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Abstract

This article presents an alternative method of type-directed partial evaluation, which is simpler and
more efficient than previous methods. Unlike previous methods, it is straightforwardly applicable to func-
tional languages with various powerful type systems. As an extreme instance, this article mainly deals with
a dynamically-typed functional language like Scheme. The key idea is to extend primitive value destruc-
tors such as function application and pair destruction (car and cdr), so that they generate residual code
when their operands are dynamic. It unnecessitates an operation in type-directed partial evaluation called
reflection, which was the major cause of complication and inefficiency in previous methods.

We formalize our method as an extension of two-level λ-calculus, and prove it correct. Furthermore, we
show that our type-directed partial evaluator can be derived from a simple online syntax-directed partial
evaluator with higher-order abstract syntax, by the same transformation as an offline program-generator-
generator (cogen) is derived from an offline syntax-directed partial evaluator. This clarifies why type-directed
partial evaluation is faster than ordinary syntax-directed partial evaluation, and implies that we can obtain
more powerful partial evaluators by replacing the underlying syntax-directed partial evaluator with more
sophisticated ones.

1 Introduction

1.1 Background: What is Type-Directed Partial Evaluation?

Partial Evaluation is program manipulation that, given a program p and a part of its input s, generates
a specialized program ps satisfying p @ s @ d = ps @ d for the rest of the input d. (In this article, we
explicitly write @ for function application, and give it higher precedence than λ.) It is closely related to strong
normalization of a program: strong normalization of p @ s amounts to partial evaluation of p with respect to s.

For example, let p be λf. λx. f @ (f @ x) and s be λz. z in λ-calculus. Then, ps should be λx. x, which is
the strong normal form of p @ s.

Traditional syntax-directed partial evaluation performs the normalization by symbolically manipulating the
abstract syntax tree of a term, while type-directed partial evaluation [4] does it by expanding the term to a
two-level term according to the type, and reducing the expanded two-level term statically and weakly. The
expansion is called reification.

In the above example, p @ s can be typed as α → α. Since the type tells us that p @ s is a function, we
expand it to λv. p @ s @ v, which reduces to λv. v. Here, v is a fresh symbol and λ is the syntax constructor
of λ-abstraction. In Scheme [8], this procedure can be illustrated as below. Generation of the fresh symbol is
omitted for brevity.

∗A reformatted version of the article that appeared in Computer Software, vol. 17, no. 3, pp. 38–62, May 2000, Iwanami Shoten,
Japan.

†Revised on September 20, 1999. Reformatted on June 18, 2000
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tdpe(v) = R(↓τ v) (where τ is a type of v)
↓α v = v
↓σ→τ v = λx. ↓τ (v @ ↑σ x) (where x is fresh)
↑α e = e
↑σ→τ e = λx. ↑τ (e @ ↓σ x) (where x is fresh)

Figure 1: Type-Directed Partial Evaluation in Simply-Typed λ-Calculus

> (define p (lambda (f) (lambda (x) (f (f x)))))
> (define s (lambda (z) z))
> ‘(lambda (v) ,((p s) ’v))
(lambda (v) v)

When the codomain of a function is a compound type (such as function types), type-directed partial evaluation
performs reification recursively. For example, let us normalize a term p @ s of the type α → β → α, where
p = λf. λx. λy. f @ x @ y and s = λa. λb. a. Since the term has a function type, we expand it to λv. p @ s @ v.
Then, since p @ s @ v also has a function type, we again expand it to λw. p @ s @ v @ w. As a whole, we
obtain λv. λw. p @ s @ v @ w, which reduces to λv. λw. v.

> (define p (lambda (f) (lambda (x) (lambda (y) ((f x) y)))))
> (define s (lambda (a) (lambda (b) a)))
> ‘(lambda (v) (lambda (w) ,(((p s) ’v) ’w)))
(lambda (v) (lambda (w) v))

When the domain of a function is a compound type, a problem arises. For example, let us try to normalize
p @ s where p = λx. λf. f @ (1 + x) and s = 2. It can be typed as (int → α) → α. Since the term has a
function type, we want to expand it to λv. p @ s @ v. If we naively do so, however, a type error happens at
the specialization stage, because the symbol v is applied to an integer 3.

> (define p (lambda (x) (lambda (f) (f (+ 1 x)))))
> (define s 2)
> ‘(lambda (v) ,((p s) ’v))
Error: attempt to apply non-procedure v.

Danvy’s original type-directed partial evaluator solves this problem by coercing the symbol v to a value of
the type int → α by expanding it to a two-level term λa. v @ a, where the operator @ is the syntax constructor
of function application.

> ‘(lambda (v) ,((p s) (lambda (a) ‘(v ,a))))
(lambda (v) (v 3))

In general, when a function is applied to a symbol, the symbol is expanded to a value in the domain of the
function. The expansion is called reflection.

As a whole, a type-directed partial evaluator for simply-typed λ-calculus looks like Figure 1, where R, ↓ and
↑ denote static weak reduction, reification and reflection, respectively. Note that ↓ and ↑ work according to the
types, hence the name of type-directed partial evaluation.

Type-directed partial evaluation is known to be much faster than traditional syntax-directed one, because
it directly executes the source program instead of symbolically manipulating the abstract syntax tree.

1.2 Problem: Reflection Doesn’t Always Work

Reflection is difficult: Although the above method works for the pure simply-typed λ-calculus, it doesn’t
straightforwardly apply to practical programming languages such as Scheme and ML [10], because it is impossible
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to coerce a symbol into an arbitrary type. For example, how can we coerce a symbol into an integer? The more
powerful a type system becomes, the more difficult (if not impossible) the reflection becomes. For instance,
reflection over disjoint sum types and inductive types is impossible or complicated [4, 14]. An extreme case
is dynamic typing. In dynamically-typed languages such as Scheme, the domain of a function is essentially
undecidable at the specialization stage, so reflection is impossible.

Reflection is inefficient: In addition to the above problem, reflection often causes inefficiency both in
specialization of a source program and in execution of the residual program, at least without post-processing
such as η-reduction.

For example, let p = λf. λx. if true then f @ x else f @ (λy. y) and s = λz. z. Then, p @ s can be typed
as (α → α) → (α → α). When p @ s is reified, a fresh symbol v is reflected to a function λa. v @ a, to which
p @ s is applied. Then, the function λa. v @ a is returned, which is reified to an expression λw. v @ w. As a
result, p @ s is reified to a redundant expression λv. λw. v @ w.

> (define p
(lambda (f)

(lambda (x)
(if #t

(f x)
(f (lambda (y) y))))))

> (define s (lambda (z) z))
> ‘(lambda (v)

,(let* ((arg (lambda (a) ‘(v ,a)))
(res ((p s) arg)))

‘(lambda (w) ,(res ’w))))
(lambda (v) (lambda (w) (v w)))

In this case, if we hadn’t reflected v, we would have applied p @ s to v and obtained v. Thus, we could have
reified the source program p @ s to a much simpler residual program λv. v.

> ‘(lambda (v) ,((p s) ’v))
(lambda (v) v)

In general, such unnecessary reflection and lengthy result occur when the type doesn’t exactly express how
the function actually behaves. Formally, type-directed partial evaluation produces a long β-η-normal form [2],
which may contain η-redices. Such inexactness is inevitable in type systems with complete type inference (e.g.
the Hindley-Milner type system).

For the purpose of avoiding this problem, Sheard [14] proposed a technique that he calls lazy reflection.
However, his solution is unsatisfactory: it cannot normalize p @ s to λv. v in the above example, unless we
annotate the program by hand with more exact type information as below (Λ and [ ] denotes type abstraction
and type application).

Λα. λf : (∀β. β → β). λx: α.
if true then f [α] @ x

else f [∀γ. γ → γ] @ (Λγ. λy: γ. y)

In addition, reflection over disjoint sum types (such as bool) causes code duplication. For example, reifying
a function λf. λx. λy. λb. λc. f @ (f @ (f @ (if b xor c then x else y))) with respect to a type (α → α) →
α → α → bool → bool → α results in the residual code below. Lazy reflection doesn’t solve this problem either.

λf. λx. λy. λb. λc.
if b then (if c then f @ (f @ (f @ y))

else f @ (f @ (f @ x)))
else (if c then f @ (f @ (f @ x))

else f @ (f @ (f @ y)))

3



1.3 Solution: Avoid Reflection and Make Destructors Smart

In order to avoid the above problems, we don’t perform reflection at all. Instead, we conservatively extend
primitive value destructors, so that they correctly handle residual code. A similar idea has already been
proposed in previous work [5, 14], but its application was rather limited, probably because reflection was still
used. We exploit the idea much more extensively, and completely unnecessitate reflection.

For example, we extend function application from @ to @′, where e1 @′ e2 = e1 @ e2 if e1 evaluates to a
static function (e.g. λz. z), and e1 @′ e2 = e1 @′ e2 if e1 evaluates to a dynamic expression (e.g. v). Here, we
assume that we can distinguish dynamic expressions from static values during partial evaluation, as in ordinary
online partial evaluation.

How does it work? In the previous example, x was not actually used as a function, so reflection was
obviously unnecessary. However, what will happen if we try to reify, say, λg. g @′ (1 + 2)? It can be typed as
(int → α) → α, but that doesn’t matter here. Whatever type the domain is, we just apply the function to a
symbol, like λv. (λg. g @′ (1+ 2)) @′ v. It reduces to λv. v @′ 3, and then reduces to λv. v @′ 3, thanks to the
extended function application.

> (define (_@ func arg) ; implements @′

(if (dynamic? func)
‘(_@ ,func ,arg)
(func arg)))

> (define f (lambda (g) (_@ g (+ 1 2))))
> ‘(lambda (v) ,(f ’v))
(lambda (v) ( @ v 3))

We leave @′ instead of @ in the residual code for the purpose of multi-level specialization. When we have
no more dynamic input, we can safely replace @′ with @.

1.4 Comparison with Previous Methods

Applicability: Previous methods of type-directed partial evaluation were only applicable to languages with
particular static type systems, because each new kind of type required a new mechanism for reflection. For
example, reflection over disjoint sum types, polymorphic types, and inductive types required partial continua-
tion, type passing, and lazy reflection, respectively [14]. In contrast, our method is applicable to languages with
various type systems including dynamic ones, provided that (1) a static value (e.g. 3) and a dynamic expression
that evaluates to the static value (e.g. ’(_@ (lambda (x) x) 3)) can be merged into the same type, and (2)
static values and dynamic expressions can be distinguished during partial evaluation.

Efficiency: Our type-directed partial evaluator generates more efficient residual code than previous ones,
because it doesn’t perform reflection at all. It may seem another source of inefficiency at the specialization stage
that destructors must examine binding time of the operands. However, the examination was also necessary in
the previous work for primitive data (e.g. integers) and lazy reflection, so the additional cost would be small. In
addition, binding-time analysis on the source programs would help to reduce unnecessary tests in the destructors.
For example, if e1 in e1 @′ e2 is known to be static, the @′ can safely be replaced with an @.

1.5 Relationship with Syntax-Directed Partial Evaluation

Although our type-directed partial evaluator is still directed by the types of the values to reify, it also seems
like a syntax-directed partial evaluator embedded in the source language. Actually, it corresponds to an online
version of Thiemann’s cogen-based approach [16, 17] to syntax-directed partial evaluators with higher-order
abstract syntax.

This observation is significant for the following two reasons.

• It clarifies why type-directed partial evaluation is faster than traditional (i.e., not cogen-based) syntax-
directed one: the former involves less interpretive overhead such as syntax dispatch and environment
manipulation than the latter.
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t ::= x | λx. t
| t1 @′ t2 | pair(t1, t2)
| fst′(t) | snd′(t)
| x | λx. t
| t1 @′ t2 | pair(t1, t2)
| fst′(t) | snd′(t)
| ↓ t

v ::= x | λx. v
| v1 @′ v2 | pair(v1, v2)
| fst′(v) | snd′(v)
| λx. t | pair(v1, v2)

Figure 2: Terms and Values of the Object Language

• It implies that we can combine the flexibility of syntax-directed partial evaluation and the efficiency of
type-directed one, by applying the same approach to more powerful syntax-directed partial evaluators.

1.6 Contribution

The main contribution of our work in this article is (1) proposal and formalization of a novel method of online
type-directed partial evaluation, which is simpler and more powerful than previous methods, and (2) clarification
of the correspondence between type-directed partial evaluation and a cogen-based approach to syntax-directed
partial evaluation with higher-order abstract syntax, which enables incorporation of both techniques.

Our method is not so useful for Gödelization [11] as it is for partial evaluation, because it requires extension
of destructors (e.g. from @ to @′) or preprocessing of the source program (to replace, e.g., @ with @′).
Furthermore, this article does not address issues on side effects (including type errors and non-termination) in
detail, though we may incorporate existent techniques that find critical computations by program analysis and
residualize them by let insertion ([1], for example).

1.7 Overview

The rest of this article is structured as follows. Section 2 formally presents the object language and our partial
evaluator. Section 3 explains the derivation of our type-directed partial evaluator from an online syntax-
directed partial evaluator with higher-order abstract syntax. Section 4 shows the results of our experiments and
compares our method with previous methods of type-directed partial evaluation. Section 5 discusses extensions
and limitations of our method, Section 6 mentions other related work, and Section 7 concludes this article. The
appendix gives an implementation and examples in a subset of Scheme.

2 Formalization

2.1 The Object Language

Our object language is a variant of two-level λ-calculus with pairs. Its abstract syntax is defined in Figure 2.
All the terms in the first, second, and third rows are called dynamic, while all the terms in the fourth, fifth, and
sixth rows are called static. A term is called completely dynamic (resp. completely static) if all the subterms
are dynamic (resp. static). An ordinary program should be completely static. Destructors (@, fst and snd)
are annotated with ′, because they are online in the sense that they are defined both for static values and for
dynamic expressions. As usual, we do not care about the names of bound variables (both static and dynamic),
and implicitly perform α-conversion at any time.

We consider two reduction relations in the calculus: the strong reduction relation →s and the weak reduction
relation →w. The reduction rules are standard except for the destructors @′, fst′ and snd′. The weak reduction
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(λx. t) @′ v →w [v/x]t
fst′(pair(v1, v2)) →w v1

snd′(pair(v1, v2)) →w v2

v1 @′ v2 →w v1 @′ v2 (if v1 is dynamic)
fst′(v) →w fst′(v) (if v is dynamic)

snd′(v) →w snd′(v) (if v is dynamic)

Figure 3: Weak Reduction Relation of the Object Language (1): Base Cases Except for ↓

↓(λx. t) →w λy. ↓((λx. t) @′ y) (where y is fresh) · · · 2©
↓pair(v1, v2) →w pair(↓ v1, ↓ v2)
↓x →w x
↓(v1 @′ v2) →w ↓ v1 @′ ↓ v2 · · · 3©
↓ fst′(v) →w fst′(↓ v)
↓ snd′(v) →w snd′(↓ v)

Figure 4: Weak Reduction Relation of the Object Language (2): Base Cases for ↓

Cw[ ] ::= ↓[ ] | λx. [ ]
| [ ] @′ t | t @′ [ ]
| pair([ ], t) | pair(t, [ ])
| fst′([ ]) | snd′([ ])
| [ ] @′ t | t @′ [ ]
| pair([ ], t) | pair(t, [ ])
| fst′([ ]) | snd′([ ])

t1 →w t2
Cw[t1] →w Cw[t2]

· · · 1©

Figure 5: Weak Reduction Relation of the Object Language (3): Weak Reduction Context

(λx. t1) @′ t2 →s [t2/x]t1
fst′(pair(t1, t2)) →s t1

snd′(pair(t1, t2)) →s t2
t1 @′ t2 →s t1 @′ t2 (if t1 is dynamic)
fst′(t) →s fst′(t) (if t is dynamic)

snd′(t) →s snd′(t) (if t is dynamic)

Figure 6: Strong Reduction Relation of the Object Language (1): Base Cases
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Cs[ ] ::= Cw[ ] | λx. [ ]

t1 →s t2
Cs[t1] →s Cs[t2]

Figure 7: Strong Reduction Relation of the Object Language (2): Strong Reduction Context

relation →w is the smallest relation that satisfies the rules in Figure 3, Figure 4, and Figure 5, where [v/x]t
denotes the usual substitution of v for free x’s in t. The strong reduction relation →s is the smallest relation
that satisfies the rules in Figure 6 and Figure 7. For example, λx. λy. (λz. z) @′ (x @′ y) →s λx. λy. (x @′ y).
We write →∗

w (resp. →∗
s) for the reflexive transitive closure of →w (resp. →s). We also write t 6→w (resp. t 6→s)

if there exists no such t0 that t →w t0 (resp. t →s t0).
↓ is the reification operator. Basically, it operates on a static value. However, it also operates on dy-

namic terms introduced during reduction, and reifies static values embedded in dynamic terms by @′ (like
x @′ (λx. x) → x @′ (λx. x)). Alternatively, if we redefine the reduction rule for @′ as t1 @′ t2 → t1 @′ ↓ t2
when t1 is dynamic, we can simplify the reduction rules for ↓ as ↓ t → t when t is dynamic. Although this
alternative method seems simpler and more efficient, we formalize the original method for the discussion in
Section 3.

Since our object language is dynamically-typed, the reification operator is directed by dynamically examined
types instead of statically given ones. It performs case analysis on the binding-time (whether static or dynamic)
and the type of the value to reify, as ↓ in Figure 4 and reify_ in the Appendix do. The latter four lines in
Figure 4 may seem syntax-directed, but it is not essential because it can be omitted (as it is in the Appendix)
by means of the alternative method described above. This is the reason why we call our partial evaluator online
and type-directed.1

Example 2.1 Let t = p @′ s where p = λf. λx. f @′ (f @′ x) and s = λz. z. Then, strong reduction of t
yields λx. x and weak reduction of ↓ t yields λy. y as follows.

t = (λf. λx. f @′ (f @′ x)) @′ (λz. z)
→s λx. (λz. z) @′ ((λz. z) @′ x)
→s λx. (λz. z) @′ x

→s λx. x

↓ t = ↓((λf. λx. f @′ (f @′ x)) @′ (λz. z))
→w ↓(λx. (λz. z) @′ ((λz. z) @′ x))
→w λy. ↓((λx. (λz. z) @′ ((λz. z) @′ x)) @′ y)
→w λy. ↓((λz. z) @′ ((λz. z) @′ y))
→w λy. ↓((λz. z) @′ y)
→w λy. ↓ y

→w λy. y

Example 2.2 Let t = λf. f @′ (fst′(pair(f, f))). Then, strong reduction of t yields λf. f @′ f and weak
reduction of ↓ t yields λg. g @′ g as follows.

t = λf. f @′ (fst′(pair(f, f)))
→s λf. f @′ f

1In addition, type-directed partial evaluation has historically been implying not only that it is directed by types, but also that
it is based on reification. Our partial evaluator is type-directed in this sense as well.
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erase(x) = x

erase(λx. t) = λx. erase(t)
erase(t1 @′ t2) = erase(t1) @′ erase(t2)

erase(pair(t1, t2)) = pair(erase(t1), erase(t2))

erase(fst′(t)) = fst′(erase(t))
erase(snd′(t)) = snd′(erase(t))

erase(x) = x

erase(λx. t) = λx. erase(t)
erase(t1 @′ t2) = erase(t1) @′ erase(t2)

erase(pair(t1, t2)) = pair(erase(t1), erase(t2))
erase(fst′(t)) = fst′(erase(t))

erase(snd′(t)) = snd′(erase(t))

erase(↓ t) = erase(t)

Figure 8: Definition of erase(t)

↓ t = ↓(λf. f @′ (fst′(pair(f, f))))
→w λg. ↓((λf. f @′ (fst′(pair(f, f)))) @′ g)

→w λg. ↓(g @′ (fst′(pair(g, g))))
→w λg. ↓(g @′ g)

→w λg. ↓(g @′ g)

→w λg. ↓ g @′ ↓ g

→w λg. g @′ ↓ g

→w λg. g @′ g

2.2 Correctness

Below, we show that the above system is correct in the sense that, for any completely static and closed t, if ↓ t
weakly normalizes to t0 by the call-by-value reduction, then t0 is completely dynamic and erase(t0) (the term
obtained by erasing all the underlines in t0) is the strong normal form of t. It is formally stated in Proposition
2.5.

Since our object language is dynamically-typed, a source program may be potentially type-unsafe and cause
type errors during partial evaluation. For brevity, however, we assume that every source program is type-safe,
in the sense that its reduction never causes type errors (which are formally defined in Definition 2.4). It is
straightforward to prevent them by ordinary type checking, or to delay them until the execution stage by
making them dynamic with additional reduction rules like v1 @′ v2 →w v1 @′ v2 if v1 6= λx. t.

Definition 2.3 erase(t) denotes the term obtained by erasing all the underlines and ↓’s in t. It is formally
defined in Figure 8.

Definition 2.4 A term t is called type-safe if there is no such term t0 that t →∗
s t0 and t0 contains a subterm

whose form is either pair(v1, v2) @′ t, fst′(λx. t) or snd′(λx. t).
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Any term well-typed in an ordinary static type system (e.g. simply-typed λ-calculus) is type-safe.

Proposition 2.5 Let t be a completely static, closed, type-safe term. If ↓ t →∗
w tn 6→w, then tn is completely

dynamic and erase(t) →∗
s erase(tn) 6→s.

This proposition means that our partial evaluator is correct in the sense that ordinary evaluation (i.e., weak
reduction) of ↓ t coincides with partial evaluation (i.e., strong reduction) of t. Note that it does not guarantee
termination of the reification. See Subsection 5.1 for a remedy.

Example 2.6 Let t = λf. f @′ (fst′(pair(f, f))). Then, ↓ t →∗
w λg. g @′ g 6→w and erase(t) →∗

s λg. g @′ g 6→s

(cf. Example 2.2).

Proposition 2.5 is proved below as a corollary of Theorem 2.11. Those who are not interested in the proof
can skip the rest of this subsection.

Definition 2.7 A term is called reifiable if it is statically-closed (i.e., every static variable is bound by a static
λ-abstraction) and it contains no subterm (including itself) whose form is either ↓ t, λx. t, pair(t1, t2), ts @′ t,
fst′(ts) or snd′(ts) where ts is static.

Intuitively, a reifiable term is a term that can be an argument of ↓. Note that all completely static, closed
terms are reifiable.

Lemma 2.8 If t →w t0, then erase(t) →∗
s erase(t0).

Proof By induction on the derivation of t →w t0. Note that no reduction rule introduces ↓ inside ↓ or replaces
a dynamic term with a static one. 2

Lemma 2.9 If t is reifiable and t →w t0, then t0 is also reifiable.

Proof By induction on the derivation of t →w t0. 2

Lemma 2.10 If t is a reifiable, type-safe term, then ↓ t →w t0 for some t0.

Proof We prove the contraposition by induction on the structure of t. If t = t1 @′ t2 where t1 6→w and t2 6→w,
then either (1) t1 is neither a static λ-abstraction nor a dynamic value, or (2) t2 is not a value. In the case (1),
either t1 is a static pair of values and t is not type-safe, or ↓ t1 6→w and t1 is not type-safe by the induction
hypothesis. In the case (2), ↓ t2 6→w and t2 is not type-safe by the induction hypothesis. Other cases are similar
or trivial. 2

Theorem 2.11 Let t be a reifiable, type-safe term. If ↓ t →∗
w tn 6→w, then tn is completely dynamic and

erase(t) →∗
s erase(tn) 6→s.

Proof By induction on the length of the reduction sequence from ↓ t to tn.
Base case: If the length is 0, then ↓ t = tn 6→w. Therefore, t is not type-safe by Lemma 2.10.
Induction step: If the length is greater than 0, then ↓ t →w t0 →∗

w tn 6→w for some t0. We perform case
analysis on the last reduction rule in the derivation of ↓ t →w t0.

• If the rule is 1©, there exists some t1 such that ↓ t →w ↓ t1 = t0 where t →w t1. By Lemma 2.8,
erase(t) →∗

s erase(t1). By Lemma 2.9, t1 is reifiable. Since t1 is type-safe, tn is completely dynamic and
erase(t1) →∗

s erase(tn) 6→s by the induction hypothesis. Hence erase(t) →∗
s erase(tn) 6→s.
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• If the rule is 2©, the reduction sequence should have the following form, where y is fresh and ↓[y/x]t1 →∗
w

t2 6→w.

↓ t = ↓(λx. t1)
→w λy. ↓((λx. t1) @′ y)
→w λy. ↓[y/x]t1
→∗

w λy. t2

= tn

6→w

Since [y/x]t1 is reifiable and type-safe, t2 is completely dynamic and erase([y/x]t1) →∗
s erase(t2) 6→s

by the induction hypothesis. Therefore, tn is completely dynamic and erase(t) strongly normalizes to
erase(tn) as follows.

erase(t) = λx. erase(t1)
= λy. erase([y/x]t1)
→∗

s λy. erase(t2)
= erase(tn)
6→s

• If the rule is 3©, the reduction sequence should have the following form, where ↓ v1 →∗
w t1 6→w and

↓ v2 →∗
w t2 6→w.

↓ t = ↓(v1 @′ v2)
→w ↓ v1 @′ ↓ v2

→∗
w t1 @′ t2

= tn

6→w

Since v1 and v2 are reifiable and type-safe, t1 and t2 are completely dynamic, erase(v1) →∗
s erase(t1) 6→s,

and erase(v2) →∗
s erase(t2) 6→s by the induction hypothesis. Therefore, tn is completely dynamic. Fur-

thermore, since t is reifiable, v1 is a dynamic term other than a dynamic λ-abstraction, and so is t1.
Therefore, erase(t1) is neither a dynamic term nor a static λ-abstraction, so erase(t) strongly normalizes
to erase(tn) as follows.

erase(t) = erase(v1) @′ erase(v2)
→∗

s erase(t1) @′ erase(t2)
= erase(tn)
6→s

Other cases are similar or trivial. 2

3 Another View: Online Cogen-Based Approach

Although our partial evaluator doesn’t perform reflection at all, it still performs reification in a type-directed
manner. At the same time, however, it also seems similar to online syntax-directed partial evaluators, in that
primitive operators reconstruct themselves when their operands are dynamic. In fact, it can be seen as a
combination of (1) a library to interpret a program as a generating extension, derived from an online syntax-
directed partial evaluator in higher-order abstract syntax, and (2) a converter from the higher-order abstract
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syntax into the first-order abstract syntax. This approach is already well-known for offline syntax-directed
partial evaluation as a kind of so-called cogen-based approach, and found to be simpler and more efficient than
traditional self-application-based approach [16, 17]. We are going to show that it is also applicable to online
syntax-directed partial evaluation, and that the result coincides with our online type-directed partial evaluator.

3.1 Background

In this subsection, we briefly explain basic ideas of the cogen-based approach to online syntax-directed partial
evaluation.

3.1.1 Higher-order Abstract Syntax

Higher-order abstract syntax [12] is a meta-programming technique that represents binding at the object level by
binding at the meta level to make environment manipulation simple and efficient. For example, let us represent
untyped λ-terms in ML. With first-order (i.e., not higher-order) abstract syntax, the data type can be defined
as follows.

datatype lam = Var of string
| Abs of string * lam
| App of lam * lam

For example, λx. (λy. y) @ x can be represented as Abs("x", App(Abs("y", Var "y"), Var "x")). With
higher-order abstract syntax, the data type can be defined as follows.

datatype hlam = HAbs of hlam -> hlam
| HApp of hlam * hlam
| HEmbed of string

Then, the term above can be represented as HAbs(fn x => HApp(HAbs(fn y => y), x)). A converter from
the higher-order abstract syntax into the first-order abstract syntax can be written as follows.

val seq = ref 0
fun gensym () = (seq := !seq + 1;

"x" ^ Int.toString(!seq))
fun htof(HAbs f) = let val s = gensym ()

in Abs(s, (htof o f o HEmbed) s)
end

| htof(HApp(t1, t2)) = App(htof t1, htof t2)
| htof(HEmbed s) = Var s

3.1.2 Partial Evaluation in Higher-Order Abstract Syntax

In general, it is surprisingly easy to write an evaluator for terms in higher-order abstract syntax. For example,
an online syntax-directed partial evaluator for the untyped λ-terms can be written as follows.

fun normalize(HAbs f) = HAbs(fn x => normalize (f x))
| normalize(HApp(t1, t2)) = let val t1’ = normalize t1

val t2’ = normalize t2
in (case t1’

of HAbs f => f t2’
| _ => HApp(t1’, t2’))

end
| normalize(HEmbed v) = HEmbed v

However, since the codomain of this partial evaluator is the higher-order abstract syntax, the result has to be
converted into the first-order abstract syntax to be displayed. In fact, because of ML’s weak evaluation strategy,
no evaluation occurs until the conversion.

- (htof o normalize) (HAbs(fn x => HApp(HAbs(fn y => y), x)));
val it = Abs (”x1”,Var ”x1”) : lam

11



t ::= · · · | R(t) | F(t) | λ(t) | t1 @ t2 | t1 @′ t2
| pair(t1, t2) | fst(t) | fst′(t) | snd(t) | snd′(t)
| case t1 of λ(x1) ⇒ t2 else x2 ⇒ t3 | case t1 of pair(x1, x2) ⇒ t2 else x3 ⇒ t3

v ::= · · · | λ(v) | v1 @ v2 | pair(v1, v2) | fst(v) | snd(v)

Cw[ ] ::= · · · | R([ ]) | F([ ])
| λ([ ]) | [ ] @ t | t @ [ ] | [ ] @′ t | t @′ [ ]
| pair([ ], t) | pair(t, [ ]) | fst([ ]) | fst′([ ]) | snd([ ]) | snd′([ ])
| case [ ] of λ(x1) ⇒ t2 else x2 ⇒ t3 | case [ ] of pair(x1, x2) ⇒ t2 else x3 ⇒ t3

Figure 9: Extension of the Object Language (1): Syntax and Reduction Context

3.1.3 Composition of the Partial Evaluator and the Syntax Constructors

In the above example, we first constructed a λ-term by the syntax constructors and then destructed it by the
partial evaluator. This is a waste of the memory (for storing the intermediate data structure) and the time
(for traversing it by pattern matching). We can remove the overhead by composing the constructors with the
destructors [13, 15].

fun rHAbs f = HAbs(fn x => f x)
fun rHApp(t1, t2) = let val t1’ = t1

val t2’ = t2
in (case t1’

of HAbs f => f t2’
| _ => HApp(t1’, t2’)) end

We can simplify these composed constructors by η-reduction and inlining.

val rHAbs = HAbs
fun rHApp(HAbs f, t2) = f t2
| rHApp(t1, t2) = HApp(t1, t2)

This extremely simple partial evaluator works as follows.

- htof (rHAbs(fn x => rHApp(rHAbs(fn y => y), x)));
val it = Abs (”x1”,Var ”x1”) : lam

3.2 Formalization

The above partial evaluator for untyped λ-terms in the higher-order abstract syntax seems very similar to our
online type-directed partial evaluator for dynamically-typed languages. More specifically, the partial evaluator
composed with the syntax constructors seems similar to the extended value destructors in our object language,
and the converter from the higher-order abstract syntax into the first-order abstract syntax seems similar to
the reification operator in our partial evaluator.

We prove this intuition by formalizing the partial evaluator, the converter, and the syntax constructors
composed with the partial evaluator. For that purpose, we extend the syntax and the semantics of the object
language in Subsection 2.1 as shown in Figure 9, 10, 11, and 12, where symbols with double underlines denote
the syntax constructors, R denotes the partial evaluator, F denotes the converter, and ′ denotes the composition
with the partial evaluator. Cs (resp. →s) is also extended accordingly to Cw (resp. →w). λ′ and pair′ are
unnecessary because they are equivalent to λ and pair.
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R(λ(λx. t)) →w λ(λy. R((λx. t) @′ y)) (where y is fresh)
R(v1 @ v2) →w case R(v1) of λ(x) ⇒ x @′ R(v2) else y ⇒ y @ R(v2)

(where x and y are fresh)
R(pair(v1, v2)) →w pair(R(v1),R(v2))
R(fst(v)) →w case R(v) of pair(x1, x2) ⇒ x1 else y ⇒ fst(y) (where x1, x2, and y are fresh)
R(snd(v)) →w case R(v) of pair(x1, x2) ⇒ x2 else y ⇒ snd(y) (where x1, x2, and y are fresh)
R(x) →w x

case λ(v) of λ(x) ⇒ t1 else y ⇒ t2 →w [v/x]t1
case v of λ(x) ⇒ t1 else y ⇒ t2 →w [v/y]t2 (if v 6= λ(v))
case pair(v1, v2) of pair(x1, x2) ⇒ t1 else y ⇒ t2 →w [v1/x1, v2/x2]t1
case v of pair(x1, x2) ⇒ t1 else y ⇒ t2 →w [v/y]t2 (if v 6= pair(v1, v2))

Figure 10: Extension of the Object Language (2): Reduction Rules for the Partial Evaluator for Terms in the
Higher-Order Abstract Syntax

F(λ(λx. t)) →w λy. F((λx. t) @′ y) (where y is fresh)
F(v1 @ v2) →w F(v1) @′ F(v2)
F(pair(v1, v2)) →w pair(F(v1),F(v2))
F(fst(v)) →w fst′(F(v))
F(snd(v)) →w snd′(F(v))
F(x) →w x

Figure 11: Extension of the Object Language (3): Reduction Rules for the Converter from the Higher-Order
Abstract Syntax into the First-Order Abstract Syntax

λ(λx. t) @′ v →w (λx. t) @′ v
v1 @′ v2 →w v1 @ v2 (if v1 6= λ(v))

fst′(pair(v1, v2)) →w v1

fst′(v) →w fst(v) (if v 6= pair(v1, v2))
snd′(pair(v1, v2)) →w v2

snd′(v) →w snd(v) (if v 6= pair(v1, v2))

Figure 12: Extension of the Object Language (4): Reduction Rules for the Syntax Constructors Composed with
the Partial Evaluator
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hI ::= x
| x
| λ(λx. hI)
| hI

1 @ hI
2

| pair(hI
1, h

I
2)

| fst(hI)
| snd(hI)
| λ(λy. R((λx. hI) @′ y)) (where y is not free in hI)

hO ::= x
| hO

1 @ hO
2 (where hO

1 6= λt)
| pair(hO

1 , hO
2 )

| fst(hO) (where hO 6= pair(t1, t2))
| snd(hO) (where hO 6= pair(t1, t2))
| λ(λy. R((λx. hI) @′ y)) (where y is not free in hI)

Figure 13: Syntax of HOAS-Terms

x′# = x
x′# = x

λ(λx. hI)′# = λ(λx. hI ′#)
(hI

1 @ hI
2)
′# = hI

1
′# @′ hI

2
′#

pair(hI
1, h

I
2)
′# = pair(hI

1
′#

, hI
2
′#)

fst(hI)′# = fst′(hI ′#)
snd(hI)′# = snd′(hI ′#)
λ(λy. R((λx. hI) @′ y))′# = λ(λx. hI ′#)

Figure 14: Definition of hI ′#

Definition 3.1 An input HOAS-term (denoted by hI) and an output HOAS-term (denoted by hO) are terms
whose syntax is restricted as Figure 13.

Intuitively, an input (resp. output) HOAS-term is a term that can be an argument (resp. a result) of R. It
is easy to see that every output HOAS-term and every statically-closed input HOAS-term are values, and every
output HOAS-terms is an input HOAS-term.

Definition 3.2 Let hI be any input HOAS-term. hI ′# denote a term defined in Figure 14, and Erase# denote
a term defined in Figure 15.

We use this definition to show the correspondence of the reduction rules in Figure 10 to those in Figure 12
and those in Figure 3.

Proposition 3.3 Let hI be any statically-closed input HOAS-term where Erase#(hI) is type-safe. If F(R(hI)) →∗
w

t 6→w, then F(hI ′#) →∗
w t and ↓(Erase#(hI)) →∗

w t.

This proposition means that the following three computations give the same result for any closed λ-expression
in the higher-order abstract syntax.
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Erase#(x) = x

Erase#(x) = x

Erase#(λ(λx. hI)) = λx. Erase#(hI)
Erase#(hI

1 @ hI
2) = Erase#(hI

1) @′ Erase#(hI
2)

Erase#(pair(hI
1, h

I
2)) = pair(Erase#(hI

1),Erase#(hI
2))

Erase#(fst(hI)) = fst′(Erase#(hI))
Erase#(snd(hI)) = snd′(Erase#(hI))
Erase#(λ(λy. R((λx. hI) @′ y))) = λx. Erase#(hI)

Figure 15: Definition of Erase#(hI)

• Normalize the expression with an interpreter (e.g., normalize), and then convert it into the first-order
abstract syntax.

• Replace the syntax constructors (e.g., HAbs and HApp) in the expression with the syntax constructors
composed with the interpreter (e.g., rHAbs and rHApp), evaluate it, and then convert it into the first-order
abstract syntax.

• Evaluate the expression and then reify it.

Moreover, we can confirm that the second computation is more efficient than the first one and as efficient
as the third one, by closely looking at the reduction rules as follows.

• Reduction of R(hI) requires case analysis on the syntax of hI , while that of hI ′# does not. Compare
Figure 10 and Figure 12.

• The reduction steps in Figure 12 (resp. Figure 11) correspond one-to-one to those in Figure 3 (resp.
Figure 4).

See the example and the proof below for more details on their relationship.
Type-directed partial evaluation has been believed to be faster than syntax-directed one, because it directly

executes a source program instead of symbolically manipulating the abstract syntax. On the other hand, the
cogen-based approach to syntax-directed partial evaluation with higher-order abstract syntax has also been
known as another way to achieve a similar result. The above observation implies that the two techniques are
equivalent in online partial evaluation, which suggests that we can obtain more powerful partial evaluators by
replacing the underlying syntax-directed partial evaluator with more sophisticated (e.g. let-inserting) ones.

Example 3.4 Let hI = λ(λf. f @ fst(pair(f, f))). Then, F(R(hI)) →∗
w λg. g @′ g 6→w, F(hI ′#) →∗

w

λg. g @′ g, and ↓(Erase#(hI)) →∗
w λg. g @′ g as follows (cf. Example 2.2 and Example 2.6).

F(R(hI)) = F(R(λ(λf. f @ fst(pair(f, f)))))

→∗
w λg. F(R((λf. f @ fst(pair(f, f)))@′g))

→w λg. F(R(g @ fst(pair(g, g))))

→∗
w λg. F(g @ R(fst(pair(g, g))))

→∗
w λg. F(g @ g)

→∗
w λg. g @′ g

F(hI ′#) = F(λ(λf. f @′ fst′(pair(f, f))))

→w λg. F((λf. f @′ fst′(pair(f, f))) @′ g)
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x′ = x
x′ = x

λ(λx. hI)′ = λ(λx. hI ′#)
(hI

1 @ hI
2)
′ = hI

1
′ @ hI

2
′ (if hI

1
′ = v 6= λv0)

(hI
1 @ hI

2)
′ = hI

1
′ @′ hI

2
′ (otherwise)

pair(hI
1, h

I
2)
′ = pair(hI

1
′
, hI

2
′)

fst(hI)′ = fst(hI ′) (if hI ′ = v 6= pair(v1, v2))

fst(hI)′ = fst′(hI ′) (otherwise)
snd(hI)′ = snd(hI ′) (if hI ′ = v 6= pair(v1, v2))

snd(hI)′ = snd′(hI ′) (otherwise)
λ(λy. R((λx. hI) @′ y))′ = λ(λx. hI ′#)

Figure 16: Definition of hI ′

Erase(x) = x
Erase(x) = x

Erase(λ(λx. hI)) = λx. Erase#(hI)
Erase(hI

1 @ hI
2) = Erase(hI

1) @′ Erase(hI
2) (if Erase(hI

1) = v 6= λx. t)
Erase(hI

1 @ hI
2) = Erase(hI

1) @′ Erase(hI
2) (otherwise)

Erase(pair(hI
1, h

I
2)) = pair(Erase(hI

1),Erase(hI
2))

Erase(fst(hI)) = fst′(Erase(hI)) (if Erase(hI) = v 6= pair(v1, v2))
Erase(fst(hI)) = fst′(Erase(hI)) (otherwise)
Erase(snd(hI)) = snd′(Erase(hI)) (if Erase(hI) = v 6= pair(v1, v2))
Erase(snd(hI)) = snd′(Erase(hI)) (otherwise)
Erase(λ(λy. R((λx. hI) @′ y))) = λx. Erase#(hI)

Figure 17: Definition of Erase(hI)

→w λg. F(g @′ fst′(pair(g, g)))

→w λg. F(g @′ g)

→∗
w λg. g @′ g

↓(Erase#(hI)) →w ↓(λf. f @′ fst′(pair(f, f)))
→∗

w λg. g @′ g

Proposition 3.3 is proved below as a corollary of Theorem 3.7. Those who are not interested in the proof
can skip the rest of this subsection.

Definition 3.5 Let hI be any input HOAS-term. hI ′ denotes a term defined in Figure 16, and Erase(hI)
denotes a term defined in Figure 17.

We are going to use this definition to show the correspondence among the reductions of F(R(hI)), F(hI ′),
and ↓(Erase(hI)). It is easy to see that hI ′# →∗

w hI ′ and Erase#(hI) →∗
w Erase(hI) for any hI , provided that

Erase#(hI) is type-safe. In addition, hO ′ and Erase(hO) are values for any hO. (Remember that every output

16



HOAS-term is an input HOAS-term.) These properties are necessary in the following proofs, which is the reason
why we define hI ′ and Erase(hI) besides hI ′# and Erase#(hI).

Lemma 3.6 Let hI be any statically-closed input HOAS-term. If R(hI) →∗
w t 6→w, then t is a statically-closed

output HOAS-term. Furthermore, hI ′ →∗
w t′ and Erase(hI) →∗

w Erase(t).

Proof By induction on the length of the reduction sequence from R(hI) to t. If the length is greater than 0,
we perform case analysis on the last rule in the derivation of the first reduction.

• If the rule is the second one in Figure 10, the reduction sequence should begin as follows, where x and x0

are fresh.

R(hI) = R(hI
1 @ hI

2)

→w case R(hI
1)

of λ(x) ⇒ x @′ R(hI
2)

else x0 ⇒ x0 @ R(hI
2)

Since hI
1 is a statically-closed input HOAS-term, R(hI

1) weakly normalizes to a statically-closed output
HOAS-term by the induction hypothesis. We again perform case analysis on the form of the output
HOAS-term.

– If R(hI
1) →∗

w λ(λy. R((λz. hI
3) @′ y)) 6→w, then the reduction sequence should continue as follows,

where y is fresh.

→∗
w case λ(λy. R((λz. hI

3) @′ y))

of λ(x) ⇒ x @′ R(hI
2)

else x0 ⇒ x0 @ R(hI
2)

→w (λy. R((λz. hI
3) @′ y)) @′ R(hI

2)
→∗

w (λy. R((λz. hI
3) @′ y)) @′ hO

→w R((λz. hI
3) @′ hO)

→w R([hO/z]hI
3)

→∗
w t

6→w

Since hI
1 and hI

2 are statically-closed input HOAS-terms, λ(λy.R((λz. hI
3) @′ y)) and hO are statically-

closed output HOAS-terms, hI
1
′ →∗

w λ(λz. hI
3
′#), hI

2
′ →∗

w hO ′, Erase(hI
1) →∗

w λz. Erase#(hI
3),

and Erase(hI
2) →∗

w Erase(hO) by the induction hypothesis. Furthermore, since [hO/z]hI
3 is a

statically-closed input HOAS-term, t is a statically-closed output HOAS-term, [hO ′/z]hI
3
′ →∗

w t′, and
[Erase(hO)/z]Erase(hI

3) →∗
w Erase(t) by the induction hypothesis. Therefore, hI ′ and Erase(hI) are

weakly reducible to t′ and Erase(t) as follows.

hI ′ = (hI
1 @ hI

2)
′

= hI
1

′
@′ hI

2

′

→∗
w λ(λz. hI

3

′#
) @′ hO ′

→w (λz. hI
3

′#
) @′ hO ′

→w [hO ′/z]hI
3

′#

→∗
w [hO ′/z]hI

3

′

→∗
w t′
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Erase(hI) = Erase(hI
1 @ hI

2)

= Erase(hI
1) @′ Erase(hI

2)
→∗

w (λz. Erase#(hI
3)) @′ Erase(hO)

→w [Erase(hO)/z]Erase#(hI
3)

→∗
w [Erase(hO)/z]Erase(hI

3)
→∗

w Erase(t)

Other cases are similar or trivial. 2

Theorem 3.7 Let hI be any statically-closed input HOAS-term where Erase(hI) is type-safe. If F(R(hI)) →∗
w

t 6→w, then F(hI ′) →∗
w t and ↓(Erase(hI)) →∗

w t.

Proof By induction on the length of the reduction sequence from F(R(hI)) to t.
Base Case: If the length is 0, then F(R(hI)) = t 6→w. Since R(hI) 6→w, hI should be a static variable,

which contradicts with the assumption that hI is statically-closed.
Induction Step: If the length is greater than 0, then F(R(hI)) →w F(t0) →∗

w t 6→w for some t0 where
R(hI) →w t0. We perform case analysis on the last reduction rule in the derivation of R(hI) →w t0.

• If the rule is the first one in Figure 10, then the reduction sequence of F(R(hI)) should have the following
form, where y and z are fresh and F(R([z/x]hI

0)) →∗
w t1 6→w.

F(R(hI)) = F(R(λ(λx. hI
0)))

→w F(λ(λy. R((λx. hI
0) @′ y)))

→w λz. F((λy. R((λx. hI
0) @′ y)) @′ z)

→w λz. F(R((λx. hI
0) @′ z))

→w λz. F(R([z/x]hI
0))

→∗
w λz. t1

= t

Since [z/x]hI
0 is a statically-closed input HOAS-term, F([z/x]hI

0
′) →∗

w t1 6→w and ↓(Erase([z/x]hI
0)) →∗

w

t1 6→w by the induction hypothesis. Therefore, F(hI ′) and ↓(Erase(hI)) weakly reduce to t as follows.

F(hI ′) = F(λ(λx. hI
0

′#
))

→w λy. F((λx. hI
0

′#
) @′ y)

→w λy. F([y/x]hI
0

′#
)

→∗
w λy. F([y/x]hI

0

′
)

= λz. F([z/x]hI
0

′
)

→∗
w λz. t1

= t

↓(Erase(hI)) = ↓(λx. Erase#(hI
0))

→w λy. ↓((λx. Erase#(hI
0)) @′ y)

→w λy. ↓(Erase#([y/x]hI
0))

→∗
w λy. ↓(Erase([y/x]hI

0))

18



→w λz. ↓(Erase([z/x]hI
0))

→∗
w λz. t1

= t

• If the rule is the second one in Figure 10, then the reduction sequence of F(R(hI)) should begin as follows,
where x and x0 are fresh.

F(R(hI)) = F(R(hI
1 @ hI

2))

→w F(case R(hI
1)

of λ(x) ⇒ x @′ R(hI
2)

else x0 ⇒ x0 @ R(hI
2))

Because hI
1 is a statically-closed input HOAS-term, R(hI

1) weakly reduces to a statically-closed output
HOAS-term by Lemma 3.6. We again perform case analysis on the form of the output HOAS-term.

– IfR(hI
1) →∗

w λ(λy.R((λz. hI
0) @′ y)), then hI

1
′ →∗

w λ(λz. hI
0
′#) and Erase(hI

1) →∗
w λz. Erase#(hI

0) by
Lemma 3.6, and the reduction sequence of F(R(hI)) should continue as follows, whereR(hI

2) →∗
w hO.

→∗
w F(case λ(λy. R((λz. hI

0) @′ y))

of λ(x) ⇒ x @′ R(hI
2)

else x0 ⇒ x0 @ R(hI
2))

→w F((λy. R((λz. hI
0) @′ y)) @′ R(hI

2))
→∗

w F((λy. R((λz. hI
0) @′ y)) @′ hO)

→w F(R((λz. hI
0) @′ hO))

→w F(R([hO/z]hI
0))

→∗
w t

Since hI
2 is a statically-closed input HOAS-term, hO is a statically-closed output HOAS-term, hI

2
′ →∗

w

hO ′, and Erase(hI
2) →∗

w Erase(hO) by Lemma 3.6. Furthermore, since [hO/z]hI
0 is a statically-

closed input HOAS-term, F([hO ′/z]hI
0
′) →∗

w t and ↓([Erase(hO)/z]Erase(hI
0)) →∗

w t by the induction
hypothesis. Therefore, F(hI ′) and ↓(Erase(hI)) weakly reduce to t as follows.

F(hI ′) = F(hI
1

′
@′ hI

2

′
)

→∗
w F(λ(λz. hI

0

′#
) @′ hO ′)

→w F((λz. hI
0

′#
) @′ hO ′)

→w F([hO ′/z]hI
0

′#
)

→∗
w F([hO ′/z]hI

0

′
)

→∗
w t

↓(Erase(h)) = ↓(Erase(hI
1) @′ Erase(hI

2))
→∗

w ↓((λz. Erase#(hI
0)) @′ Erase(hO))

→w ↓([Erase(hO)/z]Erase#(hI
0))

→∗
w ↓([Erase(hO)/z]Erase(hI

0))
→∗

w t

Other cases are similar or trivial. 2
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Table 1: Type-Directed Partial Evaluators for Experiments

Name Description
Dan96 Danvy’s totally offline type-directed partial evaluator [4], where no destructors

are extended and reflection is performed eagerly for any types.
She97 Sheard’s partially offline and partially online type-directed partial evaluator

[14], where destructors for primitive data (such as + for integers) are extended
and reflection is performed lazily for compound types (such as function types).

Sum99 Our totally online type-directed partial evaluator, where all destructors (such
as @ for functions) are extended and reflection is never performed.

Table 2: Source Programs for Experiments

Name Description
id An identity function λx : (int + int)× (int + int). x for pairs of variants of

integers. This example supposes a term given a more special type than the
principal type because of the context, which is probable in the Hindley-Milner
type system.

power A power function for integers, with the exponent (= 10) static.
append An append function for lists of integers, with the first argument (= [2, 3, 5])

static.
SK A combination of S/K-combinators that computes 2 × 3 in Church numbers.

This is an example where a lot of polymorphic function application occurs at
the specialization stage.

format A string formatter, with the control parameter (that represents "%d plus %d
equals %s") static.

int1 An interpreter for a simple but Turing-complete imperative language, with the
source program (that computes Σn

i=1i for given n) static. An environment is
represented as a finite partial function from strings to values.

int2 Similar to int1, but an environment is represented as a pair of a list of strings
and a list of values.

4 Experiments

For the purpose of assessing the merit of avoiding reflection and the demerit of extending primitive destructors,
we implemented three type-directed partial evaluators (described in Table 1) and specialized seven source
programs (described in Table 2). We used a variant of dynamically-typed λ-calculus with pairs, variants,
integers and strings as the object language. We measured (1) the time required for specialization of the source
programs with static inputs and (2) the time required for execution of the residual programs with dynamic
inputs.

Although the object language is dynamically-typed, some static type information is necessary in Dan96 and
She97. More specifically, reification in Dan96 needs to be guided by the static types of the residual programs,
and functions in She97 need to be annotated with the static types of the arguments. We provided those types
by hand, though they may be inferred automatically.

In Dan96, we cannot reify a value whose type includes primitive types (such as int) or inductive types
(such as int list) in negative positions, because it leads to non-termination [4]. Therefore, we abstracted out
primitive operators for those types in the source programs as Danvy [4] did, so that they become dynamic. For
example, in order to partially-evaluate λL. tail(1 :: L), which is typed as int list → int list, we should
abstract the tail out like λTAIL. λL. TAIL(1 :: L), which can be typed as (α → α) → α → α. As a result,
however, we fail to normalize TAIL(1 :: L) to L. Again, we performed the transformation by hand.
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Table 3: The Time Required for Specialization of the Source Programs (in Microseconds)

id power append SK format int1 int2
Dan96 144.0 341.3 132.7 277.9 1,001.7 2,466.9 1,508.1
She97 223.9 382.0 533.7 3,164.3 730.5 2,592.0 N/A
Sum99 82.5 326.4 221.8 771.3 530.9 830.8 1,836.8

Table 4: The Time Required for Execution of the Residual Programs (in Microseconds)

id power append SK format int1 int2
(No PE) 0.54 33.57 9.48 97.05 54.76 401.85 993.05
Dan96 2.23 17.53 1.85 4.42 31.84 1,606.48 376.68
She97 1.09 17.39 1.89 4.25 30.88 1,516.27 N/A
Sum99 0.55 17.37 1.86 4.29 30.70 1,527.92 142.92

The type-directed partial evaluators and the residual programs are executed by Chez Scheme Version 6.0a
on SunOS 5.5.1 on Sun Enterprise 4000 with UltraSPARC 168 MHz processors and 1.2 GB main memory.

The results of the experiments are shown in Table 3, Table 4, and Table 5. The time is the average of
sufficiently repeated trials, excluding the overhead of an empty trial (i.e., specialization or execution of a null
program). The line of “No PE” shows the time required for execution of each source program with both the
static input and the dynamic input.

We rationalize the results as follows.

• In id, format, and int1 of Dan96 and She97, unnecessary reflection caused inefficiency both at the
specialization stage and at the execution stage.

• In append and SK in Dan96, the residual programs were simply-typed (the type of append @ [2,3,5]
was given by hand as α → unit + int × (unit + int × (unit + int × α))) and the types accu-
rately represented their behavior. In those cases, it is much more efficient to perform reflection once than
to examine destructor operands repeatedly.

• In most source programs (especially append and SK) of She97, manipulation of polymorphic types and
inductive types caused another inefficiency at the specialization stage.

• In int1 of all the three methods, the residual program was much slower than the source program because
of computation duplication. That is, an environment ρ[s 7→ ρ(s) + ρ(i)][i 7→ ρ(d) + ρ(i)] was represented
as a function:

λx. if x = "i"
then (oldenv @ "d") + (oldenv @ "i")
else if x = "s"

then (oldenv @ "s") + (oldenv @ "i")
else oldenv @ x

so (oldenv @ "d") + (oldenv @ "i") and (oldenv @ "s") + (oldenv @ "i") were repeatedly com-
puted. See Subsection 5.2 for a solution to this kind of problem.

• In int2 of Dan96, the environments had to be completely dynamic in order for the compilation of the loop
to terminate, so the environment manipulation was unnecessarily residualized like (car (cons 0 ...)).
This is not the case for She97 and Sum99, which can reify a function whose domain is an inductive type.

• In int2 of She97, specialization was impossible: in order to reify partial functions on disjoint sum
types (such as environment lookup), we need to catch runtime type errors, but Scheme provides no such
mechanism.
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Table 5: The Size of the Residual Programs as S-Expressions (in the Number of cons Cells)

id power append SK format int1 int2
(No PE) 15 66 110 413 216 449 642
Dan96 183 68 39 33 77 730 322
She97 28 56 39 33 47 255 N/A
Sum99 15 56 39 33 47 249 929

As a whole, Sum99 was always comparable or faster than Dan96 and She97 both at the specialization
stage and at the execution stage, except for Dan96 in append and SK, whose domain is a simple type. From
this fact, we expect that our method is superior to the others for realistic application programs whose input is
a sophisticated data structure, at least in dynamically-typed languages.

5 Extensions and Limitations

5.1 Recursion

Theorem 2.11 does not imply termination of the reification. In fact, reification of a recursive function with a
dynamic recursive variable may not terminate, because partial evaluation of a dynamic conditional expression
if t1 then t2 else t3 (where the condition part t1 is dynamic) requires partial evaluation of both the “then”
part t2 and the “else” part t3. In order to ease the difficulty, Danvy [5] introduced a special fixed-point operator
that doesn’t unfold the recursive call if a user-defined condition on the arguments (e.g. the first argument is
static) is false. It is straightforward to incorporate his remedy into our method.

5.2 Side Effects

Side effects that should occur at the execution stage (not at the specialization stage) can be managed by let
insertion [3]. Duplication, elimination, and reordering of code and computation can also be avoided by a similar
technique [9]. It is our future work to treat more complicated side effects such as set-car! in Scheme.

5.3 Arithmetic Reduction

It is straightforward to perform arithmetic reduction by primitive operators such as + [5]. For example, we can
implement the following reduction rules for ×′.

t×′ 0 → 0
0×′ t → 0
t×′ 1 → t
1×′ t → t

t1 ×′ t2 → t (if t1 × t2 = t and both t1 and t2 are static)
t1 ×′ t2 → t1 ×′ t2 (if t1, t2 6= 0, 1 and either t1 or t2 is dynamic)

↓(t1 ×′ t2) → ↓ t1 ×′ ↓ t2

Of course, we may adopt more sophisticated reduction rules, e.g. (t1 ×′ t2) ×′ t3 → t1 ×′ t if t1 is dynamic, t2
and t3 are static, and t2 × t3 = t.

5.4 Static Typing

Our method is applicable not only to dynamically-typed languages such as Scheme but also to statically-typed
languages such as ML. In order to merge static values of a type (such as 1) and dynamic expressions that
evaluate to a value of the type (such as x+ y), we define a data type of two-level values like datatype ’a tlv
= S of ’a | D of exp in ML. Then, we annotate (1) every value constructors (such as fn x⇒ e and e1 :: e2
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in ML) with the “static” tag and (2) every value destructor (such as function application, hd and tl in ML)
with the type of the value to reify. It is straightforward to provide those annotations automatically by ordinary
type inference.

For example, let us partially evaluate λx. (λy. y) @′ x in ML. We represent a type as a reification operator
for values of the type, as Yang [18] did. For example, we represent a type variable as an untagging function for
dynamic expressions (T). It is undefined for static values, because we never need to reify a static value whose
type is unknown, provided that the type annotation is correct.

- fun T (D e) = e
val T = fn : ’a tlv → exp

Similarly, we represent a function type whose codomain is t as a reification operator for functions of the type
(--> t). We omit the domain of the function, because it is unnecessary in our method.

- fun --> _ (D e) = e
= | --> t (S f) =
= let val x = gensym ()
= in Abs(x, reify t ((f o D o Var) x)
= end;
val −→ = fn : (’a → exp) → (’b tlv → ’a) tlv → exp

Then, the reification operator just applies the representation of a type to a value of the type.

- fun reify t v : exp = t v;
val reify = fn : (’a → exp) → ’a → exp

Function application (f @ (x, t)) can be implemented as @′ in dynamically-typed languages, except for the
binding-time tags (S and D) and the type annotation (t).

- fun (S f) @ (x, _) = f x
= | (D e) @ (x, t) = D(App(e, reify t x));
val @ = fn : (’a → ’b tlv) tlv * (’a * (’a → exp)) → ’b tlv

Getting all of these together, we can normalize λx. (λy. y) @′ x to λx. x as follows.

- reify (--> T) (S(fn x => S(fn y => y) @ (x, T)));
val it = Abs (”x1”,Var ”x1”) : exp

6 Related Work

In addition to Berger and Schwichtenberg’s theory [2], Danvy’s series of papers [3–5] and Sheard’s study [14],
the following work is closely related to ours.

• Mogensen [11] realized a Gödelizer in an extension of pure untyped λ-calculus. However, it won’t work
as a partial evaluator for realistic languages with various values, because it relies on the property that all
values are functions.

• Helsen and Thiemann [7] compared Danvy’s type-directed partial evaluator and the second author’s cogen-
based offline syntax-directed partial evaluator [16, 17], and found them similar both qualitatively and
quantitatively. We showed that the two techniques are equivalent for online partial evaluation.

• Zhe Yang2, independently of us, implemented a partial evaluator similar to ours in Scheme, though he did
neither rigorous formalization nor comparative experiments.

2Personal communication, in January and March, 1999.
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7 Conclusion

We realized an online type-directed partial evaluator for a dynamically-typed language by extending primitive
value destructors and unnecessitating reflection. We also showed the correspondence between our type-directed
partial evaluator and an online version of a cogen-based approach to the syntax-directed partial evaluator with
higher-order abstract syntax, which suggests the possibility of more powerful partial evaluators. Our future
work includes more extensive guarantee of termination and more sophisticated treatment of side effects.
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Appendix: Implementation and Examples

Below, we show an implementation of our partial evaluator for a subset of Scheme. Be aware that it doesn’t
support procedures with more than one arguments.

We assume that we have already implemented partial continuation operators (shift and reset) according
to Filinski ([6], Section 4 and Subsection 5.1) for let insertion. In fact, we don’t need them —– just one global
mutable store that holds bindings suffices —– but we use them for clarity and simplicity.

First, we define auxiliary functions for residual code as follows.

; we assume that programmers don’t use a symbol that begins with _ or ~

; we represent dynamic variables as ’~v1, ’~v2, ’~v3, . . .
(define gensym!
(let ((seq 0))

(lambda ()
(set! seq (+ 1 seq))
(string->symbol (string-append "~v" (number->string seq))))))

(define (dynamic-symbol? x)
(and (symbol? x)

(char=? #\~ (string-ref (symbol->string x) 0))))

; we represent dynamic operations as ’(_car pair), ’(_+ 1 2), ’(_@ func arg), . . .
(define (dynamic-operation? x)
(and (pair? x)

(symbol? (car x))
(char=? #\_ (string-ref (symbol->string (car x)) 0))))

(define (dynamic? x)
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(or (dynamic-symbol? x)
(dynamic-operation? x)))

; we don’t have to extend these operators

(define _cons cons)
(define _list list)

(define-syntax _let
(syntax-rules ()

((_let x ...)
(let x ...))))

(define-syntax _lambda
(syntax-rules ()

((_lambda x ...)
(lambda x ...))))

Next, we implement the reification operator.

(define (reify_ x)
(cond
((dynamic? x)
x)

((procedure? x)
(let ((var (gensym!)))

‘(_lambda (,var) ,(reset (reify_ (x var))))))
((pair? x)
‘(_cons ,(reify_ (car x)) ,(reify_ (cdr x))))

((null? x)
’(quote ()))

((symbol? x)
‘(quote ,x))

(else
x)))

; instruction for primitive procedures with dynamic effects
(define reifying #f)

(define (reify v)
(set! reifying #t)
(let ((e (reify_ v)))

(set! reifying #f)
e))

Then, we define primitive value destructors as follows.

(define (_@ proc args)
(if (dynamic? proc)

‘(_@ ,proc ,(reify_ args))
(proc args)))

(define (_apply proc args)
(if (dynamic? proc)

‘(_apply ,proc ,(reify_ args))
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(apply proc args)))

(define (_null? pair)
(if (dynamic? pair)

‘(_null? ,pair)
(null? pair)))

(define (_car pair)
(if (dynamic? pair)

‘(_car ,pair)
(car pair)))

(define (_cdr pair)
(if (dynamic? pair)

‘(_cdr ,pair)
(cdr pair)))

(define (_+ x y)
(cond
((and (number? x) (zero? x))
y)

((and (number? y) (zero? y))
x)

((or (dynamic? x) (dynamic? y))
‘(_+ ,x ,y))

(else
(+ x y))))

(define (_* x y)
(cond
((and (number? x) (= 1 x))
y)

((and (number? y) (= 1 y))
x)

((and (number? x) (zero? x))
0)

((and (number? y) (zero? y))
0)

((or (dynamic? x) (dynamic? y))
‘(_* ,x ,y))

(else
(* x y))))

(define (_positive? x)
(if (dynamic? x)

‘(_positive? ,x)
(positive? x)))

(define (_if_ test consequent_ alternate_)
(if (dynamic? test)

‘(_if ,test
,(reset (reify_ (consequent_)))
,(reset (reify_ (alternate_))))
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(if test (consequent_) (alternate_))))

(define-syntax _if
(syntax-rules ()

((_if test consequent alternate)
(_if_ test

(lambda () consequent)
(lambda () alternate)))))

(define (_fix proc)
(lambda (arg)

(if (dynamic? arg)
‘(_@ (_fix ,(reify_ proc)) ,(reify_ arg))
((proc (_fix proc)) arg))))

Last, we declare primitive procedures that have I/O effects at execution stage. In this implementation, we
don’t deal with other kinds of effects.

(define-syntax declare-primitive-effect
(syntax-rules ()
((declare-primitive-effect stub func)
(define stub

(lambda arg
(if reifying

(shift (lambda (pk)
(let ((var (gensym!)))

‘(_let ((,var (_apply stub ,(reify_ arg))))
,(reset (reify_ (pk var)))))))

(apply func arg)))))))

(declare-primitive-effect _newline newline)
(declare-primitive-effect _display display)

Below is an example session of the partial evaluator.

> (define power
(lambda (b)

(_fix
(lambda (p)

(lambda (e)
(_if (_positive? e)

(_* b (_@ p (_+ e -1)))
1))))))

> ((power 2) 5)
32
> (define power-5

(reify (lambda (b) ((power b) 5))))
> power-5
(_lambda (~v1)
(_* ~v1 (_* ~v1 (_* ~v1 (_* ~v1 ~v1)))))

> ((eval power-5) 2)
32
> (define apnd-rev

(lambda (y)
(_fix
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(lambda (a)
(lambda (x)
(_if (_null? x)

y
(cons (_car x) (_@ a (_cdr x)))))))))

> (define apnd (lambda (x) (lambda (y) ((apnd-rev y) x))))
> ((apnd (list "a" "b" "c"))

(list "d" "e"))
("a" "b" "c" "d" "e")
> (define apnd-abc

(reify (apnd (list "a" "b" "c"))))
> apnd-abc
(_lambda (~v2)
(_cons "a" (_cons "b" (_cons "c" ~v2))))

> ((eval apnd-abc) (list "d" "e"))
("a" "b" "c" "d" "e")
> (define (power-verbose b e)

(_display b)
(_display " to the power of ")
(_display e)
(_display " is ")
(_display ((power b) e))
(_display ".")
(_newline))

> (power-verbose 2 5)
2 to the power of 5 is 32.
> (define power-verbose-5 (reify (lambda (b) (power-verbose b 5))))
> power-verbose-5
(_lambda (~v3)
(_let ([~v4 (_apply _display (_cons ~v3 ’()))])
(_let ([~v5 (_apply _display (_cons " to the power of " ’()))])
(_let ([~v6 (_apply _display (_cons 5 ’()))])
(_let ([~v7 (_apply _display (_cons " is " ’()))])
(_let ([~v8 (_apply _display (_cons (_* ~v3 (_* ~v3 (_* ~v3 (_* ~v3 ~v3)))) ’()))])
(_let ([~v9 (_apply _display (_cons "." ’()))])
(_let ([~v10 (_apply _newline ’())]) ~v10))))))))

> ((eval power-verbose-5) 2)
2 to the power of 5 is 32.
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