bool ∗[τ̃]t/U = [τ̃]t/∗U (∗Γ)(x) = ∗(Γ (x))
bool op bool = bool ([τ̃]t/U1)op ([τ̃]t/U2) = [τ̃]t/(U1 opU2)

(Γ1 opΓ2)(x) =

{
Γ1(x)opΓ2(x) if x ∈ dom(Γ1) ∩ dom(Γ2)
Γi(x) if x ∈ dom(Γi)\dom(Γ3−i)

– Subtyping
bool ≤ bool [τ̃]t/U1 ≤ [τ̃]t/U2 if U1 ≤ U2

– Unary predicates

noob(bool) noob([τ̃]t/U) if U ≤ 0
noob(Γ) if noob(Γ (x)) for each x ∈ dom(Γ)

– Tag ordering
tT τ if noob(τ) ∨ (τ = [τ̃ ′]s/U ∧ tT s)
tT Γ if tT (Γ (x)) for each x ∈ dom(Γ)

Fig. 3. Operations and Relations on Types and Type Environments

3.3 Typing Rules

The set of typing rules for deriving valid type judgments are given in Figure 4.
In the rule for 0, we require that the type environment contains no obligation,

because 0 does nothing. As explained in the previous subsection, in the rules
for P |Q, if b then P else Q, and ∗P , the type environment of the processes
are computed by combining the type environments of their sub-processes with
operations ||, �, and ∗. In the rule for (νx)P , we require that x has a channel
type and its usage is reliable.

The rule for output processes is a key rule. The premise Γ, x : [τ̃]t/U ; T � P
implies that P uses x according to U . Because the process x!b[ṽ]. P uses x for out-
put before doing so, the total usage of x is expressed by Oa.U . The other variables
may be used by P or by a receiver on x, possibly in parallel. The former use is ex-
pressed by Γ , while the latter use is by v1 : τ1|| · · · ||vn : τn. Thus, the type environ-
ment of the whole process is given by x : [τ̃]t/Oa.U ||v1 : τ1|| · · · ||vn : τn||Γ . If the
annotation b is c, the input must succeed, hence the condition a ∈ {c, co}. More-
over, we require the conditions (¬noob(v1 : τ1|| · · · ||vn : τn||Γ)) ⇒ a ∈ {c, co}
and tT (v1 : τ1|| · · · ||vn : τn||Γ) to enforce the consistency among different chan-
nels. The first condition means that if the process P or the tuple [v1, . . . , vn]
contains some obligations, i.e., if noob(v1 : τ1|| · · · ||vn : τn||Γ) does not hold, then
the output on x must be guaranteed to succeed (so that it does not block the
fulfillment of the obligations). The second condition is required because this out-
put process uses the capability to output on x before fulfilling the obligations
possibly contained in P and [v1, . . . , vn]: Such dependency must be allowed by
the tag ordering T . The rule for input processes is similar.

An Implicitly-Typed Deadlock-Free Process Calculus 499

noob(Γ)

Γ ; T � 0

Γ1; T � P1 Γ2; T � P2

Γ1||Γ2; T � P1 |P2

Γ ; T � P

∗Γ ; T � ∗P

Γ, x : [τ1, . . . , τn]t/U ; T � P rel(U)

Γ ; T � (νx)P

Γ1; T � P Γ2; T � Q

(Γ1
 Γ2)||v : bool; T � if v then P else Q

Γ, x : τ ′; T � P τ ≤ τ ′

Γ, x : τ ;T � P

Γ, x : [τ1, . . . , τn]t/U ; T � P
b = c ⇒ a ∈ {c, co} tT (v1 : τ1|| · · · ||vn : τn||Γ)

(¬noob(v1 : τ1|| · · · ||vn : τn||Γ)) ⇒ a ∈ {c, co}
x : [τ1, . . . , τn]t/Oa.U ||v1 : τ1|| · · · ||vn : τn||Γ ; T � x!b[v1, . . . , vn]. P

Γ, x : [τ1, . . . , τn]t/U, y1 : τ1, . . . , yn : τn; T � P
b = c ⇒ a ∈ {c, co} tT Γ (¬noob(Γ)) ⇒ a ∈ {c, co}

Γ, x : [τ1, . . . , τn]t/Ia.U ; T � x?b[y1, . . . , yn]. P

Fig. 4. Typing Rules

Example 22. A process P = ∗f?[x, r]. r![x] implements the identity function,
since it just forwards the argument x to the reply address r. We can obtain the
following judgment:

∅; {(tf , ty)} � (νf) (P | (νy) f !c[true, y]. y?c[z].0).

The process f !c[true, y]. · · · calls the function located at f and waits for a reply.
tf and ty are time tags of channels f and y. The judgment indicates that the
caller process can eventually receive a reply.

3.4 Deadlock Freedom Theorem

Theorem 23. If ∅; T � P and P −→∗ Q, then Q is not in deadlock.

As in the previous type systems [5,16], this theorem is proved as a corollary
of the subject reduction property and lack of immediate deadlock. A proof is
given in the full paper [7]. The intuitive reasons why the deadlock-freedom holds
are: (i) each rule correctly estimates the usage of each channel, and (ii) the side
condition rel(U) of (T-New) guarantees that each channel is consistently used,
and (iii) the tag ordering guarantees that there is no cyclic dependency between
different channels.

4 Type Reconstruction

Thanks to the generalization of the previous type systems [5,16] made in the
last section, it is now possible to develop a type reconstruction algorithm. Type

500 Naoki Kobayashi et al.

reconstruction proceeds in a manner similar to Igarashi and Kobayashi’s type
reconstruction algorithm for linear π-calculus [4]. We first transform the typing
rules into syntax-directed typing rules, so that there is only one applicable rule
for each process expression. Then, by reading the syntax-directed rules in a
bottom-up manner, we obtain an algorithm for extracting a principal typing.
Finally, we decide the typability of a process by solving the constraint part of
the principal typing. For lack of space, we explain the algorithm only through an
example. The concrete description of the algorithm is given in the full paper [7].

The key properties of our new type system that enabled type reconstruc-
tion are (i) there is only one rule for each process constructor except for the
subsumption rule (the right rule in the third line in Figure 4, which can be
merged with other rules), and (ii) a most general typing can be expressed by
using the new usage constructors and subusage relation. The property (i) does
not hold for our earlier type system [5] and other type systems that guaran-
tee certain deadlock-freedom properties [2,15,18]: They have different rules for
input/output on different types of channels.

4.1 Principal Typing

As in Igarashi and Kobayashi’s type system [4], a principal typing can be ex-
pressed by using constraints. We introduce variables ranging over attributes, us-
ages, and types, and accordingly extend the syntax of attributes, usages, types,
and type environments.

A principal typing of a process P is defined as a pair (Γ,C) of an extended
type environment and a set of constraints, satisfying the following conditions:
(i) Any type judgment obtained by substituting a solution of C for Γ ; T � P is
valid (i.e., (Γ,C) expresses only valid typings). (ii) Every valid type judgment can
be obtained by substituting a solution of C for Γ ; T � P (i.e., (Γ,C) expresses
all the valid typings). A formal definition is given in the full paper [7].

4.2 Algorithm for Computing a Principal Typing

We can easily eliminate the subsumption rule by combining it with other rules.
By reading the resulting syntax-directed rules in a bottom-up manner, we can
construct an algorithm for computing a principal typing. For example, we obtain
the following rule by combining the rules for (νx)P and subsumption:

Γ ; T � P
(Γ (x) = [τ1, . . . , τn]t/U ∧ rel(U)) ∨ x �∈ dom(Γ)

Γ\{x}; T � (νx)P

This implies that a principal typing (Γ,C) of (νx)P can be computed from a
principal typing (Γ ′, C′) of P as follows:

(Γ,C) =
{
(Γ ′\{x}, C ∪ {rel(Γ ′(x))}) if x ∈ dom(Γ)
(Γ ′, C′) otherwise

An Implicitly-Typed Deadlock-Free Process Calculus 501

Example 24. For the process (νf) (P | (νy) f !c[true, y]. y?c[z].0) given in Exam-
ple 22, the following pair is a principal typing:

(∅, {ρf ≤ (∗([ρx, ρr]tf /Ia1 .0)||[bool, ρr]tf /Oa2 .0), rel(ρf), a2 ∈ {c, co}
ρy ≤ (ρr||[ρz]ty/Ia4 .0), rel(ρy), a4 ∈ {c, co}
ρr ≤ [ρx]ty/Oa3 .0,noob(ρz), (¬noob(ρr) ∨ a4 ∈ {o, co}) ⇒ tfT ty})

Here, ρf , ρx, ρy, ρz, and ρr are type variables representing the types of f, x, y, z,
and r respectively. The constraints in the first line are those on the uses of the
channel f . Because f is used by P as a value of type ∗([ρx, ρr]tf /Ia1 .0) and
used by the other process as a value of type [bool, ρr]tf /Oa2 .0, the type ρf of
f is constrained by ρf ≤ ∗([ρx, ρr]tf /Ia1 .0)||[bool, ρr]tf /Oa2 .0. The second line
shows constraints on the uses of the channel y. The last constraint in the third
line comes from the dependency between f and y.

4.3 Constraint Solving

We can decide the typability of a process by reducing the constraints in its
principal typing and checking their satisfiability. We reduce the set of constraints
on types, those on usages, those on attributes and those on time tags step by
step in this order, in a similar (but more complex) manner to Igarashi and
Kobayashi’s algorithm [4].

The algorithm for reducing constraints on usages is actually incomplete. The
completeness is lost in the second step explained in Example 25 below, where
a subusage constraint α ≤ U is replaced by α = recα.U . As mentioned in
Section 1, this is because we want to reject some well-typed but bad processes.
(So, we do not want to require the completeness.) The other transformation
steps are sound and complete: In those steps, constraints can be transformed into
simpler, equivalent constraints. For the efficiency reason, however, our current
prototype type inference system use an approximate (sound but incomplete)
algorithm also in the third step.

Example 25. Consider the constraint set shown in Example 24. Our algorithm
roughly proceeds as follows.

1. Reduce constraints on types: In a subtyping constraint τ1 ≤ τ2 and an ex-
pression τ1 op τ2, τ1 and τ2 must be identical except for usages. By instanti-
ating type variables so that this condition is met (which is performed by the
first-order unification), we get the following constraint set on usages (ρf , ρy,
ρr, ρx, and ρz were instantiated with [bool, [bool]ty/αr]tf /αf , [bool]ty/αy,
[bool]ty/αr, bool, and bool, respectively):

{αf ≤ ∗Ia1 .0||Oa2 .0, rel(αf), a2 ∈ {c, co}, αy ≤ αr||Ia4 .0, rel(αy),
a4 ∈ {c, co}, αr ≤ Oa3 .0, (¬noob(αr) ∨ a4 ∈ {o, co}) ⇒ tfT ty}

2. Reduce subusage constraints: From the subusage constraints, we obtain αf =
∗Ia1 .0||Oa2 .0, αy = Oa3 .0||Ia4 .0, and αr = Oa3 .0 as a representative solution.
By substituting it for the other constraints, we obtain: {rel(∗Ia1 .0||Oa2 .0),
a2 ∈ {c, co}, rel(Oa3 .0||Ia4 .0), a4 ∈ {c, co}, ({a3, a4} ⊆ {o, co}) ⇒ tfT ty}.

502 Naoki Kobayashi et al.

3. Reduce the other constraints on usages: By reducing the reliability con-
straints, we obtain: {a1 �∈ {c, co}, a1 ∈ {o, co}, a2 ∈ {c, co}, a3 ∈ {o, co},
a4 ∈ {c, co}, tfT ty}.

4. Reduce the constraints on usage attributes: Start with a1 = a2 = a3 = ∅,
and increment the attributes step by step until the whole constraints are
satisfied. In this case, we have a1 = o, a2 = c, a3 = o, and a4 = c as a
solution, and obtain tfT ty.

5. Check whether the remaining constraints on the tag ordering is satisfiable.
In this case, we have only the constraint tfT ty, which is clearly satisfiable.
The process is therefore accepted as a well-typed process.

Recursive usages and greatest lower bounds play an important role in solving
usage constraints (the step 2 above). For example, given subusage constraints
α ≤ Oa.0 and α ≤ Ia′ .α, we can first transform them into α ≤ Oa.0� Ia′ .α, and
then obtain α = recα.(Oa.0 � Ia′ .α) as a representative solution. This is not
always possible without recursive usage and greatest lower bound constructors.

5 Related Work

Several type systems guaranteeing certain deadlock-freedom properties have re-
cently been proposed [1,2,5,13,15,16,18]. As far as we know, however, no type
reconstruction algorithm has been developed for them so far. One of the main
difficulties of type reconstruction for those type systems is that they use different
rules for input/output on different types of channels. We solved that problem
by generalizing our previous type systems.

One of the key ideas was to use a process-like term to describe the channel-
wise behavior of a process. Similar ideas are found in earlier type systems [17,10]:
For example, Nierstrasz [10] used CCS-like terms as types of concurrent objects
and defined subtyping relations.

Our type reconstruction algorithm can be considered a non-trivial extension
of Igarashi and Kobayashi’s type reconstruction algorithm [4] for the linear π-
calculus [6].

6 Conclusion

We have extended our previous type systems for deadlock-freedom [5,16] and
developed its type reconstruction algorithm. A prototype type inference system
is available at http://www.yl.is.s.u-tokyo.ac.jp/˜shin/pub/.

There remain a number of issues in applying our type system and algorithm
to real concurrent programming languages [12,14], such as whether the type
system is expressive enough, how to make the algorithm efficient, and how to
present the result of type reconstruction to programmers. We plan to perform
experiments using existing CML or Pict programs to answer these questions.

An Implicitly-Typed Deadlock-Free Process Calculus 503

Acknowledgment

We would like to thank Atsushi Igarashi for useful comments.

References

1. G. Boudol. Typing the use of resources in a concurrent calculus. In Proceedings of
ASIAN’97, LNCS 1345, pages 239–253, 1997. 502

2. K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed
process behaviour. In Proc. of European Symposium on Programming (ESOP)
2000, LNCS 1782, pp.180–199, 2000. 500, 502

3. J. Esparza and M. Nielsen. Decidability issues for Petri nets - a survey. Journal
of Information Processing and Cybernetics, 30(3):143–160, 1994. 495

4. A. Igarashi and N. Kobayashi. Type reconstruction for linear pi-calculus with I/O
subtyping. Information and Computation. To appear. A preliminary summary
appeared in Proceedings of SAS’97, LNCS 1302, pp.187-201. 491, 500, 501, 502

5. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436–482, 1998. 490, 491, 499, 500,
502

6. N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems, 21(5):914–947, 1999. A
preliminary summary appeared in Proceedings of POPL’96, pp.358-371. 490, 491,
502

7. N. Kobayashi, S. Saito, and E. Sumii. An implicitly-typed deadlock-free process
calculus. Technical Report TR00-01, Dept. Info. Sci., Univ. of Tokyo, January 2000.
Available at http://www.yl.is.s.u-tokyo.ac.jp/˜koba/publications.html. 491, 492,
499, 500

8. R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra of Specification.
Springer-Verlag, 1993. 491, 492, 495

9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I, II. Infor-
mation and Computation, 100:1–77, September 1992. 490

10. O. Nierstrasz. Regular types for active objects. In Object-Oriented Software Com-
position, chapter 4, pages 99–121. Prentice Hall, 1995. A preliminary version ap-
peared in Proceedings of OOPSLA’93, pp.1-15. 502

11. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-
matical Structures in Computer Science, 6(5):409–454, 1996. 490

12. B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-
calculus. To appear in Proof, Language, and Interaction: Essays in Honour of
Robin Milner, MIT Press, 2000 502

13. F. Puntigam. Coordination requirements expressed in types for active objects. In
Proceedings of ECOOP’97, LNCS 1241, pages 367–388, 1997. 502

14. J. H. Reppy. CML: A higher-order concurrent language. In Proceedings of PLDI’91,
pages 293–305, 1991. 489, 502

15. D. Sangiorgi. The name discipline of uniform receptiveness. Theoretical Computer
Science, 221(1-2), pages 457–493, 1999. 500, 502

16. E. Sumii and N. Kobayashi. A generalized deadlock-free process calculus. In Proc.
of Workshop on High-Level Concurrent Language (HLCL’98), ENTCS 16(3), pages
55–77, 1998. 490, 491, 493, 494, 499, 502

504 Naoki Kobayashi et al.

17. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. In Proceedings of PARLE’94, LNCS 817, pages 398–413, 1994. 502

18. N. Yoshida. Graph types for monadic mobile processes. In FST/TCS’16, LNCS
1180, pages 371–387, 1996. 490, 500, 502

	Introduction
	The Syntax and Operational Semantics of Processes
	Syntax and Operational Semantics of Processes
	Deadlock

	Type System
	Usages
	Types, Type Environments, and Type Judgment
	Typing Rules
	Deadlock Freedom Theorem

	Type Reconstruction
	Principal Typing
	Algorithm for Computing a Principal Typing
	Constraint Solving

	Related Work
	Conclusion
	References

