
A Typed Process Calculus
for Fine-Grained Resource Access Control

in Distributed Computation

Daisuke Hoshina1, Eijiro Sumii2, and Akinori Yonezawa2

1 TOSHIBA Corporation, Japan,
hoshina@ivc.toshiba.co.jp

2 Department of Computer Science,
Graduate School of Information Science and Engineering,

University of Tokyo, Japan,
{sumii,yonezawa}@yl.is.s.u-tokyo.ac.jp

Abstract. We propose the πD-calculus, a process calculus that can flex-
ibly model fine-grained control of resource access in distributed compu-
tation, with a type system that statically prevents access violations.
Access control of resources is important in distributed computation,
where resources themselves or their contents may be transmitted from
one domain to another and thereby vital resources may be exposed to
unauthorized processes. In πD, a notion of hierarchical domains is in-
troduced as an abstraction of protection domains, and considered as the
unit of access control. Domains are treated as first-class values and can
be created dynamically. In addition, the hierarchal structure of domains
can be extended dynamically as well. These features are the source of
the expressiveness of πD. This paper presents the syntax, the operational
semantics, and the type system of πD, with examples to demonstrate its
expressiveness.

1 Introduction

Background. Keeping access to resources under control is an issue of central
importance in distributed computation: by definition, a distributed system con-
sists of multiple computation domains, such as separate Java virtual machines
[8] on different computers, where resources are transmitted from one domain
to another; accordingly, a non-trivial amount of effort needs to be spent on en-
suring that vital resources are protected from unauthorized access. Although
several foundational calculi [3, 7, 10, 22] have been proposed for the purpose of
studying distributed computation, few of them have notions of access rights and
can guarantee properties about resource access—such as “this high-level integer
is read only by high-level processes”—and none of them are flexible enough to
allow various policies of access control.

The πD-Calculus. To address the above issue, we propose the πD-calculus, a
typed process calculus that can flexibly model fine-grained resource access con-
trol in distributed computation, where the type system statically prevents access

N. Kobayashi and B.C. Pierce (Eds.): TACS 2001, LNCS 2215, pp. 64–81, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Calculus for Resource Access Control in Distributed Computation 65

violations. πD has a notion of domains, an abstraction of hierarchical protec-
tion domains as the unit of access control. For example, consider a situation
where only high-level processes, such as a super user process, can access high-
level resources, such as the file /etc/passwd. This situation can be modeled as
a system with a communication channel readPasswd of type chan〈high level ,
high level〉String . Here, a channel type chan〈i, o〉T means that channels of this
type can be used for receiving a value of type T only by processes running
in the domain i or a greater domain, and for sending a value of type T only
by processes running in the domain o or a greater domain. Thus, the system
high level [readPasswd?(x).P], which represents a process running at the do-
main high level and trying to read a value x from the channel readPasswd ,
is well-typed provided that P is well-typed at high level , while the system
low level [readPasswd?(x).Q] is not.

The role of our domains is similar to that of Riely and Hennessy’s secu-
rity levels [11]. Unlike their security levels, however, domains can be created
dynamically and are treated as first-class values. This feature is the source of the
expressiveness of πD, as demonstrated by the following examples.

Dynamic Creation of Domains. First, we give examples that take advantage of
the dynamic creation of domains. Consider a situation where there are some CGI
programs in a web server. The web server receives a request from a client and
executes the corresponding CGI program in the domain user , so that the CGI
program cannot access vital resources in the web server. This situation can be
modeled as follows

server [∗req1?(x).spawn@user .CGI1 | ∗req2?(x).spawn@user .CGI2 | · · ·]
where the process CGIi represents each CGI program in the web server. The
construct spawn@user .CGIi represents the spawning of the process CGIi in the
domain user . After receiving requests, the above process will evolve to a process
like

server [∗req1?(x).spawn@user .CGI1 | ∗req2?(x).spawn@user .CGI2 | · · ·] |
user [CGI′1] | user [CGI′2] | · · ·

where the process CGI′i represents an instance of the CGI program CGIi. Sup-
pose that CGI′1 has vital resources which should not be accessed by other CGI
programs (or other instances of the same CGI program). Suppose furthermore
that CGI′2 may be a malicious process trying to interfere with other processes
through shared resources in the environment. Since CGI2 is a process running
in the same domain user as CGI1 is running in, it is actually possible for CGI2
to access the vital resources of CGI1.

A naive solution to this problem would be to prepare another domain user2,
in which the web server executes CGI2. However, doing so means that if every
CGIi is malicious, we must prepare a distinct domain for each CGIi in advance.
Furthermore, even doing so does not protect different instances of the same CGI
program from one another.

66 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

These problems can be solved by taking advantage of the dynamic creation
of domains and rewriting the above process as follows.

server [∗req1?(x).(νuser : dom〈server/⊥〉)spawn@user .CGI1 |
∗req2?(x).(νuser : dom〈server/⊥〉)spawn@user .CGI2 | · · ·]

The construct (νuser : T) denotes the dynamic creation of the domain user of
type T . The types of domains have the form dom〈m̃/ñ〉, which determines a
hierarchical structure of domains: if a domain l has type dom〈m̃/ñ〉, then l is a
child domain of each mi in m̃ and a parent domain of each nj in ñ; that is, l
is less than each mi and greater than each nj . We assume that there exist the
greatest domain � and the least domain ⊥.

The above solution—that is, creating a fresh domain for each request and
executing the requested CGI program in the fresh domain—amounts to sand-
boxing each instance of the CGI program within a separate domain. In practice,
however, it is too restrictive to disallow CGI programs to share any resources.
Let us consider a more flexible policy where there is some public resource—the
standard Perl library, for example—which can be accessed by any CGI programs.
This policy can be described as follows.

(νpublic : dom〈server/⊥〉)(νperl library : chan〈server , public〉T)
server [perl library?(x).P |

∗req1?(x).(νuser : dom〈server/public〉)spawn@user .CGI1 |
∗req2?(x).(νuser : dom〈server/public〉)spawn@user .CGI2 | · · ·]

Here, the channel perl library is the resource which can be used by any CGI
programs. Note that not only domains but also their hierarchical structure is
created dynamically: each instance of user is declared to be less than server and
greater than public.

Domains as First-Class Values. Now, we give an example where domains are
treated as first-class values. Consider a situation where a server receives a request
from a client and creates a library which is supposed to be used only by the
client. This situation can be modeled as a system Server | Client1 | Client2 |
Client3 | · · ·, where

Server = server [∗req?(x).(νlib : dom〈x, server/⊥〉)spawn@lib.Lib | · · ·]
Clienti = client i[req !〈client i〉 | Pi]

Here, the process Lib represents the library. The server first receives a domain
client i, creates a fresh child domain lib, and then runs the library in this domain.
Thus, the above system evolves to

Server|client1[P1]|lib1 [Lib]|client2[P2]|lib2 [Lib]|client3[P3]|lib3 [Lib]| · · ·
where the domain libi is less than both server and client i. The server does not
know the domain client i of each client in advance. A client, however, informs
the server of the client’s own domain client i by sending it to the server through
the channel req , so that the server can execute the library in the client’s child
domain libi.

A Calculus for Resource Access Control in Distributed Computation 67

Table 1. Meta-variables for names

a− d ∈ Chan l − n ∈ Dom ⊃ {�,⊥} u− w ∈ Name = Chan ∪ Dom

Outline of the Paper. The rest of this paper is organized as follows. Section 2
presents the syntax and the operational semantics of πD. Then, Section 3 de-
scribes our type system for controlling access to resources in πD, and Section 4
proves the type system sound with respect to the operational semantics. Further-
more, Section 5 extends πD with subtyping. Finally, Section 6 discusses related
work and Section 7 concludes with future work.

2 The Language

This section presents the syntax and the operational semantics of the πD-
calculus. It is an extension of the polyadic π-calculus [15] with hierarchical do-
mains, the unit of access control. Although they are similar to security levels of
Hennessy and Riely [11], our domains can be created dynamically and passed
through communication channels. Every process is located in a domain, which
determines which resources the process can access.

Domains are partially ordered. We assume that there exist the greatest do-
main � and the least domain ⊥. Intuitively, processes in a domain which is
greater with respect to the partial order can access more resources. We will
come back to this point in Section 3.1.

2.1 Syntax

We assume that there are two disjoint countably infinite sets Chan of channels
and Dom of domains. We also assume that the set Dom has two special elements
� and ⊥. Our meta-variable convention for elements of these sets is given in
Table 1.

Types. We introduce three kinds of types: channel types, domain types and
dependent pair types. They are given in Table 2.

Channel types: chan〈m,n〉T is the type of a channel for communicating com-
pound names of type T . The pair 〈m,n〉 means that this channel can be used
for input (resp. output) only by processes located in the domain m (resp. n)
or a greater domain. If m is �, no process can use this channel for input and
if m is ⊥, any process can use this channel for input. The case for output is
similar when n is either � or ⊥. When a channel c has type chan〈m,n〉T ,
we say that c has the input level m and the output level n.

Domain types: If a domain l has type dom〈m̃/ñ〉, then l is a child domain of
each m in m̃ and a parent domain of each n in ñ. That is, l is less than any
of m̃ and greater than any of ñ.

68 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 2. Types

(Type)
S, T ::= chan〈m,n〉T channel type

dom〈m̃/ñ〉 domain type
Σu : S.T dependent pair type

Table 3. Threads and systems

(Threads)
P,Q,R ::= P | Q parallel

c!〈V 〉 output
c?(U : T).P input
∗P replication
(νv : T)P name creation
0 nil
spawn@m.P spawning

(Systems)
L,M,N ::= M | N parallel

(νv : T)M name creation
0 nil
m[P] located thread

(CompoundNames)
U −W ::= u

(u, U)

Dependent pair types: If a name v has type S and another name v′ has type
{v/u}T , then the pair (v, v′) has a dependent pair type Σu : S.T . Note that
if u does not appear free in T , this dependent pair type can actually be
considered as an ordinary pair type S × T .

Processes. The syntax of threads and systems is given in Table 3. Both threads
and systems are called processes. Their intuitive meanings are as follows.

– An output c!〈V 〉 sends the compound name V on the channel c. An input
c?(U : T).P receives a compound name through the channel c, binds the
compound name to U , and then executes P .

– A name creation (νv : T)P or (νv : T)M creates a fresh name, binds it to v,
and then executes P or M . Note that not only channels but also domains
can be created dynamically.

– A spawning spawn@m.P spawns the process P in the domain m.
– A located thread m[P] denotes the thread P running in the domain m.

We write fn(T), fn(U), fn(P) and fn(M) for the set of free names appearing
in T , U , P and M , respectively. Their formal definition is omitted in this paper.

A Calculus for Resource Access Control in Distributed Computation 69

Table 4. Structural preorder

m[P | Q] m[P] | m[Q] (SP-SPLIT)
m[(νv : T)P] (νv : T)m[P] if v �= m (SP-NAME)

m[0] 0 (SP-ZERO)
(νv : T)M | N (νv : T)(M | N) if v �∈ fn(N) (SP-EXTR)

m[∗P] m[P] | m[∗P] (SP-REPL)
(νv : T)(νw : S)M (νw : S)(νv : T)M if v /∈ fn(S) ∧ w /∈ fn(T) (SP-EX)

2.2 Operational Semantics

We define the operational semantics of πD by using two binary relations: the
structural relation � and the reduction relation −→.

Definition 1 (Structural Relation). The structural relation � is the least
reflexive and transitive relation over systems satisfying the rules in Table 4 and
the monoid laws: M | 0 ≡ M,M | N ≡ N | M and (L | M) | N ≡ L | (M | N).
Here, P ≡ Q is defined as P � Q ∧Q � P .

The rule (SP-SPLIT) allows a thread P | Q to split into two independent
threads P and Q. (SP-EX) says that adjacent name bindings can be swapped.
Note that the side-condition is necessary since we have dependent pair types
[22].

Definition 2 (Reduction Relation). The reduction relation −→ over sys-
tems is the least relation satisfying the rules in Table 5. M −→ M ′ means that
M can evolve to M ′ by one-step communication or spawning. The relation −→∗

is the reflexive and transitive closure of −→.

The rule (R-COMM) allows two processes running in parallel to exchange
a compound name through a channel. Be aware that the communication can
take place across domains. Thus, unlike in Dπ [10], channel names are global
in πD. The rule (R-SPAWN) allows a process to spawn a thread in a domain.
Obviously, it is dangerous if any process can spawn a new process in any domain
by using the spawn statement. Our type system will guarantee that processes in
a domain m can spawn new processes in another domain n only if m is greater
than n. The other rules are standard in the π-calculus.

2.3 Example

Computation Server. We give an example to show how we protect channels from
unauthorized access by assigning them suitable types. Consider a situation where
a computation server receives a request from a client and creates a library which
is supposed to be used only by the client, like the last example in Section 1.
The library here is an integer successor function: it receives an integer i with a

70 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 5. Reduction relation

m[c!〈V 〉] | m′[c?(U : T).P] −→ m′[{V/U}P] (R-COMM)

m[spawn@n.P] −→ n[P] (R-SPAWN)

M −→ M ′

M | N −→ M ′ | N (R-PAR)
M −→ N

(νv : T)M −→ (νv : T)N
(R-NEW)

M M ′ M ′ −→ N ′ N ′ N

M −→ N
(R-CONG)

where the substitution {V/U} of compound names is defined as follows:

{V/U} def
= {v/u} if V = v and U = u

({v/u} • {V ′/U ′}) if V = (v, V ′) and U = (u, U ′)

{v1/u1, · · · , vi/ui} • {v′
1/u

′
1, · · · , v′

j/u
′
j} def

= {v1/u1, · · · , vi/ui, v
′
1/u

′
1, · · · , v′

j/u
′
j}

channel r, and sends i + 1 back through r. Assuming arithmetic primitives for
integer operation, this situation can be modeled as

(νServ : dom〈�/⊥〉)(νClient1 : dom〈�/⊥〉)(νClient2 : dom〈�/⊥〉) · · ·
(νserv :TServ)(Serv | Client1 | Client2 | · · ·)

where

Serv = Serv [∗serv?(c, r :TServReq).
(νSucc : dom〈Serv/⊥〉)(νsucc :TSuccc,Succ)
(spawn@Succ.Succ | r!〈Succ, succ〉)]

Succ = ∗succ?(x, y :TSuccReqc,Succ).y!〈x+ 1〉
Clienti = Client i[(νreply : chan〈Client i,Serv〉TServAnsClienti)

serv !〈Client i, reply〉 |
reply?(MySucc,mysucc :TServAnsClienti

).
. . .use mysucc as a library . . .)]

TServ = chan〈Serv ,⊥〉TServReq
TServReq = Σx : dom〈�/⊥〉.chan〈x,Serv〉TServAnsx
TServAnsm = Σy : dom〈Serv/⊥〉.TSuccm,y

TSuccm,n = chan〈n,m〉TSuccReqm,n

TSuccReqm,n = int ×TSuccAnsm,n

TSuccAnsm,n = chan〈m,n〉int

Note that the computation server does not know in advance how many clients
exist, and thus every client must send its own domain to the computation server.

A Calculus for Resource Access Control in Distributed Computation 71

Table 6. Type environments

Γ,∆ ::= • | Γ, u : T

This process evolves to:

(νServ : dom〈�/⊥〉)(νClient1 : dom〈�/⊥〉)(νClient2 : dom〈�/⊥〉) · · ·
(νserv :TServ)(Serv|

(νSucc1 : dom〈Serv/⊥〉)(νsucc1 :TSuccClient1,Succ1)
(Client1[{Succ1/MySucc, succ1/mysucc} · · ·] | Succ1[Succ])|

(νSucc2 : dom〈Serv/⊥〉)(νsucc2 :TSuccClient2,Succ2)
(Client2[{Succ2/MySucc, succ2/mysucc} · · ·] | Succ2[Succ]) |

· · ·)
The type of the channel reply says that, for each i, the channel can be used
only in Client i for input and only in Serv for output, so that the communication
between Client i and Serv is never intercepted by other processes. The type of
the channel succ says that, for each i, the channel can be used only in Serv
for input and only in Client i for output, so that only processes in the domain
Client i can invoke the successor function and only processes in the domain Succ
can provide the successor function.

3 The Type System

The primary judgments of the type system are of the form Γ � P : Th[m] for
threads and of the form Γ �M :Sys for systems, where Γ is a type environment
defined as in Table 6. We write Γ (u) = T to mean that Γ maps u to T , that
is, there exist some Γ1 and Γ2 such that Γ = Γ1, u : T, Γ2. The domain of Γ ,
written dom(Γ), is the set of names which Γ maps. We write Dom(Γ) for the
set of names having a domain type in Γ .

3.1 Environments and Partially Ordered Sets of Domains

Type environments determine a partial order among domains. We write ≤Γ for
this partial order, whose formal definition is as follows.1

Definition 3 (Partial Order under Γ).

m ≤Γ n
def
= (m = ⊥ ∨ n = � ∨ m≤̇Γ

n) ∧ {m,n} ⊆ Dom(Γ)

where

≤̇Γ def
=

∅ if Γ = •
≤̇Γ ′

if Γ = Γ ′, c : chan〈m1,m2〉T(≤̇Γ ′
∪ {

(m,ni), (n′
j ,m) | ni ∈ {ñ}, n′

j ∈ {ñ′}})∗

if Γ = Γ ′,m : dom〈ñ/ñ′〉
1 �∗ denotes the reflexive and transitive closure of the relation �.

72 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 7. Good environments

� • ok
(E-EMPTY)

u �∈ dom(Γ) ∪ {�,⊥} � Γ ok Γ |= T

T is a channel type or a domain type
� Γ, u : T ok

(E-TYPE)

∀m′
i ∈ {m̃′}. ∀mi ∈ {m̃}. m′

i ≤Γ mi ∧ m′
i �= mi

{m̃} ⊆ Dom(Γ) ∪ {�} {m̃′} ⊆ Dom(Γ) ∪ {⊥}
Γ |= dom〈m̃/m̃′〉 (T-DOM)

m1,m2 ∈ Dom(Γ) ∪ {�,⊥} Γ |= T

Γ |= chan〈m1,m2〉T (T-CHAN)

Γ |= S Γ, u : S |= T u �∈ dom(Γ) ∪ {�,⊥}
Γ |= Σu : S.T

(T-DEP)

For example, the type environmentm1:dom〈�/⊥〉,m2:dom〈m1/⊥〉,m3:dom〈m1/m2〉,
m4 : dom〈�/m3〉 defines the partially ordered set shown in Fig. 1. Note that
m2 ≤Γ m4 also holds by transitivity.

m1 m4

m3

m2

✏✏✏✏✏✏✏✮

��������

❄

◗
◗

◗
◗

◗
◗◗�

Fig. 1. Example of domain hierarchy. The domains � and ⊥ are omitted.

The formation rules for environments, which are of the form � Γ ok, are
given in Table 7. They are defined by using the formation rules for channel
types and domain types, which are of the form Γ |= T . The rule (T-DOM)
deserves mention. The premise in the first line ensures that parents of a domain
must always be greater than children of the domain. This condition is important
for keeping ≤Γ a partial order. The premises in the second line ensure that � is
always the greatest element and ⊥ is always the least element. The rule (T-DEP)
says that we must check T under Γ extended with u :S, since u may appear free
in T .

The following proposition assures that if Γ is a good environment, ≤Γ is
indeed a partial order.

A Calculus for Resource Access Control in Distributed Computation 73

Proposition 1. If � Γ ok, then ≤Γ is a partial order over Dom(Γ) ∪ {�,⊥}.

3.2 Typing Rules

Typing Rules for Threads. The typing rules for threads in πD are given in
Table 8. The judgment Γ � P : Th[l] indicates that the thread P is well-typed
under the type environment Γ and can be located in the domain l. Intuitive
explanation of key rules is as follows.

G-DEP This rule follows from the meaning of compound names of a dependent
pair type.

TH-ZERO Since a null thread does nothing, it can be located in any domain
which is present in the environment.

TH-OUT The first and third premises say that c is a channel with the output
level m2, and that the compound name V must have the type T of names
communicated through the channel. The second premise ensures that c is
used for output only by processes in the domain m2 or a greater domain.
The forth premise ensures that there is no process located in the domain �.

TH-IN This rule is similar to (TH-OUT) except that we must check that the
continuation process P is well-typed under Γ extended with U : T .

TH-SPAWN The second premise of this rule ensures that only a thread in a
domain n greater than m can spawn a new thread in m.

Typing Rules for Systems. The judgment Γ � M : Sys indicates that the
system M is well-typed under the type environment Γ . The typing rules for
systems are also given in Table 8. The rules (SYS-ZERO), (SYS-NEW) and
(SYS-PAR) are similar to those for threads. The rule (SYS-EX) allows adjacent
elements of a type environment to be switched. This rule is necessary only for
a technical reason, that is, for proving the case of (SP-EX) in Lemma 2 in
Section 4. The rule (SYS-LOCATED) says that only threads of type Th[m] can
be located in the domain m.

Well-typedness of processes is obviously decidable since the typing rules are
purely syntax-directed and the partial order among domains is finite.

4 Type Soundness

4.1 Subject Reduction

Our first main result is the subject reduction theorem. In order to prove that,
we need the following lemmas:

Lemma 1 (Substitution).

– If Γ, u :T, Γ ′ � P :Th[n] and Γ, {v/u}Γ ′ � v :T , then Γ, {v/u}Γ ′ � {v/u}P :
{v/u}Th[n].

74 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 8. Typing rules for threads and systems

Γ + U : T
def
= Γ + u : T if U : T = u : T

(Γ, u : S) + U ′ : {u/u′}T ′ if X : T = (u, U ′) : (Σu′ : S.T ′)

� Γ ok Γ (u) = T

Γ � u : T
(G-NAME)

Γ � v : S Γ � V : {v/u}T
Γ � (v, V) : (Σu : S.T)

(G-DEP)

Γ � c : chan〈m1,m2〉T m2 ≤Γ l Γ � V : T l �= �
Γ � c!〈V 〉 : Th[l]

(TH-OUT)

Γ � c : chan〈m1,m2〉T m1 ≤Γ l l /∈ fn(U)
Γ + U : T � P : Th[l] l �= �

Γ � c?(U : T).P : Th[l]
(TH-IN)

Γ � P : Th[m] m ≤Γ n

Γ � spawn@m.P : Th[n]
(TH-SPAWN)

Γ � P : Th[l]
Γ � ∗P : Th[l]

(TH-REP)

� Γ ok l ∈ Dom(Γ)
Γ � 0 : Th[l]

(TH-ZERO)
Γ, v : T � P : Th[l] v �= l

Γ � (νv : T)P : Th[l]
(TH-NEW)

Γ � P : Th[l] Γ � Q : Th[l]
Γ � P | Q : Th[l]

(TH-PAR)

� Γ ok

Γ � 0 : Sys
(SYS-ZERO)

Γ, v : T � M : Sys
Γ � (νv : T)M : Sys

(SYS-NEW)

Γ � P : Th[m]
Γ � m[P] : Sys

(SYS-LOCATED)
Γ � M : Sys Γ � N : Sys

Γ � M | N : Sys
(SYS-PAR)

Γ1, u1 : S, u2 : T, Γ2 � M : Sys u1 �∈ fn(T) u2 �∈ fn(S)
Γ1, u2 : T, u1 : S, Γ2 � M : Sys

(SYS-EX)

– If Γ +X : T � P : Th[n] and Γ � V : T , then Γ � {V/X}P : {V/X}Th[n].

Lemma 2 (Subject Preordering). If Γ � M : Sys and M � N , then Γ �
N : Sys.

In πD, domains appear free in types, so the substitution lemmas above are
a little different from usual ones: the subjects of substitution are not only free
names of P but also those of Γ ′ and Th[n].

Theorem 1 (Subject Reduction). If Γ � M : Sys and M −→∗ N , then
Γ � N : Sys.

Proof. Follows from Lemma 1 and Lemma 2. See the full version [12] for details.
��

A Calculus for Resource Access Control in Distributed Computation 75

Table 9. Tagged systems

(Tagged Systems)
E,F,G ::= . . .

m[P]ñ tagged located thread

This theorem says that well-typedness of processes is preserved throughout
computation.

4.2 The Tagged Language and Type Safety

Roughly, our type safety theorem says that:

A channel c of type chan〈m1,m2〉T can be used for output only by
processes which were located in m2 or a greater domain at the beginning
of the computation. (The case for input is similar and omitted.)

In order to state and prove this theorem, we introduce a tagged language. Each
process of the tagged language carries its own tag, which records the history
of domains it has moved across. Note that tags are introduced only for stating
properties of processes and do not affect their execution.

The Tagged Language

Tagged Systems. The formal definition of tagged systems is given in Table 9.
Systems in the tagged language are the same as in the original language except
that located threads are tagged with a sequence of domains. The tag ñ of a
located thread P1 represents the domain in which P1 was spawned, the domain
in which the parent thread P2 which spawned P1 was spawned, the domain in
which the grand parent thread P3 which spawned P2 was spawned, and so forth.
For example, a thread which is located in m1 now, whose parent thread was
located in m2, and whose grand parent thread was located in m3, is represented
as m1[P]m1,m2,m3 .

Operational Semantics. The operational semantics of the tagged language is
given in Table 10. The definition of the structural preorder is a straightforward
extension of the original. We show only (TS-SPLIT) and (TS-NAME). As for
the reduction relation, only (R-SPAWN) is changed so that when a new thread
is spawned in a domain, it is recorded in the thread’s tag.

Technical Properties of Tagged Language. We present two lemmas stating that
the semantics of a program does not depend on whether it is written in the
original language or in the tagged language.

For convenience, we define a function Tag , which maps terms of the original
language to terms of the tagged language, and Erase, which is the inverse of
Tag .

76 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 10. Structural preorder and reduction relation

m[P | Q]ñ m[P]ñ | m[Q]ñ (TS-SPLIT)
m[(νv : T)P]ñ (νv : T)m[P]ñ if v /∈ {m, ñ} (TS-NAME)

m[spawn@n.P]ñ
′ −→ n[P]n,ñ′

(TR-SPAWN)

Definition 4 (Tagging)

Tag(M ′ | N ′) = Tag(M ′) | Tag(N ′)
Tag((νv : T)M ′) = (νv : T)Tag(M ′)
Tag(0) = 0
Tag(n[P]) = n[P]n

Definition 5 (Erase). Erase() is the function mapping tagged system expres-
sions to ordinary system expressions by erasing tags.

Lemma 3 (Correspondence w.r.t �)
1. If E � F , then Erase(E) � Erase(F).
2. If Erase(E) � M , then there is some F such that E � F and M =
Erase(F).

Lemma 4 (Correspondence w.r.t −→)
1. If E −→ F , then Erase(E) −→ Erase(F).
2. If Erase(E) −→ M , then there is some some E′ such that E −→ E′ and
M = Erase(E′).

Type Safety. Before describing the formal definition of our type safety theorem,
we make some preparations for proving it. First, we define the notion of guarded
threads and guarded tagged systems, used in the lemma below.

Definition 6 (GuardedThreads andGuardedTagged Systems). A thread
is guarded if it is an input, output, replication, spawning or null. A tagged system
is guarded if it is a located thread or null.

The following lemma says that each domain in the history of a well-typed system
is less than the previous domain.

Lemma 5. Suppose Γ � M : Sys and E = Tag(M). If there is some F such
that E −→∗ F � (νΓ ′)(F1 | · · · | Fq) where F1 · · ·Fq are guarded, then mi =

mi
1 ≤Γ,Γ ′

. . . ≤Γ,Γ ′
mi

pi holds for every Fi = mi[Pi]
mi

1,...,mi

pi .

A Calculus for Resource Access Control in Distributed Computation 77

From the above lemma and the type system, the following lemma can be proved.
This lemma guarantees that, for example, a channel having the output level n2
is used for output only by processes whose history contains only domains greater
than n2.

Lemma 6. Suppose Γ � M : Sys and E = Tag(M). If there is some F such
that E −→∗ F � (νΓ ′)(m′[c!〈V 〉]m′

1,...,m′
i | F ′) and (Γ, Γ ′)(c) = chan〈n1, n2〉T ,

then n2 ≤Γ,Γ ′
m′ = m′

1 ≤Γ,Γ ′
. . . ≤Γ,Γ ′

m′
i.
2

Furthermore, in order to prove the type safety theorem, we need the following
lemma. This lemma says that, for example, if m ≤Γ,l:dom〈n/m〉 n, then m ≤Γ n
even though l : dom〈n/m〉 is removed from Γ, l : dom〈n/m〉.
Lemma 7. Suppose � Γ, Γ ′ ok and m ≤Γ,Γ ′

n. If m,n ∈ dom(Γ), then m ≤Γ n.

Finally, we prove the type safety theorem. Its formal statement is as follows.

Theorem 2 (Type Safety). Suppose Γ �M : Sys, E = Tag(M) and Γ, Γ ′ =
∆, c : chan〈n1, n2〉T,∆′. Suppose also M −→∗ N � (νΓ ′)(m′[c!〈V 〉] | N ′). Then,
there exist some F , F ′, and m̃′ such that E −→∗ F � (νΓ ′)(m′[c!〈V 〉]m′

1,...,m′
k |

F ′) and N = Erase(F). Furthermore, n2 ≤Γ,Γ ′
m′ = m′

1 ≤Γ,Γ ′
. . . ≤Γ,Γ ′

m′
k

where n2 ≤∆ m′
j for every m′

j ∈ dom(∆).

Proof. Immediately follows from Lemma 4, Lemma 6 and Lemma 7. ��
Intuitively, this statement means that if a process uses the channel c for output,
then:

1. each domain in the history of the process (i.e., m′
1, · · · ,m′

k) must be greater
than n2, and

2. for each j, if m′
j was created before c (i.e., m′

j ∈ dom(∆)), then m′
j was

originally greater than n2.

In other words, processes which were not located in n2 or a greater domain
at the beginning of the execution of M can never use c for output throughout
computation.

We give two examples to demonstrate how the typing rules in Section 3
prevents failure of type safety. Suppose Γ = m : dom〈�/⊥〉, n : dom〈m/⊥〉, c :
chan〈�,m〉int.

– First, consider a process P
def
= n[c!〈1〉] trying to use c, a channel with an

output levelm, for output within n. Since the tagged version of P is n[c!〈1〉]n
and m �≤Γ n, the first claim above of the theorem does not hold for P . By
(TH-OUT), however, P cannot be well-typed, since m is not greater than or
equal to n.

– Second, consider a more cunning processQ
def
= n[(νl:dom〈n/m〉)spawn@l.c!〈1〉],

which tries to create a new domain l as a parent of the domain m, and then
2 (νΓ) is an abbreviation of (νu1 : T1) · · · (νun : Tn) for Γ = u1 : T1, · · · , un : Tn.

78 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

Table 11. Subtyping relation

m ≤Γ m′ m′ �= � ⇒ Γ � S � T

n ≤ n′ n′ �= � ⇒ Γ � T � S

Γ � chan〈m,n〉S � chan〈m′, n′〉T (SUB-CHAN)

{m̃′} ⊆ {m̃} ⊆ Dom(Γ) {ñ′} ⊆ {ñ} ⊆ Dom(Γ)
Γ � dom〈m̃/ñ〉 � dom〈m̃′/ñ′〉 (SUB-DOM)

Γ, u : S � T � T ′ Γ � S � S′ u is fresh
Γ � Σu : S.T � Σu : S′.T ′ (SUB-DEP)

spawn a process trying to use the channel c for output. Although the first
claim of the theorem does hold for Q, the second does not for the following
reason: the tagged version of P is n[(νl : dom〈n/m〉)spawn@l.c!〈1〉]n which
evolves to (νl : dom〈n/m〉)l[c!〈1〉]l,n; indeed m ≤Γ,l:dom〈n/m〉 l ≤Γ,l:dom〈n/m〉 n
holds, but m ≤Γ n does not. By (T-DOM), however, Q cannot be well-typed
either, since n is not greater than or equal to m.

5 Subtyping

The partial order among domains induces a subtyping relation on types. Intu-
itively, the subtyping relation Γ � S � T says that a name of type S may be
used as a name of type T . A possible definition of the subtyping relation is given
in Table 11.

SUB-CHAN. The first premise follows from the intuition that a channel with
input levelm can be used by threads in a domainm′ greater than or equal to
m. The third premise is similar. The second and forth premises say that an
input capability implies covariance of the channel type, whereas an output
capability implies contravariance [16].

SUB-DOM. This rule follows from the intuition that a child (resp. parent)
domain of both m and n can be used as a child (resp. parent) domain of
only m.

SUB-DEP. This rule can be considered as an extension of the usual definition
of subtyping relation for pair types. The difference is that we must check
T � T ′ under Γ extended with u : S.

Furthermore, the typing rules for threads can be refined as in Table 12.

TH-OUT. The first, third, and fourth premises say that V must be of less
restrictive type than the type T of names communicated through the channel.

TH-IN. The first, forth, and fifth premises say that compound names received
through c can be regarded as names of more restrictive type than T .

Although the definitions in Table 11 and Table 12 seem reasonable, we have
not yet proved soundness of the type system with this subtyping relation.

A Calculus for Resource Access Control in Distributed Computation 79

Table 12. Typing rules for threads with subtyping

Γ � c : chan〈m1,m2〉T m2 ≤Γ l

Γ � T ′ � T Γ � V : T ′ l �= �
Γ � c!〈V 〉 : Th[l]

(TH-OUT)

Γ � c : chan〈m1,m2〉T m1 ≤Γ l l /∈ fn(U)
Γ � T � T ′ Γ + U : T ′ � P : Th[l] l �= �

Γ � c?(U : T ′).P : Th[l]
(TH-IN)

6 Related Work

We have already made reference to Riely and Hennessy’s work [10, 11]. Besides
it, several other foundational calculi have been proposed for access control in
distributed computation.

– Yoshida and Hennessy [22] proposed a type system for access control in the
higher-order π-calculus. Their type system can be used for controlling access
to resources in higher-order code transmitted from one domain to another.
Introducing our notion of domains into their calculus might enable finer-
grained access control in the higher-order π-calculus.

– De Nicola, Ferrari and Pugliese [5] also studied access control in distributed
computation. They dealt with a variant of Linda with multiple tuple spaces
as a target language. Tuple spaces correspond to domains in πD, and tuples
(named data) correspond to resources. Since the type system in [5] controls
access to tuple spaces rather than to specific tuples, it provides coarser-
grained access control than [10] and πD.

– Dezani-Ciancaglini and Salvo [6] introduced security levels [11] into the am-
bient calculus [3]. Their security levels are associated with ambients: it is
guaranteed that an ambient at security level s can be traversed or opened
only by ambients at security level s or greater. The role of security levels are
similar to that of our domains. They, however, are not first-class values and
cannot be created dynamically. Again, adapting our notion of domains for
the ambient calculus might enable more flexible access control.

– Cardelli and Gordon [4] introduced groups into the π-calculus. The role of
groups is similar to that of domains. Groups can be created dynamically,
but are not first-class values.

Foundational calculi for studying various security issues have also been pro-
posed by several authors [1, 2, 9, 21]. Abadi and Gordon [1] proposed the spi
calculus, an extension of the π-calculus with cryptographic primitives. It allows
programmers to describe and analyze security protocols. Bugliesi and Castagna
[2] proposed a typed variant of safe ambient [14]. Their type system can cap-
ture not only explicit but also implicit behavior of processes and thereby detects
security attacks such as Trojan horses. Heintze and Riecke [9] proposed an ex-
tension of the λ-calculus with a type system for preserving secrecy and integrity

80 Daisuke Hoshina, Eijiro Sumii, and Akinori Yonezawa

of resources. Vitek and Castagna [21] proposed a low level language, called the
seal calculus, for writing secure distributed applications over a large-scale open
network.

Our notion of domains is orthogonal to the notion of locations [7, 10, 20]:
locations are targets of code movement, while domains are the unit of access
control; it is possible to have different domains within a single location, or to
have a single domain across multiple locations.

7 Future Work

Our type safety theorem holds if and only if all processes are well-typed. This
assumption is quite restrictive since it is not realistic to verify open systems,
such as the Internet, as a whole [19]. This limitation would be overcome by
adapting type systems where a certain type safety theorem holds even if some
of the processes are not well-typed [4, 19].

Types constrain the behavior of processes and their environments, and thereby
allow a coarser notion of behavioral equivalence. Typed equivalence has already
been investigated in various process calculi [13, 16, 17, 18]. It may be possible
to develop a similar theory in πD.

Acknowledgment

First and foremost, our work benefited greatly from Naoki Kobayashi’s sugges-
tive and insightful technical advise. The TACS reviewers also gave us helpful
comments on an earlier version of the present paper. Finally, we would like to
thank the current and former members of Yonezawa’s group in the University
of Tokyo, especially Hidehiko Masuhara and Atsushi Igarashi.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. In Proceedings of the Fourth ACM Conference on Computer and Com-
munications Security. ACM Press, 1997.

2. M. Bugliesi and G. Castagna. Secure safe ambients. In POPL’01. ACM Press,
2001.

3. L. Cardelli and A. D. Gordon. Mobile ambients. In FoSSaCS’98. Springer-Verlag,
1998.

4. L. Cardelli and A. D. Gordon. Secrecy and group creation. In CONCUR’2000.
Springer-Verlag, 2000.

5. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim : a kernel language for agents
interaction and mobility. IEEE Trans. on Software Engineering, 24(5), 1998.

6. M. Dezani-Ciancaglini and I. Salvo. Security types for mobile safe ambients. In
ASIAN’00, 2000.

7. C. Fournet, G. Gonthier, J. J. Levy, L. Maranget, and D. Remy. A calculus of
mobile agents. In CONCUR’96. Springer-Verlag, 1996.

A Calculus for Resource Access Control in Distributed Computation 81

8. J. Gosling, B. Joy, and G. Steele. The Java language specification. Addison-Wesley,
1996.

9. N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and
integrity. In POPL’98. ACM Press, 1998.

10. M. Hennessy and J. Riely. Resource access control in systems of mobile agents. In
HLCL’98. Elsevier, 1998.

11. M. Hennessy and J. Rily. Information flow vs. resource access in the asynchronous
pi-calculus (extended abstract). In ICALP’00, January 2000.

12. D. Hoshina, E. Sumii, and A. Yonezawa. A typed pro-
cess calculus for fine-grained resource access control in dis-
tributed computation (full version), 2001. Available from
http://www.yl.is.s.u-tokyo.ac.jp/˜hoshina/papers/tacs01full.ps.gz.

13. N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. In POPL’96.
ACM Press, 1996.

14. F. Levi and D. Sangiorgi. Controlling interference in ambients. In POPL’00. ACM
Press, 2000.

15. R. Milner. The polyadic π-calculus: a tutorial. Technical Report ECS-LFCS-91-
180, Laboratory for Foundations of Computer Science,Department of Computer
Science, University of Edinburgh, Octorber 1991.

16. B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathe-
matical Structure in Computer Science, 6(5):409–454, 1996.

17. B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-calculus.
In POPL’97. ACM Press, 1997.

18. J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
POPL’98. ACM Press, 1998.

19. J. Riely and M. Hennessy. Trust and partial typing in open systems of mobile
agents. In POPL’99. ACM Press, 1999.

20. P. Sewell. Global/local subtyping and capability inference for a distributed π-
calculus. In ICALP’98. Springer-Verlag, 1998. LNCS 1433.

21. J. Vitek and G. Castagna. Seal: A framework for secure mobile computations. In
Internet Programming Languages, 1999. LNCS 1686.

22. N. Yoshida and M. Hennessy. Assigning types to processes. In LICS’00. IEEE,
2000.

	1 Introduction
	2 The Language
	2.1 Syntax
	2.2 Operational Semantics
	2.3 Example

	3 The Type System
	3.1 Environments and Partially Ordered Sets of Domains
	3.2 Typing Rules

	4 Type Soundness
	4.1 Subject Reduction
	4.2 The Tagged Language and Type Safety

	5 Subtyping
	6 Related Work
	7 Future Work
	Acknowledgment
	References

