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Abstract. This article presents a hybrid method of partial evaluation (PE), which
is exactly as precise as naive online PE and nearly as efficient as state-of-the-art
offline PE, for a statically typed call-by-value functional language.

PE is a program transformation that specializes a program with respect to a
subset of its input by reducing the program and leaving a residual program. Online
PE makes the reduction/residualization decision during specialization, while offline
PE makes it before specialization by using a static analysis called binding-time
analysis. Compared to offline PE, online PE is more precise in the sense that it
finds more redexes, but less efficient in the sense that it takes more time.

To solve this dilemma, we begin with a naive online partial evaluator, and make
it efficient without sacrificing its precision. To this end, we (1) use state (instead
of continuations) for let-insertion, (2) take a so-called cogen approach (instead of
self-application), and (3) remove unnecessary let-insertion, unnecessary tags, and
unnecessary values/expressions by using a type-based representation analysis, which
subsumes various monovariant binding-time analyses.

We implemented and compared our method and existing methods—both online
and offline—in a subset of Standard ML. Experiments showed that (1) our method
produces as fast residual programs as online PE and (2) it does so at least twice as
fast as other methods (including a cogen approach to offline PE with a polyvariant
binding-time analysis) that produce comparable residual programs.

Keywords: online partial evaluation, state-based let-insertion, cogen approach,
binding-time analysis

1. Introduction

Partial evaluation (PE) is a program transformation that specializes a
program with respect to a subset of its input, by reducing the pre-
computable (static) portions and residualizing the other (dynamic)
portions (Consel and Danvy, 1993; Jones et al., 1993). For example,
given a source program p(s, d) = (1 + s) + d and a static input s = 2,
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PE produces a residual program p2(d) = 3 + d by reducing the first
addition 1 + 2 and residualizing the second addition 3 + d. For another
example, by specializing a generic interpreter with respect to a specific
program, PE generates compiled (and usually faster) code from an
interpreted (and usually slower) program (Futamura, 1971).

According to when the decision between the reduction and the resid-
ualization is made, there exist two approaches to PE. One is offline
PE, which makes the decision before specialization without the value
of a static input, in a preprocessing phase called binding-time analy-
sis (BTA). The other is online PE, which makes the decision during
specialization with the value of a static input. Each of online PE and
offline PE has disadvantages:

− Online PE is more complex than offline PE, where the examina-
tion of binding times is factored out as a preprocessing phase.
For example, termination guarantee, speedup prediction, and in
particular self-application are more difficult in online PE than in
offline PE.

− Online PE is less efficient because it examines the binding time of
values many times during specialization, while offline PE does so
just once in the BTA. This disadvantage of online PE is even more
significant when specialization is repeated with the same binding
times (but with different values). In addition, in order to prevent
code duplication, online PE has to residualize all structural data
(such as functions and pairs) by inserting a let-binding (called let-
insertion), while offline PE let-inserts dynamic expressions only.

− Offline PE requires more modifications (binding-time improvements)
of a source program for satisfactory specialization, because it is
conservative in the sense that it treats everything as dynamic that
the BTA cannot infer as static.

In order to address these problems, we improve online PE by in-
corporating the techniques in offline PE as well as by inventing new
techniques. Our contributions in this article are as follows.

State-based let-insertion to alleviate the overhead of let-insertion in
naive online PE. Although this technique is useful for let-insertion
in various forms of PE (for instance, see Section 2.7 of Danvy,
1999), it is especially useful in online PE where let-insertion hap-
pens particularly frequently.

Cogen approach to online PE to remove the interpretive overhead
in naive online PE (and obviate self-application). Unlike a cogen
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approach to offline PE, this technique brings little speedup by
itself, but causes significant speedup in combination with the type-
based representation analysis below.

Type-based representation analysis for removing unnecessary com-
putations in naive online PE. This technique can be seen as a
kind of “partial” BTA that uses binding-time information to op-
timize the specialization process. In addition, unlike an ordinary
BTA, the analysis also helps to remove unnecessary let-insertion
by detecting expressions that are never duplicated. Thanks to this,
specialization using the analysis is more than twice as fast as the
same specialization using existing BTA’s.

The rest of this article is structured as follows. Section 2 discusses
related work. Section 3 explains naive online PE and its problems;
those who are familiar with online PE may skim through this section.
Section 4, Section 5, and Section 6 present state-based let-insertion,
the cogen approach to online PE, and the type-based representation
analysis, respectively. Section 7 enumerates extensions and limitations
of our method. Section 8 gives experimental results comparing our
method with others, including naive online PE and Thiemann’s cogen
approach to offline PE (Thiemann, 1999). Section 9 concludes with
future work.

2. Related Work

2.1. Self-Application and The Cogen Approach

In the history of PE, self-application has been a standard approach
to efficient specialization. Much work has been invested in develop-
ing techniques for successful self-application, both in online PE (Ruf,
1993; Sperber, 1996) and in offline PE (Jones et al., 1990; Jones et al.,
1993). However, self-application is difficult in essence because the more
complex the source programs become, the more complex the partial
evaluator becomes. Even in Similix (Bondorf and Danvy, 1991), which
has been a leading offline partial evaluator for a subset of Scheme,
self-application often brings little speedup and sometimes causes a slow-
down of specialization (Thiemann, 1999). In addition, self-application
causes the problem of double encoding in statically typed languages
(Launchbury, 1991; Birkedal and Welinder, 1993). We avoided these
difficulties by adopting a cogen approach (Thiemann, 1999) instead of
self-application.
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Type-directed partial evaluation (TDPE) (Danvy, 1996; Danvy, 1999)
and normalization by evaluation (Berger and Schwichtenberg, 1991) are
another cogen approach that takes the denotation (i.e., the compiled
code) of a program with its type and constructs the long βη-normal
form of the program. TDPE does not require BTA except for con-
stants. Online TDPE (Danvy, 1997) avoids this problem of constants
by partially adopting a cogen approach to online PE. Furthermore, a
variant of online TDPE coincides with a cogen approach to online PE
(Sumii and Kobayashi, 2000).

However, TDPE and its online variants incur the problem of code
duplication, while our cogen approach to online PE avoids the problem
by let-inserting a dynamic expression whenever necessary. For example,
consider the following source program in Standard ML:

fn d => let val f = fn x => x
in (f d, f, f)
end

TDPE works on the denotation of this source program and yields its
long βη-normal form, and therefore duplicates the function fn x => x
and produces the following residual program.

fn d => (d, fn x => x, fn x => x)

In contrast, our method let-inserts the function and produces the fol-
lowing residual program:

fn d => let val f = fn x => x
in (d, f, f)
end

2.2. BTA

Our type-based representation analysis can be seen as a standard mono-
variant BTA (Henglein, 1991) extended with refined annotations. Sev-
eral other BTA’s also use annotations other than static and dynamic.
Sperber’s BTA (Sperber, 1996) has an annotation called unknown,
which means “may be static and may be dynamic.” However, his BTA
rarely gives the dynamic annotation (at least in the source programs
of our experiments) and often yields the same result as Ruf’s BTA
(Ruf, 1993), that is, the standard monovariant BTA with dynamic
interpreted as unknown. Asai’s BTA (Asai, 1999) has another anno-
tation called both, which means “can be used both for reduction and
for residualization.” Our analysis subsumes all of these, as we will see
in Section 8.

Another approach to more accurate BTA is polyvariance (Consel,
1993) or polymorphism (Henglein and Mossin, 1994), which can give
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more than one annotation to each expression. It would also be possible
to make our analysis more precise in this direction.

2.3. Use Analyses

Our analysis resembles type-based useless-variable elimination (Kobayashi,
1999) extended with sum types. In fact, useless-variable elimination can
be used to remove unnecessary values and expressions in a generating
extension. However, it does not remove unnecessary let-insertion.

As far as we are aware, there have been few analyses that de-
tect never-duplicated expressions and remove unnecessary let-insertion
before specialization. Similix’s abstract occurrence counting analysis
(Section 4.6 and Section 5.8 of Bondorf, 1990) has a similar goal. There
also exist many results for inlining (e.g., Ashley, 1997), but they are
orthogonal to our analysis because they work after specialization and
never make the specialization faster.

Our analysis finds a kind of linearity of expressions (in the rough
sense that they are “used once”) in order to remove unnecessary let-
insertion. In this respect, our analysis can be regarded as a combination
of existing BTA’s and linear type systems (e.g., Turner et al., 1995).

3. Naive Online PE

3.1. Naive Online PE with Let-Insertion

A standard way to implement online PE is to write an interpreter
that takes an expression with an environment, and returns a symbolic
value. A symbolic value is a pair of a static value for reduction and
a dynamic expression for residualization. The static value is optional
because it may be absent during specialization. Note that, even if the
static value is present, the dynamic expression may still be necessary
for residualization. The dynamic expression is let-inserted, i.e., bound
to an identifier by a let-expression inserted in the residual program, in
order to avoid duplicating, reordering, or discarding code or compu-
tation. This let-insertion can be implemented by exploiting delimited
continuations (Danvy and Filinski, 1990), which can be manipulated by
using control operators (Lawall and Danvy, 1994) or writing the partial
evaluator in continuation-passing style (CPS) (Bondorf, 1992). Let us
call this approach to online PE as “naive” online PE, in the sense that
it (1) uses an interpreter, (2) keeps both an optional static value and
a dynamic expression in every symbolic value, and (3) let-inserts each
dynamic expression by manipulating delimited continuations.
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(* env → exp → symval *)
fun onpe env (Var(x)) = lookup env x

| onpe env (Abs(x, e)) =
let val y = genid ()
in (SOME(Func(fn sv => onpe (extend env x sv) e)),

slet(Abs(y, rlet(fn _ =>
Var(getid(onpe (extend env x (NONE, y)) e))))))

end
| onpe env (App(e1, e2)) =
let val arg = onpe env e2
in case onpe env e1

of (SOME(Func(vfunc)), _) => vfunc arg
| (NONE, efunc) =>

(NONE, slet(App(Var(efunc), Var(getid arg))))
end

| onpe env (Pair(e1, e2)) =
let val sv1 = onpe env e1

val sv2 = onpe env e2
in (SOME(Cons(sv1, sv2)),

slet(Pair(Var(getid sv1), Var(getid sv2))))
end

| onpe env (Fst(e)) =
(case onpe env e

of (SOME(Cons(sv1, _)), _) => sv1
| (NONE, epair) => (NONE, slet(Fst(Var(epair)))))

| onpe env (Snd(e)) =
(case onpe env e

of (SOME(Cons(_, sv2)), _) => sv2
| (NONE, epair) => (NONE, slet(Snd(Var(epair)))))

(* exp → exp *)
fun main e = pp(rlet(fn _ => Var(getid(onpe nil e))))

Figure 1. Naive online PE with let-insertion

In this article, we adopt the simply typed call-by-value λ-calculus
with effects (in the form of primitive operators such as print, which
appear as free variables of a term) as the object language. A naive
online partial evaluator for this language can be implemented as shown
in Figure 1, with the auxiliary definitions in Figure 2 and the let-
inserting operators in Figure 3. For simplicity, only variables, functions,
and pairs are considered here. Let-expressions are treated as syntax
sugar – that is, let x = e1 in e2 is defined to be (λx. e2)e1. Other
constructs such as integers and booleans will be considered in Section 7.
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type ident = string
val counter = ref 0
fun genid () = (counter := !counter + 1;

"x" ^ Int.toString (!counter))

datatype exp =
Var of ident

| Abs of ident * exp
| App of exp * exp
| Pair of exp * exp
| Fst of exp
| Snd of exp

fun Let(x, e1, e2) = App(Abs(x, e2), e1)

datatype value =
Func of symval -> symval

| Cons of symval * symval
withtype symval = value option * ident
fun getid (_, x) = x (* symval → ident *)

type env = (string * symval) list
fun lookup ((y, v) :: env) x =

if x = y then v else lookup env x
fun extend e x v = (x, v) :: e

Figure 2. Auxiliary definitions for naive online PE with let-insertion

(* exp → ident *)
fun slet e = shift (fn k => let val x = genid ()

in Let(x, e, reset (fn _ => k x))
end)

(* (unit → exp) → exp *)
val rlet = reset

Figure 3. Continuation-based let-inserting operators

For concreteness, we use Standard ML as the meta language. We also
use Filinski’s implementation (Filinski, 1994) of the control operators
shift and reset, based on state and call/cc, with the answer type
ans being the type exp. These control operators are usually used in
the forms reset (fn _ => E1) and shift (fn k => E2): the former
delimits the context and evaluates the body E1; the latter extracts the
delimited context, binds it to the argument k, and evaluates the body
E2.
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For value constructors (Abs and Pair), the partial evaluator (onpe)
returns a symbolic value containing a static value. For value destructors
(App, Fst and Snd), the partial evaluator checks whether the static
values necessary for the reduction are present or absent. If they are
present, the partial evaluator reduces the destructor and returns the re-
sult. If not, the partial evaluator residualizes the destructor and returns
a symbolic value but no static value.

Let-insertion is implemented via the let-inserting operators (rlet
and slet) in Figure 3. The former specifies a program point for let-
insertion. It is interposed at the top level and wherever evaluation is
delayed, for example at the body of λ-abstraction. The latter inserts
a let-binding at the program point specified by the last rlet. It is
interposed whenever expressions are generated, because they might be
duplicated.

Too see how the partial evaluator works, let us consider the following
examples.

− The partial evaluator reduces λx. (λy. y) x to let x4 = (λx1. let
x3 = λx2. x2 in x1) in x4, which the postprocessor (pp in main in
Figure 1) then simplifies to λx. x modulo α-conversion.1

− λf. λx. fst(pair(x, f x)) is reduced to λf. λx. let y = f x in x (with
the postprocessing mentioned above). The dynamic function ap-
plication f x is let-inserted because it might cause dynamic effects
if f is bound to a function such as λ . print “hello”. Without
let-insertion, the residual program would be λf. λx. x, which is
extensionally inequivalent to the source program in the presence
of effects.

− λx. let f = λy. y in pair(f, f x) is reduced to λx.pair(λy. y, x).
In this example, the function f is used both for reduction and for
residualization, so the corresponding symbolic value should contain
both the static value and the dynamic expression. This is the reason
why a symbolic value (symval) is defined as a pair of an optional
static value and a let-inserted dynamic expression (value option
* ident) rather than as their sum (Static of value | Dynamic
of ident).

1 This postprocessor only inlines redundant let-bindings by transforming expres-
sions of the form let x = e in x or of the form let y = v in e into the expression
e, where v is a value and y does not appear free in e. Doing so never affects the
efficiency of specialization or that of a residual program in any significant way.
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3.2. Problems

Although the partial evaluator above is sound in the sense that it
always produces a residual program extensionally equivalent to the
source program, it is inefficient because of the following overhead.

1. Manipulation of delimited continuations for let-insertion. Even in
SML/NJ, whose call/cc is quite efficient (Appel, 1992; Appel and
Shao, 1996), the let-inserting online partial evaluator is about 3–4
times slower than a non-let-inserting one. Other implementations
of delimited-continuation manipulation (e.g., writing the partial
evaluator in CPS instead of using the control operators) also incur
a similar overhead (Thiemann, 1999).

2. Interpretive overhead such as environment manipulation, syntax
dispatch, and tagging.

3. Generation of unnecessary values and expressions. The partial
evaluator generates both a static value and a dynamic expression
for every value constructor (Abs or Pair), but uses only one of them
in many cases. (It might help to generate them lazily, but doing
so would also cause another overhead such as thunk manipulation,
which necessitates another analysis such as strictness analysis for
efficient specialization.)

4. Unnecessary tags (SOME and NONE) for the optional static value in
a symbolic value. Many expressions always have a static value (re-
spectively, no static value) and always get the SOME (respectively,
NONE) tag throughout specialization.

5. Unnecessary let-insertion. The partial evaluator let-inserts many
dynamic expressions that are never duplicated and have no effect.
Existing partial evaluators such as Similix (Bondorf and Danvy,
1991) and call-by-value TDPE (Danvy, 1999) avoid this problem
to some extent, e.g., by let-inserting only “non-trivial” dynamic
expressions in function arguments, but such workarounds do not
always solve the problem and sometimes risk code duplication (e.g.,
as illustrated in Section 2.1).

Among the problems above, the third and fourth problems are spe-
cific to online PE. The other problems are common to offline PE but
more serious in online PE, where let-insertion is more frequent and
self-application is more difficult.
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4. State-Based Let-Insertion

In order to remove the overhead of delimited-continuation manipulation
(the first problem in Section 3.2), we implement let-insertion by using
state instead of continuations.

4.1. Intuition and Implementation

To begin with, let us recall how continuation-based let-insertion works.
For example, consider the offline PE of λf.λx.λy.let p = pair(fx, fy)
in f with let-insertion. The PE is equivalent to the evaluation of the
program below in a two-level λ-calculus with the let-inserting opera-
tors (slet and rlet). For readability, we omit identifier generation and
unnecessary rlet ’s.

λf.λx.λy.rlet(λ .let p = pair(slet(f @ x), slet(f @ y)) in f)

The residual program should be λf.λx.let z1 = f@x in let z2 = f@y in
f with the dynamic function applications (f @x and f @y) let-inserted.
The continuation-based let-inserting operators achieve this as below,
according to their definitions in Figure 3 and the intuitive semantics of
shift and reset (Danvy and Filinski, 1989). Again, we omit unnecessary
rlet ’s for simplicity.

λf.λx.λy.rlet(λ .

let p = pair(slet(f @ x), slet(f @ y)) in f)
→∗ λf.λx.λy.let z1 = f @ x in rlet(λ .

let p = pair(z1, slet(f @ y)) in f)
→∗ λf.λx.λy.let z1 = f @ x in let z2 = f @ y in rlet(λ .

let p = pair(z1, z2) in f)

By regarding these as “one-step” reductions of slet , one can see that
each slet appends a let-binding to the context outside the rlet , and re-
turns the identifier of the let-binding. Let us make this context explicit
by rewriting the reductions as follows.

λf.λx.λy.k(rlet(λ .let p = pair(slet(f @ x), slet(f @ y)) in f))
where k = id

→∗ λf.λx.λy.k(rlet(λ .let p = pair(z1, slet(f @ y)) in f))
where k = id ◦ (let z1 = f @ x in [ ])

→∗ λf.λx.λy.k(rlet(λ .let p = pair(z1, z2) in f))
where k = id ◦ (let z1 = f @ x in [ ]) ◦ (let z2 = f @ y in [ ])
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val empty : exp -> exp = fn e => e
val acc = ref empty

(* exp → ident *)
fun slet e =

let val x = genid ()
in (acc := (!acc o (fn body => Let(x, e, body)));

x)
end

(* (unit → exp) → exp *)
fun rlet thunk =

let val tmp = !acc
val _ = (acc := empty)
val body = thunk ()
val head = !acc
val _ = (acc := tmp)

in head body
end

Figure 4. State-based let-inserting operators

The basic idea of state-based let-insertion is to accumulate the let-
bindings in a store instead of the context. Let us name the store σ.
Roughly speaking, state-based let-inserting operators should work as
follows.

λf.λx.λy.rlet(λ .let p = pair(slet(f @ x), slet(f @ y)) in f)
→∗ λf.λx.λy. . . . (let p = pair(slet(f @ x), slet(f @ y)) in f)

where σ = id
→∗ λf.λx.λy. . . . (let p = pair(z1, slet(f @ y)) in f)

where σ = id ◦ (let z1 = f @ x in [ ])
→∗ λf.λx.λy. . . . (let p = pair(z1, z2) in f)

where σ = id ◦ (let z1 = f @ x in [ ]) ◦ (let z2 = f @ y in [ ])
→∗ λf.λx.λy.let z1 = f @ x in let z2 = f @ y in f

What should they do to achieve this? Obviously, slet should append a
let-binding to the store and return the identifier. Let us consider what
rlet should do before and after evaluating its operand.

− Before evaluating the operand, rlet should initialize the store with
an identity function. In addition, in order to preserve the previous
let-bindings, it should also save the previous store to a temporary
variable.
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− After evaluating the operand, rlet should insert the let-bindings in
the store. In addition, in order to recover the previous let-bindings,
it should also restore the previous store from the temporary vari-
able.

As a whole, the state-based let-inserting operators can be implemented
as shown in Figure 4. The variable acc refers to a function accumulating
let-bindings, and the operator slet appends another let-binding to the
function. The operator rlet saves the function to a temporary variable,
reinitializes the reference, evaluates the thunk, inserts the let-bindings,
and restores the function from the temporary variable.

Note that state-based let-insertion does not subsume continuation-
based PE (Lawall and Danvy, 1994), whose goal is not only context
propagation in let-expressions but also context duplication in condi-
tional expressions.2 However, state-based let-insertion suffices for pre-
serving effects and avoiding code duplication by inserting let-bindings.
It can straightforwardly deal with conditional expressions by interpos-
ing an rlet at every branch when the condition is dynamic, though
it cannot reduce, say, 1 + (if x then 2 else y) to if x then 3 else
1 + y when x is dynamic.

4.2. Formalization

We show the correctness of state-based let-insertion by proving its
equivalence to continuation-based let-insertion. To this end, we (1)
define a language with let-inserting operators (slet and rlet), (2) imple-
ment the language by transformations into continuation-passing style
(CPS) or state-passing style (SPS), (3) define a correspondence between
the two implementations, which is similar to logical relations, and (4)
prove their equivalence by using the correspondence.3

For brevity, we adopt the simply typed call-by-value λ-calculus with
let-inserting operators as the source language of the transformations.
(This may be an oversimplification, but we conjecture that it is possible
to extend our result to practical languages such as ML by adapting

2 It is possible as well to treat conditional expressions by using state instead of
continuations (Zhe Yang, personal communication, January 2000), but it remains
to see whether the state-based “if”-insertion is correct and efficient, because it is
more complex than state-based let-insertion and because it duplicates some static
computation.

3 Independently of us, Filinski (Section 3 of Filinski, 2001) gave another cor-
rectness proof of state-based let-insertion, based on the notion of the accumulation
monad, in the context of TDPE. Our proof is more general in that we prove the
equivalence of continuation-based and state-based let-inserting operators under any
context in the language (though Filinski’s proof could probably be generalized as
well).

onpe.tex; 27/06/2002; 15:22; p.12



13

e (expression) ::= x (variable)
| λx.e (λ-abstraction)
| e1e2 (function application)

| δ
(bj1

,...,bjn )→bj

i (e1, . . . , en) (primitive operator)
| slet(e)
| rlet(λ .e)

v (value) ::= x (variable)
| λx.e (λ-abstraction)
| δ

bj

i (constant)
τ (type) ::= bi (base type)

| τ1 → τ2 (function type)

Γ(x) = τ

Γ ` x : τ

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2

Γ ` e1 : bj1 . . . Γ ` en : bjn

Γ ` δ
(bj1

,...,bjn)→bj

i (e1, . . . , en) : bj

Γ ` e : exp
Γ ` slet(e) : ident

Γ ` e : exp
Γ ` rlet(λ .e) : exp

Figure 5. Syntax and typing rules of the source language

existing work—such as Birkedal and Harper, 1999—on logical relations
in more expressive languages.) The syntax and the typing rules of the
source language are given in Figure 5. We take exp and ident as base
types. We regard a primitive operator with no operands as a constant,
and abbreviate δ

()→bj

i () to δ
bj

i . We also abbreviate δ
(bj1

,...,bjn )→bj

i (e1, . . . , en)
to δi(e1, . . . , en) when the types are unimportant.

The semantics of the source language is defined by transformations
into CPS or SPS, as shown in Figure 6. It can be obtained with
standard CPS (respectively, SPS) transformation of the continuation-
based (respectively, state-based) let-inserting operators. For concrete-
ness, we assume left-to-right evaluation order. The target language of
the transformations is the simply typed call-by-value λ-calculus with
pairs, primitive operators, and state for identifier generation. (Let-
expressions can be defined either as a built-in construct or as syntactic
sugar. This choice does not matter to the following formalization.) Be
aware that the state for identifier generation is independent of the state
for state-based let-insertion. For clarity, we write k[e] for an applica-
tion of a continuation k to an expression e, and 〈e, σ〉 for a pair of
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x̃ : CPSVal τ̃ ` [[e]]c : CPSCompτ for x̃ : τ̃ ` e : τ

CPSCompτ = Contτ → exp

Contτ = CPSValτ → exp

CPSVal bi = bi

CPSValτ1→τ2 = CPSValτ1 → CPSCompτ2

[[x]]c = λk.k[x]
[[λx.e]]c = λk.k[λx.[[e]]c]
[[e1e2]]c = λk.[[e1]]c(λx1.[[e2]]c(λx2.x1x2k))

[[δi(e1, . . . , en)]]c = λk.[[e1]]c(λx1. . . . [[en]]c(λxn.k[δi(x1, . . . , xn)]))
[[slet(e)]]c = λk.[[e]]c(λx.let y = genid() in Let(y, x, k[y]))

[[rlet(λ .e)]]c = λk.k[[[e]]cid ]

x̃ : SPSVal τ̃ ` [[e]]s : SPSCompτ for x̃ : τ̃ ` e : τ

SPSCompτ = State → SPSValτ × State
State = exp→ exp

SPSVal bi = bi

SPSValτ1→τ2 = SPSValτ1 → SPSCompτ2

[[x]]s = λσ.〈x, σ〉
[[λx.e]]s = λσ.〈λx.[[e]]s, σ〉
[[e1e2]]s = λσ.let 〈x1, σ1〉 = [[e1]]sσ in

let 〈x2, σ2〉 = [[e2]]sσ1 in x1x2σ2

[[δi(e1, . . . , en)]]s = λσ.let 〈x1, σ1〉 = [[e1]]sσ in
. . .

let 〈xn, σn〉 = [[en]]sσn−1 in 〈δi(x1, . . . , xn), σn〉
[[slet(e)]]s = λσ.let 〈x, σ′〉 = [[e]]sσ in

let y = genid() in 〈y, σ′ ◦ (λx′.Let(y, x, x′))〉
[[rlet(λ .e)]]s = λσ.let 〈x, σ′〉 = [[e]]sid in 〈σ′x, σ〉

Figure 6. Definition of [[ ]]c and [[ ]]s
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(β) let x = v in e ≈ [v/x]e
(β-p) let 〈x, y〉 = 〈v, w〉 in e ≈ [v/x,w/y]e
(unit) let x = e in x ≈ e
(λ) (λx.e1)e2 ≈ let x = e2 in e1

(η) λx.vx ≈ v (x 6∈ free(v))
(app) e1e2 ≈ let x = e1 in let y = e2 in xy

(x 6∈ free(e2))
(prim) δi(e1, . . . , en) ≈ let x̃ = ẽ in δi(x1, . . . , xn)

(xi 6∈ free(ej) for any i < j)
(pair) 〈e1, e2〉 ≈ let x = e1 in let y = e2 in 〈x, y〉

(x, y 6∈ free(e1, e2))
(assoc) let x = (let y = e1 in e2) in e3

≈ let y = e1 in let x = e2 in e3 (x 6∈ free(e1))
(assoc-p1) let 〈x, y〉 = (let z = e1 in e2) in e3

≈ let z = e1 in let 〈x, y〉 = e2 in e3 (x, y 6∈ free(e1))
(assoc-p2) let z = (let 〈x, y〉 = e1 in e2) in e3

≈ let 〈x, y〉 = e1 in let z = e2 in e3 (z 6∈ free(e1))
(assoc-p3) let 〈x1, y1〉 = (let 〈x2, y2〉 = e1 in e2) in e3

≈ let 〈x2, y2〉 = e1 in let 〈x1, y1〉 = e2 in e3

(x1, y1 6∈ free(e1))

Figure 7. Congruence in the target language

an expression e and a state σ. Semantically, they are not different
from ordinary applications and pairs. We also use ˜ to abbreviate a
sequence – e.g., we write x̃ : τ̃ for x1 : τ1, . . . , xn : τn. As usual,
we implicitly apply α-conversion to avoid capturing free variables. We
write free(ẽ) to denote the set of free variables in the expressions ẽ.
We also write id for λz.z and e1 ◦ e2 for let f = e1 in let g = e2 in
λx.f(gx) where f 6∈ free(e2). Furthermore, we write Γ ` e : τ to denote
the standard simple typing relation of the target language.

We write ≈ for the congruence (taking effects into account) in the
target language. We assume that this congruence satisfies the rules in
Figure 7. They can be proved by encoding the target language into
Moggi’s meta language (Moggi, 1991) and using the congruence in
the meta language. By using ≈, we define a correspondence similar
to logical relations, between closed values and computations in CPS
and SPS as below. We use superscripts (such as ec, es, ek and eσ) to
distinguish meta-variables.
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Definition 4.1 ∼val
τ and ∼comp

τ are the relations defined as follows by
induction on τ .

∼val
bi

= {(ec, es) | ∅ ` ec : bi ∧ ∅ ` es : bi ∧ ec ≈ es}
∼val

τ1→τ2 = {(ec
1, e

s
1) | ec

1e
c
2 ∼comp

τ2 es
1e

s
2 for all ec

2 ∼val
τ1 es

2}
∼comp

τ = {(ec, es) | ec ≈ λk.let x̃ = ẽk in (xi ◦ k)[vc],
es ≈ λσ.let x̃ = ẽσ in 〈vs, σ ◦ xi〉,
ẽk ≈ ẽσ, vc ∼val

τ vs}

We omit τ in ∼val
τ and ∼comp

τ when it is unimportant. It is easy to see
that ∼val and ∼comp are left- and right-closed with respect to ≈.

The intuition behind ∼comp is as follows. Given a continuation or
a state, both the continuation-based and state-based implementations
first perform equivalent computations (ẽk ≈ ẽσ) including identifier
generation, and then return equivalent values (vc ∼val

τ vs) except for
the let-bindings. The continuation-based implementation prepends the
let-bindings to the continuation (xi ◦k) and thereby accumulates them
in the context outside rlet . On the other hand, the state-based imple-
mentation appends the let-bindings to the state (σ ◦ xi) and thereby
accumulates them in the store inside rlet . Here, the variable xi is one
of the variables x̃, which denotes the result of the computation ek

i or
eσ
i that yields a function containing the let-bindings.

With ∼comp , the equivalence of [[e]]c and [[e]]s can be proved as
follows.

Theorem 4.2 Let Γ ` e : τ be any well-typed expression in the source
language and z1, . . . , zn be the free variables of e. Then,

[w̃c/z̃][[e]]c ∼comp
τ [w̃s/z̃][[e]]s

for any w̃c ∼val w̃s of appropriate types.

Proof. By induction on the structure of e. See the Appendix for
details. 2

Corollary 4.3 For any ∅ ` e : exp and ∅ ` vσ : State,

[[rlet(λ .e)]]cid ≈ let 〈x, 〉 = [[rlet(λ .e)]]svσ in x

That is, a program with a top-level rlet denotes the same computation
under the continuation-based and state-based implementations.

Proof. By the theorem above. See the Appendix for details. 2
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datatype ’a hexp =
HVar of ’a

| HAbs of ’a -> ’a hexp
| HApp of ’a hexp * ’a hexp
| HPair of ’a hexp * ’a hexp
| HFst of ’a hexp
| HSnd of ’a hexp

Figure 8. Higher-order abstract syntax

5. The Cogen Approach to Online PE

The interpretive overhead of the partial evaluator (the second problem
in Section 3.2) can be removed by taking the cogen approach, that is,
using a program generator generator (cogen) in the first place instead
of generating it by self-application. The cogen can be derived from
an interpreter (Thiemann, 1999) by means of higher-order abstract
syntax (Pfenning and Elliott, 1988), deforestation (Wadler, 1990), and
untagging. The derivation is similar to Thiemann’s, although it has
never been applied to online PE, as far as we know. For the rest of this
section, we roughly sketch each step of the derivation. The correctness
proof of the derivation is omitted because it would also be similar to
Thiemann’s proof.

5.1. Higher-Order Abstract Syntax

First, we eliminate the overhead of environment manipulation by using
higher-order abstract syntax (HOAS).

HOAS is a meta-programming technique that represents binding in
the object language by binding in the meta language (Pfenning and
Elliott, 1988). HOAS of our object language can be defined as shown
in Figure 8. For example, λx. (λy. y) x can be represented as:

HAbs(fn x => HApp(HAbs(fn y => HVar(y)), HVar(x)))
: ’a hexp

instead of:
Abs("x", App(Abs("y", Var("y")), Var("x"))) : exp

Here, the type ’a hexp of expressions is parameterized over the type
’a of the values of variables. For example, in an ordinary (i.e., non-
partial) evaluator for the HOAS, ’a hexp would be instantiated with
’a being value. Similarly, in a pretty-printer for the HOAS, ’a would
be bound to string.

By using HOAS for the input, we obtain the partial evaluator in
Figure 9 from the naive online partial evaluator in Figure 1. Here, ’a in
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(* type symval = value option * ident *)

(* symval hexp → symval *)
fun onpe (HVar(x)) = x

| onpe (HAbs(f)) =
let val y = genid ()
in (SOME(Func(fn sv => onpe (f sv))),

slet(Abs(y, rlet(fn _ =>
Var(getid(onpe (f (NONE, y))))))))

end
| onpe (HApp(e1, e2)) =
let val arg = onpe e2
in case onpe e1

of (SOME(Func(vfunc)), _) => vfunc arg
| (NONE, efunc) =>

(NONE, slet(App(Var(efunc), Var(getid arg))))
end

...
(* symval hexp → exp *)
fun main e = pp(rlet(fn _ => Var(getid(onpe e))))

Figure 9. Online PE using HOAS for input (excerpt)

’a hexp is instantiated to symval. Since binding in the object language
is replaced by binding in the meta language, lookup and extend are
replaced by variables and function applications in the meta language.

It is also possible to use HOAS for the output. Doing so would sim-
plify the implementation—especially in a pure functional language—by
moving the identifier generator from the partial evaluator to the pretty-
printer. Here, however, we do not take this approach, in order to keep
the change as small as possible (and make the derivation as similar as
possible to Thiemann’s).

5.2. Deforestation

Next, we eliminate the overhead of syntax dispatch by composing the
syntax constructors with the partial evaluator. When partially evalu-
ating an expression, a user first constructs the expression by using the
syntax constructors (HAbs, HApp, etc.) and then destructs it by using
the partial evaluator (onpe). However, this is both a waste of memory
to store the intermediate data structure and a waste of time to traverse
the intermediate data structure.
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(* type symval = value option * ident *)

(* (symval → symval) → symval *)
fun abs f =

let val y = genid ()
in (SOME(Func(fn sv => f sv)),

slet(Abs(y, rlet(fn _ => Var(getid(f (NONE, y)))))))
end

(* symval * symval → symval *)
fun app((SOME(Func(vfunc)), _), arg) = vfunc arg

| app((NONE, efunc), arg) =
(NONE, slet(App(Var(efunc), Var(getid arg))))

...
(* (unit → symval) → exp *)
fun main thunk = pp(rlet(fn _ => Var(getid(thunk ()))))

Figure 10. Online PE with the syntax constructors composed (excerpt)

Thus, in order to eliminate the intermediate expression, we compose
the syntax constructors and the partial evaluator, achieving deforesta-
tion (Wadler, 1990). The result is shown in Figure 10.

Note that, when applying main, a user needs to delay the evaluation
of the argument by using a thunk, in order to interpose the rlet before
the composed syntax constructors partially evaluate themselves. (If
there were conditional expressions in the object language, one should
also use thunks to delay the partial evaluation of each branch of a
conditional expression.)

5.3. Untagging

Last, we eliminate the overhead of tagging by omitting the tags Func
and Cons.

Before the deforestation above, the tags were mandatory because
the type of the output of the partial evaluator was dependent on the
value of the input to the partial evaluator. For instance, if the input
was either Pair or Abs, the output had either a pair type or a function
type, respectively. This is no longer a problem because the previous
derivation have divided the single dependent function into several poly-
morphic combinators (Yang, 1998). Thus, as long as the source program
is well-typed in the object language (i.e., the simply typed λ-calculus),
its generating extension is also well-typed in the meta language (i.e.,
Standard ML), even without the tags.
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type ’a symval = ’a option * ident

(* (’a symval → ’b symval) →
(’a symval → ’b symval) symval *)

fun abs f =
let val y = genid ()
in (SOME(f),

slet(Abs(y, rlet(fn _ => Var(getid(f (NONE, y)))))))
end

(* (’a symval → ’b symval) symval * ’a symval → ’b symval *)
fun app((SOME(vfunc), _), arg) = vfunc arg

| app((NONE, efunc), arg) =
(NONE, slet(App(Var(efunc), Var(getid arg))))

(* ’a symval * ’b symval -> (’a symval * ’b symval) symval *)
fun pair(sv1, sv2) =

(SOME(sv1, sv2),
slet(Pair(Var(getid sv1), Var(getid sv2))))

(* (’a symval * ’b symval) symval -> ’a symval *)
fun fst(SOME(sv1, _), _) = sv1

| fst(NONE, epair) = (NONE, slet(Fst(Var(epair))))

(* (’a symval * ’b symval) symval -> ’b symval *)
fun snd(SOME(_, sv2), _) = sv2

| snd(NONE, epair) = (NONE, slet(Snd(Var(epair))))

(* (unit → ’a symval) → exp *)
fun main thunk = pp(rlet(fn _ => Var(getid(thunk ()))))

Figure 11. Combinators for online PE

The result of this untagging is the combinators in Figure 11. For
example, they work as follows.

- main(fn _ => abs(fn x => app(abs(fn y => y), x)));
val it = Abs ("x1",Var "x1") : exp

Thus, these combinators transform λx. (λy. y) x to λx. x.

6. Type-Based Representation Analysis

The last and largest overhead is caused by the “online-ness” itself
(the third, fourth, and fifth problems in Section 3.2); we remove this

onpe.tex; 27/06/2002; 15:22; p.20



21

Type Reconstruction (subsumes BTA)

Translation into ML by cogen

Source Program

Type Derivation Tree

Optimized Generating Extension

Direct Execution

Residual Program

Static Input

Figure 12. Framework of our method

overhead by optimizing the generating extension—more specifically, the
representations of symbolic values in the generating extension.

For example, consider the online partial evaluation of λx. (λy. y) x
using the combinators in Figure 11. The symbolic values for λx. (λy. y) x
and λy. y contain both a tagged static value and a let-inserted dynamic
expression and therefore have a type of the form (τ1 → τ2) option
* ident. However, the symbolic value for λx. (λy. y) x could contain
only the non-let-inserted dynamic expression and therefore have the
type unit * exp or just exp, because the static value is never used
and the dynamic expression is never duplicated (and has no effect).
Similarly, the symbolic value for λy. y could contain only the untagged
static value and therefore have a type of the form (τ1 → τ2) * unit
or just τ1 → τ2, because the static value is always present and the
dynamic expression is never used in the generating extension.

The rest of this section presents a type system for such an analysis
and an optimization as above. Sections 6.1 and 6.2 define types and
typing rules to specify what representations are valid in the sense
that they never cause code duplication or binding-time mismatch in
a generating extension. Note that there are many such representations
possible in general – for example, it is “valid” in the sense above even
to represent everything as a pair of an optional static value and a
let-inserted dynamic expression, that is, a value of type τ option *
ident. Section 6.3 gives a type reconstruction algorithm that, for a
given source program, infers the “best” (under a certain criterion)
representation out of the valid representations and constructs a type
derivation tree. Section 6.4 shows a translation from the type derivation
tree into a generating extension.

As a whole, our partial evaluator works as shown in Figure 12. Given
a source program, the cogen constructs a type derivation tree by using
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τ ::= ρ(s,d) [[τ ]] = [[τ ]]S * [[τ ]]D

ρ ::= τ1 → τ2 [[τ1 → τ2]]S = [[τ1]] → [[τ2]]
| τ1 × τ2 [[τ1 × τ2]]S = [[τ1]] * [[τ2]]
| α [[α]]S = α

s ::= 0 [[ρ(0,d)]]S = unit
| ω [[ρ(ω,d)]]S = [[ρ]]S
| > [[ρ(>,d)]]S = [[ρ]]S option

d ::= 0 [[ρ(s,0)]]D = unit
| 1 [[ρ(s,1)]]D = exp
| ω [[ρ(s,ω)]]D = ident

Figure 13. Syntax and semantics of types

the type reconstruction algorithm, and translates it into a generat-
ing extension optimized according to the types; then, the generating
extension takes a static input and produces a residual program.

6.1. Types

The syntax and the semantics of the types are given in Figure 13. An
annotated type ρ(s,d) denotes a way to represent a symbolic value of
the raw type ρ in a generating extension. The static part s indicates
whether the static value is always absent (0), always present (ω), or
optional (>) in the generating extension. The dynamic part d indicates
whether the dynamic expression is absent (0), present but not let-
inserted (1), or present and let-inserted (ω). For readability, we write
τ1 →(s,d) τ2 for (τ1 → τ2)(s,d) and τ1 ×(s,d) τ2 for (τ1 × τ2)(s,d).

In the combinators in Figure 11, every symbolic value is represented
as ρ(>,ω) (i.e., ρ option * ident) with the static value optional and
the dynamic expression present and let-inserted. As mentioned above,
however, the representation can be optimized in many ways. For in-
stance, in the previous example, the symbolic value for λy. y can be
represented as τ1 →(ω,0) τ2 (i.e., ([[τ1]] → [[τ2]]) * unit) with the static
value always present and the dynamic expression absent. (The static
value itself is a function that takes a symbolic value represented as τ1

and returns a symbolic value represented as τ2.) Section 6.2 gives a set
of typing rules that specify when such optimization is valid in the sense
that it causes no code duplication and no binding-time mismatch.
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Definition of Γ1 ; Γ2:

Γ1 ; Γ2 ⇐⇒ Γ1(x) ; Γ2(x) for all x ∈ dom(Γ1) = dom(Γ2)

Definition of τ1 ; τ2:

ρ
(s1,d1)
1 ; ρ

(s2,d2)
2 ⇐⇒ ρ1 = ρ2 ∧ s1 ;S s2 ∧ d1 ;D d2

Definition of s1 ;S s2:

s ;S s s ;S 0 s ;S > (for any s)

Definition of d1 ;D d2:

d ;D d d ;D 0 ω ;D d 1 ;D ω (for any d)

Figure 14. Coercibility of annotations

6.2. Typing Rules

In the typing rules, we use the relations and operators on the annota-
tions in Figure 14 and Figure 15. We use Γ as the meta variable for
type environments.

The relation τ1 ; τ2 means that a symbolic value represented as
τ1 can be coerced into another symbolic value represented as τ2. The
definition is straightforward, given the semantics of the types in Figure
13. The relation 1 ;D ω is defined to hold, because an expression (value
of type exp, which corresponds to 1) is coercible to an identifier (value
of type ident, which corresponds to ω) by means of let-insertion.4

The addition operation d1 + d2 is used in the typing rules for multi-
operand operations, such as function application and pair construction.
It indicates how to represent a dynamic expression represented as d1 in
one operand and represented as d2 in the other operand. The addition
1+1 is defined to be ω, because if the dynamic expression is represented
as exp in both operands, it might be duplicated and should be let-
inserted.

For example, consider the partial evaluation of pair(x, x) where x
contains some dynamic expression. Since the dynamic expression will
be residualized as exp in both operands of pair, it must be let-inserted
beforehand in order not to be duplicated, even though it occurs only
once in each element of the pair. That is, if the dynamic annotation on

4 The let-insertion can be omitted when the expression is already a variable. This
optimization can be implemented straightforwardly as fun slet’ (Var(x)) = x |

slet’ e = slet e.
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Definition of d1 + d2

d1 + d2 0 1 ω
0 0 1 ω
1 1 ω ω
ω ω ω ω

Definition of τ1 + τ2

ρ(s,d1) + ρ(s,d2) = ρ(s,d1+d2)

ρ
(s1,d1)
1 + ρ

(s2,d2)
2 = undefined (if ρ1 6= ρ2 or s1 6= s2)

Definition of Γ1 + Γ2

dom(Γ1 + Γ2) = dom(Γ1) ∪ dom(Γ2)

(Γ1 + Γ2)(x) =





Γ1(x) + Γ2(x)
(if x ∈ dom(Γ1) ∩ dom(Γ2))

Γ1(x) (if x ∈ dom(Γ1)\dom(Γ2))
Γ2(x) (if x ∈ dom(Γ2)\dom(Γ1))

Definition of (s, d) · d′

(s, d) · d′ 0 1 ω
(0, 0) 0 0 0
(0, 1) 0 1 ω
(0, ω) 0 1 ω
(ω, ) 0 ω ω
(>, ) 0 ω ω

Definition of (s, d) · τ

(s, d) · ρ(s′,d′) = ρ(s′,(s,d)·d′)

Definition of (s, d) · Γ
dom((s, d) · Γ) = dom(Γ)
((s, d) · Γ)(x) = (s, d) · (Γ(x))

Figure 15. Addition and multiplication of annotations

x is 1 in the type environments for each element of the pair, it should
be 1 + 1 = ω in the type environment for the whole pair.

The multiplication operation (s, d) · d′ is used in the typing rule for
functions. It is explained later in detail. Note that it is a single operator
taking three operands s, d and d′.
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Γ(x) = τ

Γ ` x : τ
(Var)

Γ ; (s, d) · Γ0 (1)
d 6= 0 =⇒ s1 6= ω (2)

Γ0, x : ρ
(s1,d1)
1 ` t : τ2

Γ ` λx. t : ρ
(s1,d1)
1 →(s,d) τ2

(Abs)

s 6= ω =⇒ s2 6= ω (3)
s 6= ω =⇒ d 6= 0 ∧ d1 6= 0 (4)

Γ ; Γ1 + Γ2 ρ
(s1,d1)
1 ; τ1 τ2 ; ρ

(s2,d2)
2

Γ1 ` t1 : τ1 →(s,d) τ2 Γ2 ` t2 : ρ
(s1,d1)
1

Γ ` t1 t2 : ρ
(s2,d2)
2

(App)

Γ ; Γ1 + Γ2 Γ1 ` t1 : τ1 Γ2 ` t2 : τ2

Γ ` pair(t1, t2) : τ1 ×(s,d) τ2
(Pair)

s 6= ω =⇒ s1 6= ω (5)
s 6= ω ∧ d1 6= 0 =⇒ d 6= 0 (6)

Γ ` t : τ1 ×(s,d) τ2 τ1 ; ρ
(s1,d1)
1

Γ ` fst(t) : ρ
(s1,d1)
1

(Fst)

s 6= ω =⇒ s2 6= ω (5)
s 6= ω ∧ d2 6= 0 =⇒ d 6= 0 (6)

Γ ` t : τ1 ×(s,d) τ2 τ2 ; ρ
(s2,d2)
2

Γ ` snd(t) : ρ
(s2,d2)
2

(Snd)

Figure 16. Typing rules

The typing rules are given in Figure 16. Since they are syntax-
directed, every expression in a source program is elaborated (by the
type reconstruction algorithm in Section 6.3) into an instance of the
typing rules, which is translated (by the generating-extension genera-
tion algorithm in Section 6.4) into a combinator optimized according
to the types. The typing rules are defined so that the generating ex-
tension causes no code duplication and no binding-time mismatch (i.e.,
type error in the generating extension). They are similar to the typing
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rules of the simply typed λ-calculus, except for the constraints on the
annotations. Their meanings are as follows.

(1) This constraint describes how the dynamic expression bound to a
free variable of a function should be represented (Γ). The repre-
sentation depends on how the dynamic expression is used when
the function body is partially evaluated (Γ0) and how the func-
tion itself is used (s, d). This relationship is defined by the three-
operand operator (s, d)·Γ0 in Figure 15 on the basis of the following
observations.

− If the static value of the function itself might be present (s = ω
or >), then it might be applied many times and the function
body might also be partially evaluated many times.5 There-
fore, if the dynamic expression bound to a free variable of the
function might be used when the function body is partially
evaluated (d′ = 1 or ω), then the dynamic expression should
be let-inserted because it might be duplicated. (Consider, for
example, let f = λx. y in pair(f 1, f 2) where y is dynamic.)
Thus, (s, d) · d′ is defined to be ω when s = ω or > and d′ = 1
or ω.

− If the static value of the function is unused (s = 0) and a
dynamic expression for the function is required (d = 1 or ω),
then the function body is partially evaluated just once when
the function is residualized, regardless of whether it is let-
inserted or not. Thus, (s, d) · d′ is defined to be d′ when s = 0
and d = 1 or ω.

− If the dynamic expression bound to a free variable of the
function is unused (d′ = 0) when the function body is partially
evaluated, then the dynamic expression can be omitted. This
is also the case if the function itself is unused (s = d = 0).
Thus, (s, d) · d′ is defined to be 0 when d′ = 0 or s = d = 0.

(2) When the function is residualized (d 6= 0), the argument is bound
to a fresh identifier with no static value (s1 6= ω). Recall that, in
the definition of the combinator abs in Figure 11, the argument is
bound to a fresh identifier with no static value (f (NONE, y) in
the fourth line) in order to residualize the function (Abs(y,. . .) in
the same line).

5 It would also be possible to distinguish the case where the static value of a
function is applied only once, by extending the analysis with such annotations as
“s = 1.” We leave this extension for future work.
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(3) If the static value of the function might be absent (s 6= ω), then the
static value of the result might also be absent (s2 6= ω). Recall that,
in the definition of the combinator app, if the static value of the
function is absent (NONE in the second line), then the static value
of the result is also absent (NONE in the third line).

(4) If the static value of the function is absent, then the dynamic
function application should be let-inserted regardless of how the
result is used, because the function application may cause dynamic
effects (Hatcliff and Danvy, 1996; Lawall and Thiemann, 1997).
Thus, whenever the static value of the function might be absent
(s 6= ω), the dynamic expressions of the operands should be present
(d 6= 0 ∧ d1 6= 0) in order to residualize the function application.6

Recall that, in the definition of app, if the static value of the func-
tion is absent (NONE in the second line), then the dynamic function
application is let-inserted (slet(App(. . .,. . .)) in the third line)
and the dynamic expressions of the operands should be present
(efunc and getid arg in the same line).

(5) If the static value of the pair might be absent (s 6= ω), then the
static value of the result might also be absent (s1 6= ω and s2 6= ω).
Recall that, in the definitions of fst and snd, if the static value
of the pair is absent (the first NONE in the second lines), then the
static value of the result is also absent (the second NONE in the same
lines).

(6) If the static value of the pair might be absent (s 6= ω), and if the
dynamic expression of the result should be present (d1 6= 0 and
d2 6= 0), then the dynamic expression of the operand should also
be present (d 6= 0). Again, recall that, in the definitions of fst and
snd, if the static value of the pair is absent (the first NONE in the
second lines), then the dynamic expression of the operand should be
present (epair in the same lines) in order to generate the dynamic
expression of the result (Fst(. . .) and Snd(. . .) in the same lines).

The other constraints are straightforward, given the meanings of ;

and +. It may seem somewhat surprising that the rule (Pair) has no
constraint at all on the annotations s and d, but this is no problem
because all the necessary constraints are imposed where the pair is
used, that is, in the rules (Fst) and (Snd) (and at the top level, where
all the dynamic annotations are required to be non-0).

6 If the function application is known to be effect-free, e.g., by means of an
effect analysis (Talpin and Jouvelot, 1994), then this constraint can be weakened to
s 6= ω ∧ d2 6= 0 =⇒ d 6= 0 ∧ d1 6= 0.
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6.3. Type Reconstruction

The typing rules above only specifies a set of possible, valid repre-
sentations of the symbolic values in a generating extension. Of these
representations, however, we want to infer the “best” representation.
This section gives a type reconstruction algorithm to infer such a rep-
resentation on the basis of the following criteria:

− Provide as many useful (i.e., might be used for reduction) static
values as possible. On the other hand, remove as many useless
(i.e., never used for reduction) static values as possible.

− Remove as many useless tags (i.e., SOME on always present static
values and NONE on always absent static values) as possible.

− Remove as many dynamic expressions and let-insertions as possi-
ble.

Given a source program, the type reconstruction algorithm con-
structs the “frame” of the type derivation tree in a standard way
(similar to type inference in the simply typed λ-calculus), while as-
signing an annotation variable to every annotation and generating
constraints for the annotation variables (in the same way as standard
type-based analyses). Then, the algorithm adds d 6= 0 to the constraints
for every d in the type of the whole program, just as the standard
BTA requires the whole program to be dynamic. The constraints thus
generated can straightforwardly be simplified into a conjunction (logical
“and”) of constraints of the following forms.

d 6= 0
d 6= 0 =⇒ s 6= ω

s1 6= ω =⇒ s2 6= ω
s 6= ω =⇒ d 6= 0

s 6= ω ∧ d1 6= 0 =⇒ d2 6= 0

s1 ;S s2

d1 ;D d2

d1 ;D d2 + d3

d1 ;D (s, d2) · d3

Although the constraints may seem somewhat complex, the con-
straint solving algorithm is not so complex. It starts by assigning >
to all of the static annotation variables and ω to all of the dynamic
annotation variables, 7 and refines the annotations by the iterations
below. Intuitively, Step 1a removes useless Some tags on static values,
while Step 2a removes useless None tags and useless static values. In
addition, both Step 1b and Step 2b remove unnecessary let-insertion
and dynamic expressions.

7 Actually, the algorithm may start with all dynamic annotation variables as-
signed 1 rather than ω, because this also satisfies all the constraints. (Let-insertion
occurs in the coercion from 1 to 1 + 1 = ω by ;D.)
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Step 1a For each s = >, assign ω to s if doing so does not contradict
the constraints.

Step 1b For each d = ω (respectively, d = 1), assign 1 (respectively,
0) to d if doing so does not contradict the constraints. Go back to
Step 1a until the annotations reach a fixed point, i.e., no further
changes are possible.

Step 2a For each s 6= 0, assign 0 to s if either Absent(s) or Unused(s),
where the predicates Absent and Unused on static annotation
variables are defined below. Repeat this until reaching a fixed
point.

Absent(s) ⇐⇒ s = > and there is no constraint of the form
ω ;S s or > ;S s.
Intuitively, Absent(s) asserts that the static value is always
absent during specialization, by checking (the lack of) con-
straints implying its presence. If this predicate holds, the None
tag is found useless (and therefore s is assigned 0).

Unused(s) ⇐⇒ there is no constraint of the form s ;S ω, s ;S

>, or of the form s 6= ω =⇒ s′ 6= ω.
Intuitively, Unused(s) asserts that the static value is never
used for reduction during specialization, by checking (the lack
of) constraints implying such use, in particular, (3) and (5)
in the typing rules. If this predicate holds, the static value is
found useless (and therefore s is assigned 0).
Note that assigning 0 to such an s never contradicts any
constraints, in particular, constraints of the form s 6= ω =⇒
d 6= 0 or of the form s 6= ω ∧ d1 6= 0 =⇒ d2 6= 0. They always
appear with a constraint of the form s 6= ω =⇒ s′ 6= ω in the
typing rules, which prevents assigning 0 to such an s in the
first place.

Step 2b For each d = ω (respectively, d = 1), assign 1 (resp. 0) to d
if doing so does not contradict the constraints. Repeat this until
reaching a fixed point.

The algorithm has two iterations on static annotations (Step 1a and
Step 2a) because we have two conflicting demands on them: one is
to provide as many (useful) static values as possible, and the other is
to remove as many (useless) static values as possible. We satisfy the
former, more important demand in the first iteration (Step 1a), and
the latter, less important demand in the second iteration (Step 2a), as
Asai did in his BTA (Asai, 1999).
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All the steps of the algorithm monotonically decrease the annota-
tions under the orderings > ÂS ω ÂS 0 and ω ÂD 1 ÂD 0. Since
there are only three possible values for each annotation variable, the
decrease terminates within a linear number of iterations with respect
to the number of the annotation variables. Furthermore, the decrease
is locally confluent. Therefore, it is strongly normalizing, i.e., the result
of the algorithm exists uniquely.

However, note that the algorithm does not give the least solution
with respect to the orderings above, because we do not want to remove
useful static values. For example, consider the partial evaluation of
λx. let f = λy. y in pair(f, f x). It is valid not to provide the static
value of f , but we want to provide it because doing so enables more
reduction.

Note also that the decrease of d in Step 1b enables further decrease
of s in Step 1a through constraints of the form d 6= 0 =⇒ s 6= ω,
so those steps are interleaved with each other. On the other hand, the
decrease of d in Step 2b does not enable any decrease of s in Step 2a
(which involves no d at all), so Step 2b is separated from Step 2a.

In the worst cases, the algorithm can take O(n6) time with respect
to the size of the source program for the following reasons. Let M be
the number of the constraint variables and N be the number of the
constraints. Both M and N can be O(n2), because the size of the type
derivation tree can be O(n) and because each instance of the typing
rules can generate O(n) constraint variables and constraints. On the
other hand, the number of the iterations can be O(M), and each step
of the iterations can take O(MN) time, because the step must check
O(M) constraint variables against O(N) constraints. Therefore, the
algorithm can take O(M)×O(MN) = O(n6) time in the worst case.

However, this estimate is very rough and can be refined in many
ways. For example, if for each constraint variable, the number of the
constraints involving the constraint variable can be bounded by a con-
stant, then each step of the iterations takes only O(M) time and
therefore the time complexity of the algorithm can be bounded by
O(M) × O(M) = O(n4). Similarly, if the number of the free variables
at each point of a source program can be bounded by a constant, then
M and N can be bounded by O(n) and therefore the time complexity
of the algorithm can be bounded by O(n3). (For the same reasons, the
time complexity can be bounded by O(n2) if both of these are the case.)

In practice, even if the cost of the analysis turns out to be a problem,
the algorithm can be interrupted at any time because all the constraints
are satisfied throughout the iterations. Although the accuracy of the
analysis affects the efficiency of a generating extension, it does not
affect the efficiency of the residual program.
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[[
Γ ` x : τ

]] = x

[[

. . .

Γ0, x : ρ
(s1,d1)
1 ` t : ρ

(s2,d2)
2

Γ ` λx. t : ρ
(s1,d1)
1 →(s,d) ρ

(s2,d2)
2

]] =

let val f = fn x =>
Γ
↓
Γ0

[[
. . .

Γ0, x : ρ
(s1,d1)
1 ` t : ρ

(s2,d2)
2

]]

in
(ω,1)

↓
(s,d)

(f, let z = genid ()

in Abs(z, ↑
d2

f(
(0,ω)

↓
(s1,d1)

((), z)))

end)

end

[[

. . .

Γ1 ` t1 : ρ
(s1,d1)
1

. . .

Γ2 ` t2 : ρ
(s2,d2)
2

Γ ` pair(t1, t2) : ρ
(s1,d1)
1 ×(s,d) ρ

(s2,d2)
2

]] =

let val p = (
Γ
↓
Γ1

[[
. . .

Γ1 ` t1 : ρ
(s1,d1)
1

]],
Γ
↓
Γ2

[[
. . .

Γ2 ` t2 : ρ
(s2,d2)
2

]])

in
(ω,1)

↓
(s,d)

(p, Pair(↑
d1

#1(p), ↑
d2

#2(p)))

end

Figure 17. Translation of type derivation tree to generating extension in ML (for
variables, functions, and pairs)

6.4. Generation of Generating Extension

As mentioned above, the type derivation tree is translated into a gen-
erating extension in ML. The translation rules are given in Figure 17,
Figure 18, and Figure 19 using the coercion operators in Figure 20. The
rules for snd are omitted because they are similar to the rules for fst.

The translation generates a generating extension optimized accord-
ing to the annotations, omitting unnecessary code such as unused ex-
pressions, unused values, unnecessary tags, and unnecessary let-insertion.
It translates each code fragment of annotated type τ in the type deriva-
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[[

. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(0,d) ρ

(s2,d2)
2

. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

Γ ` t1 t2 : ρ
(s′2,d′2)
2

]] =

(0,ω)

↓
(s′2,d′2)

((), slet(App(↑
d
(

Γ
↓
Γ1

[[
. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(0,d) ρ

(s2,d2)
2

]]),

↑
d′1
(

Γ
↓
Γ2

[[
. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

]]))))

[[

. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(ω,d) ρ

(s2,d2)
2

. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

Γ ` t1 t2 : ρ
(s′2,d′2)
2

]] =

(s2,d2)

↓
(s′2,d′2)

(#1(
Γ
↓
Γ1

[[
. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(ω,d) ρ

(s2,d2)
2

]])

(
(s′1,d′1)

↓
(s1,d1)

(
Γ
↓
Γ2

[[
. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

]])))

[[

. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(>,d) ρ

(s2,d2)
2

. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

Γ ` t1 t2 : ρ
(s′2,d′2)
2

]] =

let val x =
Γ
↓
Γ2

[[
. . .

Γ2 ` t2 : ρ
(s′1,d′1)
1

]]

in case
Γ
↓
Γ1

[[
. . .

Γ1 ` t1 : ρ
(s1,d1)
1 →(>,d) ρ

(s2,d2)
2

]]

of (SOME(f), ) =>
(s2,d2)

↓
(s′2,d′2)

f(
(s′1,d′1)

↓
(s1,d1)

x)

| f =>
(0,ω)

↓
(s′2,d′2)

((), slet(App(↑
d
f, ↑

d′1
x)))

end

Figure 18. Translation of type derivation tree to generating extension in ML (for
function applications)
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[[

. . .

Γ ` t : τ1 ×(0,d) τ2

Γ ` fst(t) : ρ
(s1,d1)
1

]] =
(0,1)

↓
(s1,d1)

((), Fst(↑
d
[[

. . .

Γ ` t : τ1 ×(0,d) τ2
]]))

[[

. . .

Γ ` t : ρ
(s′1,d′1)
1 ×(ω,d) τ2

Γ ` fst(t) : ρ
(s1,d1)
1

]] =
(s′1,d′1)

↓
(s1,d1)

#1(#1[[
. . .

Γ ` t : ρ
(s′1,d′1)
1 ×(ω,d) τ2

]])

[[

. . .

Γ ` t : ρ
(s′1,d′1)
1 ×(>,d) τ2

Γ ` fst(t) : ρ
(s1,d1)
1

]] = case [[
. . .

Γ ` t : ρ
(s′1,d′1)
1 ×(>,d) τ2

]]

of (SOME(p), ) =>
(s′1,d′1)

↓
(s1,d1)

#1(p)

| p =>
(0,1)

↓
(s1,d1)

((), Fst(↑
d′1
p))

Figure 19. Translation of type derivation tree to generating extension in ML (for
pair projections)

tion tree to the corresponding code fragment of ML type [[τ ]] (cf. Figure
13) in the generating extension.

The coercibility relation ; in the typing rules is translated into the
corresponding coercion code in the generating extension. This coercion
code is denoted by ↓, defined as in Figure 20. The other coercion code,
denoted by ↑, extracts a dynamic expression from a symbolic value.
When the symbolic value contains no dynamic expression, the code
gives the dummy dynamic expression Unit.

To see how the translation works, let us look at the three translation
rules for function applications in Figure 18. There is one case for each
possible value of the static annotation on the function, i.e., whether
the static value of the function is present or absent. If the annotation
is 0, the function application is residualized as a dynamic expression.
The dynamic function application is let-inserted (regardless of the an-
notation on the result) because it might cause dynamic effects. If the
annotation is ω, the function application is reduced statically. If the
annotation is >, the tag on the static value of the function is examined,
and either of those two actions is taken.
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(s1,d1)

↓
(s2,d2)

(M1, M2) = (
s1↓
s2

M1,
d1↓
d2

M2)

s
↓
0
M1 = ()

0
↓
>

M1 = NONE

ω
↓
>

M1 = SOME(M1)

s
↓
s
M1 = M1 (if s 6= 0)

d
↓
0
M2 = ()

ω
↓
1
M2 = Var(M2)

1
↓
ω

M2 = slet M2

d
↓
d
M2 = M2 (if d 6= 0)

Γ1↓
Γ2

M = (let x1 =
(s1,d1)

↓
(s′1,d′1)

x1 in . . . let xn =
(sn,dn)

↓
(s′n,d′n)

xn in M)

where Γ1(xi) = ρ
(si,di)
i and Γ2(xi) = ρ

(s′i,d
′
i)

i for each xi ∈ dom(Γ2)

↑
0
M = Unit ↑

1
M = #2(M) ↑

ω
M = Var(#2(M))

Figure 20. Coercion operators for generation of generating extension

As an example of the translation, consider the source program λx.
(λy. y) x. The analysis infers the annotation (ω, 0) for the function λy. y
and (0, 1) for λx. (λy. y) x. Thus, the cogen generates the following
generating extension.

- let val f = fn x => (#1 (fn y => y, ())) x
in ((), let val z = genid ()

in Abs(z, #2 (f ((), Var(z))))
end)

end;
val it = ((),Abs ("x1",Var "x1")) : unit * exp

This generating extension can be optimized as below by eliminating
() in the symbolic values. Since many compilers would achieve similar
optimization by unboxing the pairs, we do not go into the details.

- let val f = fn x => (fn y => y) x
in let val z = genid ()

in Abs(z, f (Var(z)))
end
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end;
val it = Abs ("x1",Var "x1") : exp

This optimized generating extension yields the residual program λx. x
(modulo α-conversion).

In general, we expect the following three properties for a generating
extension obtained by the translation above.

− It is well-typed in ML and “never goes wrong,” provided that the
source program is well-typed in the simply typed λ-calculus.

− It does not duplicate (i.e., leave in the residual program more than
once) any dynamic expression that it generates.

− It yields a residual program extensionally equivalent to the source
program.

A formal proof of these properties is beyond the scope of this article.

7. Extensions and Limitations

7.1. Primitive Values and Primitive Operators

It is straightforward to incorporate primitive values (such as integers)
into our method. Since a primitive value can be lifted for free, the
corresponding dynamic expression is unnecessary whenever its static
value is present. Therefore, when ρ is a primitive type, the translation
in Figure 13 can be defined as

[[ρ(0,d)]] = [[ρ(0,d)]]D
[[ρ(ω,d)]] = ρ

[[ρ(>,d)]] = (ρ, [[ρ(0,d)]]D) two level value

where
datatype (’v, ’e) two level value =

Static of ’v
| Dynamic of ’e

The coercion operators in Figure 20 can be defined accordingly. The
translation of primitive operators (i.e., operators on primitive values) is
also simplified accordingly – for example, the addition x+y in a source
program is translated by the cogen into just x + y in the generating
extension, if the static values of x and y are always present.
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7.2. Sum Types and Recursive Types

It is also straightforward to extend our analysis with sum types such
as bool and recursive types such as int list. The type and type
environment of a conditional expression can be approximated by the
upper bound (resp. sum) of all the branches if the condition has a static
value (resp. no static value). Recursive types come for free. They can
naturally be introduced by the occur-check in the standard unification-
based type reconstruction algorithm. For example, unifying the type
variable α with the type α → α yields the recursive type µα. α → α.
(Thus, our approach is equi -recursive rather than iso-recursive.)

7.3. Recursion and Non-Termination

Recursion is problematic both in online PE and in offline PE, because
it may cause specialization to diverge. In naive online PE, unnecessary
residualization makes the problem even harder. For example, consider
the following source program.

let fun power _ 0 = 1
| fun power b e = b * (power b (e - 1))

in power dynamic 10
end

In standard offline PE, the recursion is not a problem because e is static.
In naive online PE, however, e can be dynamic in the (unnecessary)
residualization of power. Thus, without some heuristics to stop the
recursion, specialization does not terminate.

Our analysis alleviates this problem because it subsumes a standard
monovariant BTA (Henglein, 1991). For instance, in the example above,
our analysis annotates power and e with (ω, 0), and prevents the non-
termination of specialization. Of course, the analysis does not solve
the problem in all cases. Currently, our implementation relies on user
annotations to stop specialization. It would be helpful to incorporate
standard techniques such as memoization.

7.4. Effects

Our partial evaluator let-inserts every dynamic function application,
so it is sound under any dynamic, monadic effect (Hatcliff and Danvy,
1996; Lawall and Thiemann, 1997). It might also be possible to stati-
cally reduce some effects by incorporating existing analyses for offline
PE (e.g., Thiemann and Dussart, 1997).
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7.5. Inlining and Hoisting

Since our method does not let-insert never-duplicated, effect-free ex-
pressions, it may duplicate some “trivial” computations. This would be
no problem, however, because such computations can be hoisted out
either by the compiler (although ensuring this is somewhat difficult)
or by the postprocessor.

For example, the source program λp. let x = fst(p) in λy. x + y
is partially evaluated to the residual program λp. λy. fst(p) + y. Thus,
the pair projection fst(p) might be computed every time the func-
tion λy. fst(p) + y is applied. Because the computation has no effects,
however, it can be hoisted out of λy.

7.6. Suboptimal Annotations

Our analysis may give suboptimal annotations with respect to the num-
ber of the coercions (Var) from an identifier (ident) to an expression
(exp). For example, given let f = λx. x in pair(f, f) as a source
program, our cogen yields the following generating extension.

let val f = slet(Abs("x", Var("x")))
in Pair(Var(f), Var(f)) end

However, this generating extension is less efficient than the following,
which duplicates the expression Var(...) and therefore is not well-
typed in our type system.

let val f = Var(slet(Abs("x", Var("x"))))
in Pair(f, f) end

7.7. Polymorphism

It should be straightforward to extend our analysis with polymorphism
over ordinary types. It might also be possible to extend the analy-
sis with polymorphism over annotations (Henglein and Mossin, 1994).
However, it remains to see whether such extension pays for its cost.
Recall that the accuracy of our analysis does not affect the efficiency of
the residual program, though it does affect the efficiency of a generating
extension.

8. Experiments

In order to assess the effectiveness of our method, we specialized the
three source programs in Table I by using several methods including
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Table I. Source programs for experiments

imp An interpreter for an imperative language. The static input is a
program to compute

P10
i=1 i +

Pd
j=1 j, and the dynamic input is

d = 10.

match A pattern matcher to test whether an integer list is a prefix of
another integer list. In match1, the static input is the former list
(= [1, 2, 3]) and the dynamic input is the latter list (= [1, 2, 4, 3, 5]).
In match2, the static input is the latter list (= [1,2,3]) and the
dynamic input is the former list (= [1,2]).

power A standard example for PE. The static input is the exponent (= 10)
and the dynamic input is the basis (= 3).

Table II. Effects of optimizations: Time for specialization of source programs (in µs)

optimization \ source program imp match1 match2 power

naive online PE 135000 423 465 207
+ state-based let-insertion 86600 272 304 150
+ cogen approach 75900 200 220 146
+ type-based representation analysis 1310 47.8 56.0 6.59

Table III. BTA’s for experiments

No PE Make everything dynamic. The only possible annotation is
(0, 1).

MonoBTA A standard monovariant BTA (Henglein, 1991). The pos-
sible annotations are (ω, 0) and (0, ω).

PolyBTA Apply MonoBTA after code duplication by hand to enable
as much specialization as possible.

No BTA Make everything “unknown.” The only possible annotation
is (>, ω).

(Ruf, 1993) Apply MonoBTA, and interpret “dynamic” as “unknown”
(Ruf, 1993). The possible annotations are (ω, 0) and (>, ω).

(Sperber, 1996) Sperber’s BTA (Sperber, 1996). The possible annotations
are (ω, 0), (0, ω), and (>, ω).

Ours The analysis in Section 6. All annotations are possible.

Table IV. Comparison of BTA’s: Time for specialization of source programs (in µs)

BTA \ source program imp match1 match2 power

MonoBTA 327 92.1 92.1 51.1
PolyBTA 350 85.0 93.9 52.3

No BTA 75900 200 220 146
(Ruf, 1993) 5180 107 124 52.1

(Sperber, 1996) 5180 109 125 52.5
Ours 1310 47.8 56.0 6.59
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Table V. Comparison of BTA’s: Number of let-insertion

BTA \ source program imp match1 match2 power

MonoBTA 54 12 12 10
PolyBTA 54 9 10 10

No BTA 7124 22 23 21
(Ruf, 1993) 622 13 14 10

(Sperber, 1996) 622 13 14 10
Ours 35 0 0 0

Table VI. Comparison of BTA’s: Time for execution of residual programs (in µs)

BTA \ source program imp match1 match2 power

No PE 90.1 3.42 2.80 4.88
MonoBTA 33.4 3.26 2.76 0.46
PolyBTA 33.9 0.81 0.35 0.46

No BTA 22.3 0.83 0.37 0.46
(Ruf, 1993) 21.7 0.80 0.33 0.46

(Sperber, 1996) 21.2 0.80 0.34 0.45
Ours 22.9 0.82 0.35 0.45

ours, extended with primitive values, sum types, recursive types, and re-
cursive functions as explained in Section 7. There are many techniques
that are orthogonal in principle, but we selected a few combinations
that are significant in practice. Although the programs and their inputs
(both static and dynamic) are rather small, we believe that the results
are still informative for comparing various methods of specialization.
All the experiments were performed with Standard ML of New Jersey
Version 110.0.3 and Linux 2.2.10 on Mobile Pentium II 400 MHz and
128 MB main memory.

First, we measured the effectiveness of the optimizations in Sec-
tion 4, Section 5, and Section 6, by the efficiency of specialization. The
results are shown in Table II. It is observed that the cogen approach
to online PE by itself does not achieve as much speedup as Thie-
mann’s cogen approach to offline PE does (Thiemann, 1999), because
the overhead of “online-ness” are too large.

Second, we compared the effectiveness of our analysis and various
BTA’s in Table III by the efficiency of the generating extensions and the
residual programs. For the sake of convenience, we call the first three
BTA’s “offline” and the last four BTA’s “online”. We implemented
them on the basis of our analysis in Section 6 by restricting the possible
annotations accordingly in each analysis. We adopted state-based let-
insertion and the cogen approach in all the cases. The results are shown
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in Table IV, Table V, and Table VI. The time for the analyses was
minimal in all the benchmarks.

In all of the source programs, the decrease of unnecessary let-insertion
was crucial to the efficiency of specialization. Especially, as compared
to the other methods (except for the offline BTA’s in imp, which were
unable to perform the same specialization as our method did), our
method was much more efficient because it performed far fewer let-
insertions. (Recall that some instances of let-insertion are mandatory
in order to preserve effects and avoid code duplication.)

Below is our explanation for other details of the results.

− In imp, the offline BTA’s were unable to statically reduce
∑10

i=1 i
to 55. As a result, their generating extensions were faster but their
residual programs were slower than those of the online BTA’s.

− In match, MonoBTA just reconstructed the source program be-
cause it inferred both arguments as dynamic. For satisfactory spe-
cialization, a user must specify different binding-times for match1
and match2 and thereby duplicate the generating extension, as we
did by hand in PolyBTA. (Although this setting itself is artificial,
it gives information about the effectiveness of various BTA’s for
polyvariant use of a function.)

− In power, all the BTA’s were able to perform satisfactory special-
ization.

As a whole, these experimental results show that our method (1)
yields as fast residual programs as naive online PE and (2) enables
more than twice as fast specialization as state-of-the-art (i.e., with
state-based let-insertion, cogen approach, and various BTA’s) offline
PE when they yield similar residual programs, thanks to the removal
of unnecessary let-insertion.

9. Conclusion

We presented a hybrid approach to online and offline PE that com-
bines the advantages of both approaches. Experiments showed that
our method is more than twice as fast as existing methods when they
perform the same specialization, thanks to the optimizations on let-
insertion.

Although we focused on PE for a statically typed call-by-value func-
tional language, our method is applicable to PE for functional languages
in general. For example, even in a pure language that has no effects
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at all, state-based let-insertion would be useful to prevent code du-
plication, because the state monad can usually be implemented more
efficiently than the continuation monad. For another example, even
in a lazy language that does not evaluate unused values at all, the
analysis would be useful to remove unnecessary let-insertion. Even in
a dynamically typed language such as Scheme, it would be possible to
adopt our analysis via the soft typing approach (Cartwright and Fagan,
1991), as is usual with standard type-based analyses including BTA.

Experiments with larger programs and a correctness proof of the
analysis are left as future work. Although little can be said for sure
without real experience, our analysis might scale (in terms of precision)
to larger programs, because there is already a kind of (non-structural)
subtyping polymorphism in the form of the coercion relation ;. Of
course, it would also be worth considering to incorporate parametric
polymorphism and/or structural subtyping to make our analysis more
precise. Further analysis of the experimental results would also be
interesting.

From a broader point of view, our experience with the cogen ap-
proach to online PE suggests that Thiemann’s cogen approach (Thie-
mann, 1999) to offline PE is useful for deriving combinators from a
denotational interpreter in general. For instance, we have already ap-
plied this approach to a denotational interpreter of π-calculus (Milner,
1993) in ML and obtained “concurrency combinators” in ML. We are
trying to generalize these results by using the notion of monad reflection
(Filinski, 1996).

Our results on state-based let-insertion suggests that continuation-
based operations can be simulated by state-based ones in certain cases.
It would also be interesting to study when and how such simulation is
possible.
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Appendix

In the proofs below, we use the following two lemmas on ◦.

Lemma. (id ◦ e) ≈ (e ◦ id) ≈ e for any e.

Proof.

id ◦ e

(* Definition of id and ◦ *)
= let f = λz.z in let g = e in λx.f(gx)
(* β *)
≈ let g = e in λx.(λz.z)(gx)
(* λ *)
≈ let g = e in λx.let z = gx in z

(* unit *)
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≈ let g = e in λx.gx

(* η *)
≈ let g = e in g

(* unit *)
≈ e

e ◦ id
(* Definition of id and ◦ *)
= let f = e in let g = λz.z in λx.f(gx)
(* β *)
≈ let f = e in λx.f((λz.z)x)
(* λ *)
≈ let f = e in λx.f(let z = x in z)
(* unit *)
≈ let f = e in λx.fx

(* η *)
≈ let f = e in f

(* unit *)
≈ e

2

Lemma. e1 ◦ (e2 ◦ e3) ≈ (e1 ◦ e2) ◦ e3 for any e1, e2, and e3. Thanks
to this lemma, it does not matter whether ◦ associates to the left or to
the right.

Proof.

e1 ◦ (e2 ◦ e3)
(* Definition of ◦ *)
= let f1 = e1 in let g = (let f2 = e2 in let f3 = e3 in λy.f2(f3y)) in

λx.f1(gx)
(* assoc *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in let g = λy.f2(f3y) in

λx.f1(gx)
(* β *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in
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λx.f1((λy.f2(f3y))x)
(* λ *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in

λx.f1(let y = x in (f2(f3y)))
(* β *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in

λx.f1(f2(f3x))
(* app *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in

λx.let f ′1 = f1 in let f ′2 = f2 in let z = f3x in f ′1(f
′
2z)

(* β *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in

λx.let z = f3x in f1(f2z)
(* λ *)
≈ let f1 = e1 in let f2 = e2 in let f3 = e3 in

λx.(λz.f1(f2z))(f3x)
(* β *)
≈ let f1 = e1 in let f2 = e2 in let g = λz.f1(f2z) in let f3 = e3 in

λx.g(f3x)
(* assoc *)
≈ let g = (let f1 = e1 in let f2 = e2 in λz.f1(f2z)) in let f3 = e3 in

λx.g(f3x)
(* Definition of ◦ *)
= (e1 ◦ e2) ◦ e3

2

Proof of Theorem 4.2

By structural induction on the abstract syntax of e. Because it is too
lengthy to write down all the equations, we only outline them.

If e = x:

[wc/x][[x]]c
= λk.kwc

≈ λk.let z = id in (z ◦ k)wc

∼comp λσ.let z = id in 〈ws, σ ◦ z〉
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≈ λσ.〈ws, σ〉
= [ws/x][[x]]s

If e = λx.e0: By the induction hypothesis,

[wc/x, w̃c/z̃][[e0]]c ∼comp
τ [ws/x, w̃s/z̃][[e0]]s

for any wc ∼val ws. Therefore, by the definition of ∼val for function
types,

[w̃c/z̃](λx.[[e0]]c) ∼val [w̃s/z̃](λx.[[e0]]s) (1)

Hence:

[w̃c/z̃][[λx.e0]]c
= λk.k[w̃c/z̃](λx.[[e0]]c)
≈ λk.let z = id in (z ◦ k)[w̃c/z̃](λx.[[e0]]c)

(* using (1) *)
∼comp λσ.let z = id in 〈[w̃s/z̃](λx.[[e0]]s), σ ◦ z〉
≈ λσ.〈[w̃s/z̃](λx.[[e0]]s), σ〉
= [w̃s/z̃][[λx.e0]]s

If e = e1e2: By the induction hypothesis, for each j = 1, 2,

[w̃c/z̃][[ej ]]c(λxj . . . .) ≈ let x̃j = ẽk
j in (xj i ◦ (λxj . . . .))[vc

j ] (2)

and

[w̃s/z̃][[ej ]]sσ ≈ let x̃j = ẽσ
j in 〈vs

j , σ ◦ xj i〉 (3)

for some ẽk
j ≈ ẽσ

j and vc
j ∼val vs

j . Since e1 has a function type,

vc
1v

c
2k ≈ let ỹ = f̃k in (yi ◦ k)[vc] (4)

and

vs
1v

s
2(σ ◦ · · ·) ≈ let ỹ = f̃σ in 〈vs, σ ◦ · · · ◦ yi〉 (5)

for some f̃k ≈ f̃σ and vc ∼val vs. Hence:

[w̃c/z̃][[e1e2]]c
= λk.[w̃c/z̃][[e1]]c(λx1.[w̃c/z̃][[e2]]c(λx2.x1x2k))

(* using (2) *)
≈ λk.let x̃1 = ẽk

1 in (x1i ◦ (λx1.

let x̃2 = ẽk
2 in (x2i ◦ (λx2.x1x2k))[vc

2]))[v
c
1]
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≈ λk.let x̃1 = ẽk
1 in

let x̃2 = ẽk
2 in (x1i ◦ x2i)[vc

1v
c
2k]

(* using (4) *)
≈ λk.let x̃1 = ẽk

1 in
let x̃2 = ẽk

2 in let ỹ = f̃k in (x1i ◦ x2i ◦ yi ◦ k)[vc]
∼comp λσ.let x̃1 = ẽσ

1 in
let x̃2 = ẽσ

2 in let ỹ = f̃σ in 〈vs, σ ◦ x1i ◦ x2i ◦ yi〉
(* using (5) *)

≈ λσ.let x̃1 = ẽσ
1 in

let x̃2 = ẽσ
2 in vs

1v
s
2(σ ◦ x1i ◦ x2i)

≈ λσ.let 〈x1, σ1〉 = (let x̃1 = ẽσ
1 in 〈vs

1, σ ◦ x1i〉) in
let 〈x2, σ2〉 = (let x̃2 = ẽσ

2 in 〈vs
2, σ1 ◦ x2i〉) in x1x2σ2

(* using (3) *)
≈ λσ.let 〈x1, σ1〉 = [w̃s/z̃][[e1]]sσ in

let 〈x2, σ2〉 = [w̃s/z̃][[e2]]sσ1 in x1x2σ2

= [w̃s/z̃][[e1e2]]s

If e = δi(e1, . . . , en): By the induction hypothesis, for each j =
1, . . . , n,

[w̃k/z̃][[ej ]]c(λxj . . . .) ≈ let x̃j = ẽk
j in (xj i ◦ (λxj . . . .))[vc

j ] (6)

and

[w̃s/z̃][[ej ]]sσ ≈ let x̃j = ẽσ
j in 〈vs

j , σ ◦ xj i〉 (7)

for some ẽk
j ≈ ẽσ

j and vc
j ∼val vs

j . Hence:

[w̃c/z̃][[δi(e1, . . . , en)]]c
= λk.[w̃c/z̃][[e1]]c(λx1. . . . [w̃c/z̃][[en]]c(λxn.k[δi(x1, . . . , xn)]))

(* using (6) *)
≈ λk.let x̃1 = ẽk

1 in (x1i ◦ (λx1.

. . .

let x̃n = ẽk
n in (xni ◦ (λxn.k[δi(x1, . . . , xn)]))[vc

n] . . .))[vc
1]

≈ λk.let x̃1 = ẽk
1 in

. . .

let x̃n = ẽk
n in (x1i ◦ · · · ◦ xni ◦ k)[δi(vc

1, . . . , v
c
n)]

≈ λk.let x̃1 = ẽk
1 in

. . .
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let x̃n = ẽk
n in let x = δi(vc

1, . . . , v
c
n) in (x1i ◦ · · · ◦ xni ◦ k)[x]

∼comp λσ.let x̃1 = ẽσ
1 in

. . .

let x̃n = ẽσ
n in let x = δi(vs

1, . . . , v
s
n) in 〈x, σ ◦ x1i ◦ · · · ◦ xni〉

≈ λσ.let x̃1 = ẽσ
1 in

. . .

let x̃n = ẽσ
n in 〈δi(vs

1, . . . , v
s
n), σ ◦ x1i ◦ · · · ◦ xni〉

≈ λσ.let 〈x1, σ1〉 = (let x̃1 = ẽσ
1 in 〈vs

1, σ ◦ x1i〉) in
. . .

let 〈xn, σn〉 = (let x̃n = ẽσ
n in 〈vs

n, σn−1 ◦ xni〉) in 〈δi(x1, . . . , xn), σn〉
(* using (7) *)

≈ λσ.let 〈x1, σ1〉 = [w̃s/z̃][[e1]]sσ in
. . .

let 〈xn, σn〉 = [w̃s/z̃][[en]]sσn−1 in 〈δi(x1, . . . , xn), σn〉
= [w̃s/z̃][[δi(e1, . . . , en)]]s

If e = slet(e0): By the induction hypothesis,

[w̃c/z̃][[e0]]c(λx. . . .) ≈ let x̃ = ẽk in (xi ◦ (λx. . . .))[vc] (8)

and

[w̃s/z̃][[e0]]sσ ≈ let x̃ = ẽσ in 〈vs, σ ◦ xi〉 (9)

for some ẽk ≈ ẽσ and vc ∼val vs. Hence:

[w̃c/z̃][[slet(e0)]]c
= λk.[w̃c/z̃][[e]]c(λx.let y = genid() in Let(y, x, k[y]))

(* using (8) *)
≈ λk.let x̃ = ẽk in

(xi ◦ (λx.let y = genid() in Let(y, x, k[y])))[vc]
≈ λk.let x̃ = ẽk in

xi[let y = genid() in Let(y, vc, k[y])]
≈ λk.let x̃ = ẽk in

let y = genid() in xi[Let(y, vc, k[y])]
≈ λk.let x̃ = ẽk in

let y = genid() in (xi ◦ (λx′.Let(y, vc, x′)) ◦ k)[y]
∼comp λσ.let x̃ = ẽσ in

let y = genid() in 〈y, σ ◦ xi ◦ (λx′.Let(y, vs, x′))〉
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≈ λσ.let 〈x, σ′〉 = (let x̃ = ẽσ in 〈vs, σ ◦ xi〉) in
let y = genid() in 〈y, σ′ ◦ (λx′.Let(y, x, x′))〉

(* using (9) *)
≈ λσ.let 〈x, σ′〉 = [w̃s/z̃][[e0]]sσ in

let y = genid() in 〈y, σ′ ◦ (λx′.Let(y, x, x′))〉
= [w̃s/z̃][[slet(e0)]]s

If e = rlet(λ .e0): By the induction hypothesis,

[w̃c/z̃][[e0]]cid ≈ let x̃ = ẽk in xi[vc] (10)

and

[w̃k/z̃][[e0]]sid ≈ let x̃ = ẽσ in 〈vs, xi〉 (11)

for some ẽk ≈ ẽσ and vc ∼val vs. Hence:

[w̃c/z̃][[rlet(λ .e0)]]c
= λk.k[[w̃c/z̃][[e0]]cid ]

(* using (10) *)
≈ λk.k[let x̃ = ẽk in xi[vc]]
≈ λk.let x̃ = ẽk in k[xi[vc]]
≈ λk.let x̃ = ẽk in let y = xiv

c in let z = id in (z ◦ k)y
∼comp λσ.let x̃ = ẽσ in let y = xiv

s in let z = id in 〈y, σ ◦ z〉
≈ λσ.let x̃ = ẽσ in 〈xiv

s, σ〉
≈ λσ.let 〈x, σ′〉 = (let x̃ = ẽσ in 〈vs, xi〉) in 〈σ′x, σ〉

(* using (11) *)
≈ λσ.let 〈x, σ′〉 = [w̃s/z̃][[e0]]sid in 〈σ′x, σ〉
= [w̃s/z̃][[rlet(λ .e0)]]s

2

Proof of Corollary 4.3

By Theorem 4.2, [[e]]c ∼comp [[e]]s. Therefore,

[[e]]cid ≈ let x̃ = ẽk in xi[vc] (12)

and

[[e]]sid ≈ let x̃ = ẽσ in 〈vs, xi〉 (13)
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for some ẽk ≈ ẽσ and vc ∼val
exp vs. By the definition of ∼val for base

types, vc ∼val
exp vs implies vc ≈ vs. Hence:

[[rlet(λ .e)]]cid
= (λk.k[[[e]]cid ])id
≈ [[e]]cid
(* using (12) *)
≈ let x̃ = ẽk in xi[vc]
≈ let x̃ = ẽσ in xiv

s

≈ let 〈x, 〉 = (let x̃ = ẽσ in 〈xiv
s, vσ〉) in x

≈ let 〈x, 〉 = (let 〈x, σ′〉 = (let x̃ = ẽσ in 〈vs, xi〉) in 〈σ′x, vσ〉) in x

(* using (13) *)
≈ let 〈x, 〉 = (let 〈x, σ′〉 = [[e]]sid in 〈σ′x, vσ〉) in x

≈ let 〈x, 〉 = (λσ.let 〈x, σ′〉 = [[e]]sid in 〈σ′x, σ〉)vσ in x

= let 〈x, 〉 = [[rlet(λ .e)]]svσ in x

2
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